The Diagonalization Matrix of the $\otimes (\equiv^* Z_p)$, Where p is an Odd Prime

Dunya M. Hamed

Department of Mathematics, College of Education Al-Mustansirya University

Abstract

In this paper we give some concepts that we shall use to determinate the diagonalization of the $\overset{n}{\otimes}(\equiv^* Z_p)$, where $\overset{n}{\otimes}(\equiv^* Z_p)$ is the tensor product of the matrix of the rational valued character table Z_p by itself n-times, p is an odd prime.

1. Introduction

The tensor product of two matrices and the rational character table of Z_p has been given in [2], [5] and [6] respectively.

Many studies present new results for finding the rational valued character of $Z_p^{(n)}$ and determination the cyclic decomposition of the factor group K(G), when $G = Z_p^{(n)}$ for p = 3, 5, 7, 11, 13 in [6], [8], [7], [9] and [1] respectively.

But in this work we found two matrices P and Q and using some concepts to determine the diagonalization of the $\overset{n}{\otimes}(\equiv^* Z_p)$ where $\equiv^* Z_p$ is the matrix of the rational character table of Z_p , p is an odd prime.

2. Preliminaries

In this section some definitions and basic concepts of tensor product, character theory and the characters table of finite abelian group Z_p are introduced.

Can found these concepts in [2], [3], [5] and [6].

Definition (2-1) [2]

Let $A\in M_n(K),\, B\in M_m(K)$ we define a matrix $A\otimes B\in M_{nm}(K)$ put:

$$\mathbf{A} \otimes \mathbf{B} = \begin{bmatrix} \mathbf{a}_{11} \mathbf{B} & \mathbf{a}_{12} \mathbf{B} & \cdots & \mathbf{a}_{1n} \mathbf{B} \\ \mathbf{a}_{21} \mathbf{B} & \mathbf{a}_{22} \mathbf{B} & \cdots & \mathbf{a}_{2n} \mathbf{B} \\ \vdots & \vdots & \cdots & \vdots \\ \mathbf{a}_{n1} \mathbf{B} & \mathbf{a}_{n2} \mathbf{B} & \cdots & \mathbf{a}_{nn} \mathbf{B} \end{bmatrix}_{nm \times mn}$$

Where

$$A = \begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \cdots & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nn} \end{bmatrix}_{n \times n}$$

and
$$B = \begin{bmatrix} b_{11} & b_{12} & \cdots & b_{1m} \\ b_{21} & b_{22} & \cdots & b_{2m} \\ \vdots & \vdots & \cdots & \vdots \\ b_{m1} & b_{m2} & \cdots & b_{mm} \end{bmatrix}_{m \times m}$$

Thus

$$\mathbf{A} \otimes \mathbf{B} = \begin{bmatrix} \alpha_{11} & \alpha_{12} & \cdots & \alpha_{1k} \\ \alpha_{21} & \alpha_{22} & \cdots & \alpha_{2k} \\ \vdots & \vdots & \cdots & \vdots \\ \alpha_{k1} & \alpha_{k2} & \cdots & \alpha_{kk} \end{bmatrix}$$

Where

$$\alpha_{11} = \begin{bmatrix} a_{11}b_{11} & a_{11}b_{12} & \cdots & a_{11}b_{1m} \\ a_{11}b_{21} & a_{11}b_{22} & \cdots & a_{11}b_{2m} \\ \vdots & \vdots & \cdots & \vdots \\ a_{11}b_{m1} & a_{11}b_{m2} & \cdots & a_{11}b_{mm} \end{bmatrix}_{m \times m}$$

$$\alpha_{1k} = \begin{bmatrix} a_{1n}b_{11} & a_{1n}b_{12} & \cdots & a_{1n}b_{1m} \\ a_{1n}b_{21} & a_{1n}b_{22} & \cdots & a_{1n}b_{2m} \\ \vdots & \vdots & \cdots & \vdots \\ a_{1n}b_{m1} & a_{1n}b_{m2} & \cdots & a_{1n}b_{mm} \end{bmatrix}_{m \times m}$$

$$\alpha_{kk} = \begin{bmatrix} a_{nn}b_{11} & a_{nn}b_{12} & \cdots & a_{nn}b_{1m} \\ a_{nn}b_{21} & a_{nn}b_{22} & \cdots & a_{nn}b_{2m} \\ \vdots & \vdots & \cdots & \vdots \\ a_{nn}b_{m1} & a_{nn}b_{m2} & \cdots & a_{nn}b_{mm} \end{bmatrix}_{m \times m}$$

and k = nm

Example

Consider
$$A = \begin{bmatrix} -1 & 0 \\ 1 & 2 \end{bmatrix}_{2 \times 2}$$
, $B = \begin{bmatrix} 2 & 1 & 0 \\ -1 & -2 & 3 \\ 1 & 2 & 4 \end{bmatrix}_{3 \times 3}$ then:

$$A \otimes B = \begin{bmatrix} -2 & -1 & 0 & 0 & 0 & 0 \\ 1 & 2 & -3 & 0 & 0 & 0 \\ -1 & -2 & -4 & 0 & 0 & 0 \\ \hline 2 & 1 & 0 & 4 & 2 & 0 \\ -1 & -2 & 3 & -2 & -4 & 6 \\ 1 & 2 & 4 & 2 & 4 & 8 \end{bmatrix}_{6 \times 6}$$

Proposition (2-2)

Let A, A^{\setminus} be two different matrices in $M_n(k)$ and B, B^{\setminus} be two different matrices in $M_m(k)$ then:

1-
$$(A + A^{\setminus}) \otimes B = (A \otimes B) + (A^{\setminus} \otimes B)$$

2-
$$(A \otimes B) (A^{\setminus} \otimes B^{\setminus}) = AA^{\setminus} \otimes BB^{\setminus}$$

Proof

 $\overline{(1)}$

Let
$$A = (a_{ij})_{n \times n}$$
, $A^{\setminus} = (a^{\setminus}_{ij})_{n \times n}$ and $B = (b_{ij})_{m \times m}$

Then
$$(A + A^{\setminus}) = (a_{ij} + a^{\setminus}_{ij})_{n \times n}$$

$$\Rightarrow (A + A^{\setminus}) \otimes B = ((a_{ij} + a^{\setminus}_{ij})B)_{nm \times nm}$$
$$= (a_{ij}B + a^{\setminus}_{ij}B)_{nm \times nm}$$

And

$$(A \otimes B) = (a_{ij}B)_{nm \times nm}$$

$$(A^{\setminus} \otimes B^{\setminus}) = (a^{\setminus}_{ij}B)_{nm \times nm}$$

Thus.

$$(A \otimes B) + (A^{\setminus} \otimes B^{\setminus}) = (a_{ij}B)_{nm \times nm} + (a^{\setminus}_{ij}B)_{nm \times nm}$$

$$= (a_{ij}B + a_{ij}^{\dagger}B)_{nm \times nm}$$

Then

$$(A + A^{\setminus}) \otimes B = (A \otimes B) + (A^{\setminus} \otimes B)$$

(2)

Let
$$A = (a_{ij})_{n \times n}$$
, $A^{\setminus} = (a^{\setminus}_{ij})_{n \times n}$
 $B = (b_{ij})_{m \times m}$, $B^{\setminus} = (b^{\setminus}_{ij})_{m \times m}$

Then, $AA^{\setminus} \otimes BB^{\setminus} = (a_{ij})(a^{\setminus}_{ij}) \otimes (b_{ij})(b^{\setminus}_{ij})$

Let
$$C_{ij} = \sum_{k=1}^{n} a_{ik} a_{kj}$$

Where

$$\begin{split} AA^{\setminus} \otimes BB^{\setminus} &= (C_{ij}) \otimes BB^{\setminus} = (C_{ij}BB^{\setminus}) \\ &= (\sum_{k=1}^{n} a_{ik} \ a^{\setminus}_{kj} \ BB^{\setminus}) \\ &= [a_{i1}a^{\setminus}_{1j}B + a_{i2}a^{\setminus}_{2j}B + \dots + a_{in}a^{\setminus}_{nj}B] \ B^{\setminus} \\ &= [a_{i1}Ba^{\setminus}_{1j}B^{\setminus} + a_{i2}Ba^{\setminus}_{2j}B^{\setminus} + \dots + a_{in}Ba^{\setminus}_{nj}B^{\setminus}] \\ &= \left[\sum_{k=1}^{n} a_{ik}B \ a^{\setminus}_{kj}B^{\setminus}\right]_{nm \times nm} \\ &= \sum_{k=1}^{n.m} a^{*}_{ik} \ a^{\setminus}_{kj} \end{split}$$

And

$$(A \otimes B) + (A^{\setminus} \otimes B) = (a_{ij}B) (a^{\setminus}_{ij}B^{\setminus})$$

$$= (a^*_{ik}) (a^{\setminus^*_{kj}})$$

$$= \sum_{k=1}^{n,m} a^*_{ik} a^{\setminus^*_{kj}}$$

Where $a_{ik}^* = (a_{ik}B)$

Definition (2-3)

Let T be a matrix representation of finite group G over the field F.

The character χ of T is the mapping χ : $G \to F$ defined by $\chi(g) = Tr(T(g)), \ \forall \ g \in G$, where Tr(T(g)) refers to the trace of the matrix T(g).

Clearly $\chi(1) = n$, which is called the **degree of** χ . Also characters of degree 1 are called **linear characters**.

Example

In symmetric group $S_3 = \langle x, y : x^2 = y^3 = 1, xy = y^2x \rangle$, define the representation T: $S_3 \to GL(2, \mathbb{C})$ such that:

$$T(x) = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} \text{ and } T(y) = \begin{bmatrix} w & 0 \\ 0 & w^2 \end{bmatrix}, \text{ where } w = e^{2\pi i/3}$$

The character χ of T is:

$$\chi(T(x)) = 0 + 0 = 0, \chi(T(y)) = w + w^2 = -1.$$

Definition (2-4)

The character afforded by irreducible representation is called **irreducible character**, otherwise it is called **compound character**.

Example

Linear characters are irreducible character.

Definition (2-5)

A **class function** on a group G is a function f: $G \to \mathbb{C}$ which is constant on conjugacy classes, that is $f(x^{-1}yx) = f(y)$, $\forall x, y \in G$. If al values of f are in Z, then it is called **Z-valued class function**.

Lemma (2-6)

Characters are class function.

Proof

Let T be matrix representation and χ character of T,

Then,

$$\begin{split} \chi(x^{\text{-}1}yx) &= Tr(T(x^{\text{-}1}yx)) \\ &= Tr(T(x^{\text{-}1})T(y)T(x)) \\ &= Tr(T(x^{\text{-}1})T(x)T(y)) \\ &= Tr(T(y)) = \chi(y) \end{split}$$

Theorem (2-7) [3]

A finite abelian group G of order n has exactly n distinct characters.

The character table of finite abelian group (2-8)

For a finite abelian group G of order n a complete information about the irreducible characters of G is displayed in a table called **the character table** of G.

We list the elements of G in the 1st row, we put $\chi_i(x^j) = \chi_i^j, 1 \le i \le n-1$

C_{g}	1	X	\mathbf{x}^2	• • •	X ⁿ⁻¹
$ C_{\rm g} $	1	1	1	• • •	1
$ C_G(C_g) $	n	n	n	• • •	n
χ1	1	1	1	• • •	1
χ2	1	$(\chi_2)^1$	$(\chi_2)^2$	• • •	$(\chi_2)^{n-1}$
:	:				:
χn	1	$(\chi_n)^1$	$(\chi_n)^2$	• • •	$(\chi_n)^{n-1}$
	χ ₁ χ ₂ 	$\begin{array}{c ccc} \chi_1 & 1 \\ \hline \chi_2 & 1 \\ \hline \vdots & \vdots \\ \end{array}$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$

Table 1

Where $|C_g|$ = order of conjugacy class of g and $|C_{G(g)}|$ = order of centralizer of g in G.

If $G=Z_n$, the cyclic group of order n, and let $w=e^{2\pi i n/n}$ be a primitive n-th root of unity then the general formula of the character table of Z_n is:

	C_{g}	1	Z	\mathbb{Z}^2	• • •	Z^{n-1}
	$ C_g $	1	1	1	• • •	1
	$ C_G(C_g) $	n	n	n		n
$\equiv G$	χ_1	1	1	1	•••	1
=	X 2	1	\mathbf{w}^1	\mathbf{w}^2	•••	$\mathbf{W}^{\mathbf{n-1}}$
	χ ₃	1	\mathbf{w}^2	\mathbf{w}^3	• • •	w ⁿ⁻²
	:	:				:
	$\chi_{\rm n}$	1	\mathbf{w}^{n-1}	$\mathbf{w}^{\text{n-2}}$	•••	W

Table 2

Example

The group Z_5 consists the elements 1, z, z^2 , z^3 , z^4 , ($z^5 = 1$).

Let
$$w = e^{2\pi i/5}$$
, then

The character table of Z_5 is:

	C_{g}	1	Z	\mathbf{z}^2	z^3	\mathbf{z}^5
$\equiv Z_5 =$	$ C_g $	1	1	1	1	1
	$ C_G(C_g) $	5	5	5	5	5
	χ_1	1	1	1	1	1
	X 2	1	W	\mathbf{w}^2	\mathbf{w}^3	\mathbf{w}^4
	χ3	1	\mathbf{w}^2	\mathbf{w}^4	W	\mathbf{w}^3
	χ4	1	\mathbf{w}^3	W	\mathbf{w}^4	\mathbf{w}^2
	χ5	1	\mathbf{w}^4	\mathbf{w}^3	\mathbf{w}^2	W

The Rational Valued Character of Z_n (2-9)

The general formula of the rational valued character table of Z_p is:

3. The Diagonal Matrix of the Tensor Product for $(\equiv^* Z_p)$

In this section we give some concepts that we shall use to determinate $D(\overset{..}{\otimes}(\equiv^* Z_p))$, where p is an odd prime.

Definition (3-1) [3]

A rational valued character θ of G is a character whose values are in Z, that is $\theta(x) \in Z$, $\forall x \in G$.

Theorem (3-2) [4]

Let M be an $m \times n$ matrix with entries in a principal domain R. then there exist matrices P, Q, D such that:

- 1. P and Q are invertible.
- 2. Q M $P^{-1} = D$.
- 3. D is diagonal matrix.
- 4. If we denote D_{ii} by d_i then there exists a natural number r, $0 \le r \le min (m, n)$ such that j > r implies $d_j = 0$ and $j \le r$ implies $d_j \ne 0$ and $1 \le j \le r$ implies d_j divides d_{j+1} .

Definition (3-3) [4]

Let M be a matrix with entries in a principal domain R, be equivalent to a matrix $D = diag \{d_1, d_2, ..., d_r, 0, ..., 0\}$ such that d_i/d_{i+1} for $1 \le j \le r$, we call D the invariant factor matrix of M and d₁, d₂, ..., d_r the invariant factors of M.

Theorem (3-4) [4]

Let M be a matrix with entries in a principal domain R, then the invariant factors are unique.

Lemma (3-5) [5]

Let A and B are two non-singular matrices of degree n and m respectively over a principal domain R, and let

$$P_1$$
 A $Q_1=D(A)=diag$ $\{d_1(A),d_2(A),...,d_n(A)\},$ بلة فلية (لتربية (الأساسية $Q_1=Q_1=Q_1$) العرو (المستون $Q_1=Q_1$)

$$P_2 B Q_2 = D(B) = diag \{d_1(B), d_2(B), ..., d_n(B)\},\$$

be the invariant factor matrices of A and B then,

$$(P_1 \otimes P_2).(A \otimes B).(Q_1 \otimes Q_2) = D(A) \otimes D(B)$$

and from this the invariant factor matrix of $A \otimes B$ can be written down.

Let H and L be P_1 and P_2 – groups respectively, where P_1 and P_2 are distinct prime. We know that

$$\equiv$$
 $(H \times L) = \equiv (H) \otimes \equiv (L)$.

Since g.c.d $(P_1, P_2) = 1$, we have

$$\equiv^* (H \times L) = \equiv^* (H) \otimes \equiv^* (L)$$

Example

The rational valued character \mathbb{Z}_2 and \mathbb{Z}_3 are

$$\equiv^* (\mathbf{Z}_2) = \begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix} \text{ and } \equiv^* (\mathbf{Z}_3) = \begin{bmatrix} 1 & 1 \\ 2 & -1 \end{bmatrix}$$

Let

$$P_1 = \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix}$$
, $P_2 = \begin{bmatrix} -2 & 1 \\ 1 & 0 \end{bmatrix}$, $Q_1 = \begin{bmatrix} 1 & 0 \\ 1 & 1 \end{bmatrix}$ and $Q_2 = \begin{bmatrix} -1 & 1 \\ 1 & 0 \end{bmatrix}$

Then

$$P_1 \circ \equiv^* (Z_2) \circ Q_1 = \begin{bmatrix} 2 & 0 \\ 0 & -1 \end{bmatrix},$$

$$P_2 \circ \equiv^* (Z_3) \circ Q_2 = \begin{bmatrix} -3 & 0 \\ 0 & 1 \end{bmatrix}$$

by lemma (3-5), we have

$$(P_1 \otimes P_2) \circ (\equiv^* (Z_2) \otimes \equiv^* (Z_3)) \circ (Q_1 \otimes Q_2) = \begin{bmatrix} -6 & 0 & 0 & 0 \\ 0 & 3 & 0 & 0 \\ 0 & 0 & 2 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

The Diagonal Matrix for $\overset{n}{\otimes} (\equiv^* Z_p)$ (3-6)

We denote for the tensor product of the matrix of the rational character table of Z_p of n-times of itself by $\overset{n}{\otimes} (\equiv^* Z_p)$.

We can apply lemma (3-5) to determine diagonal of $\overset{\text{ii}}{\otimes} (\equiv^* Z_p)$, where p is an odd prime.

Let
$$P = \begin{bmatrix} 1 & 1 \\ -1 & 0 \end{bmatrix}$$
, $Q = \begin{bmatrix} -1 & 0 \\ 1 & 1 \end{bmatrix}$ be two matrices which is the invariant

factor matrix for $\equiv^* Z_p$.

where
$$\equiv^* Z_p = \begin{bmatrix} 1 & 1 \\ p-1 & -1 \end{bmatrix}$$
.

Hence, by lemma (3-5)

$$P \cdot \equiv^* (Z_p) \cdot Q = \begin{bmatrix} -p & 0 \\ 0 & -1 \end{bmatrix}$$

Now, we consider explicitly the case n = 2, then

$$P \otimes P = \begin{bmatrix} 1 & 1 & 1 & 1 \\ -1 & 0 & -1 & 0 \\ -1 & -1 & 0 & 0 \\ 1 & 0 & 0 & 0 \end{bmatrix}_{4 \times 4}, Q \otimes Q = \begin{bmatrix} 1 & 0 & 0 & 0 \\ -1 & -1 & 0 & 0 \\ -1 & 0 & -1 & 0 \\ 1 & 1 & 1 & 1 \end{bmatrix}_{4 \times 4}$$

And

$$\equiv^* (Z_p) \otimes \equiv^* (Z_p) = \stackrel{2}{\otimes} (\equiv^* Z_p) = \begin{bmatrix} 1 & 1 & 1 & 1 \\ \frac{p-1}{p-1} & -1 & p-1 & -1 \\ \frac{p-1}{p-1} & p-1 & -1 & -1 \\ (p-1)^2 & -(p-1) & -(p-1) & 1 \end{bmatrix}_{4 \times 4}$$

We obtain

$$(P \otimes P) \cdot (\overset{2}{\otimes} (\equiv^* Z_p)) \cdot (Q \otimes Q) = \begin{bmatrix} p^2 & 0 & 0 & 0 \\ 0 & p & 0 & 0 \\ 0 & 0 & p & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

Hence, by lemma (3-5)

$$D(\bigotimes^{2}(\equiv^{*} Z_{p})) = \text{diag } \{p^{2}; p, p; 1\}$$

We consider explicitly the case n = 3, then we have

The Diagonalization Matrix of the $\overset{n}{\otimes} (\equiv^* Z_p)$, Where p is an Odd Prime..... Dunya M. Hamed

Now, we obtain

Now, we obtain
$$(P \otimes P \otimes P) \cdot (\otimes (\equiv^* Z_p)) \cdot (Q \otimes Q \otimes Q) =$$

$\left[-p^3\right]$	0	0	0	0	0	0	0
0	$-p^2$	0	0	0	0	0	0
0	0	$-p^2$	0	0	0	0	0
0	0	0	-p	0	0	0	0
0	0	0	0	$-p^2$	0	0	0
0	0	0	0	0	-p	0	0
0	0	0	0	0	0	-p	0
0	0	0	0	0	0	0	_ 1 _

ع ٦ ا (العرو (الثامن والستون ٢٠١١

Hence, by lemma (3-5)

$$D(\bigotimes^{3}(\equiv^{*} Z_{p})) = \text{diag} \left\{ -p^{3}; \underline{-p^{2}, -p^{2}, -p^{2}}; \underline{-p, -p, -p}; -1 \right\}$$

We consider explicity the case n = 4Then, we obtain

$$(P \otimes P \otimes P \otimes P) \cdot (\overset{4}{\otimes} (\equiv^* Z_p)) \cdot (Q \otimes Q \otimes Q \otimes Q) =$$

Hence, by lemma (3-5)

$$D(\bigotimes^{4}(\equiv^{*} Z_{p})) = diag \left\{ p^{4}; \underbrace{p^{3}, p^{3}, p^{3}, p^{3}}; \underbrace{p^{2}, p^{2}, p^{2}, p^{2}, p^{2}, p^{2}}; \underbrace{p, p, p, p}; 1 \right\}$$

When n = 5, we have

$$(P \otimes P \otimes P \otimes P \otimes P) \cdot (\overset{5}{\otimes} (\equiv^* Z_p)) \cdot (Q \otimes Q \otimes Q \otimes Q \otimes Q) =$$

Hence, by lemma (3-5)

$$D(\overset{5}{\otimes}(\equiv^* Z_p)) = \text{diag} \left\{ -p^5; \underbrace{-p^4, \cdots, -p^4}_{5}; \underbrace{-p^3, \cdots, -p^3}_{10}; \underbrace{-p^2, \cdots, -p^2}_{5}; \underbrace{-p, \cdots, -p}_{5}; -1 \right\}.$$

The general case for P is an odd prime and $n \in \overset{+}{Z}$ give by the following proposition.

Proposition

If P is an odd prime and $n \in \overset{\scriptscriptstyle{\top}}{Z}$ then

$$(\overset{n}{\otimes} P) \cdot (\overset{n}{\otimes} (\equiv^* Z_p)) \cdot (\overset{n}{\otimes} Q) =$$

$$D(\overset{n}{\otimes}(\overset{*}{=}^*Z_p)) = diag \left\{ \underbrace{\pm p^n; \underbrace{\pm p^{n-1}, \cdots, \pm p^{n-1}}_{n}; \underbrace{\pm p^{n-2}, \cdots, \pm p^{n-2}}_{n-2}; \underbrace{\pm p^{n-2}, \cdots, \pm p^{n-2}}_{n-2}; \underbrace{\pm p^{n-2}, \cdots, \pm p^{n-2}; \pm p^{n-2}, \cdots, \pm p^{n-2}; \pm p^{n-2}; \underbrace{\pm p^{n-2}, \cdots, \pm p^{n-2}; \pm p^{n$$

If
$$1 \le i \le n$$
 then $\binom{n}{i} = \frac{n!}{i!(n-1)!}$

(i.e) $\binom{n}{i}$ is the number of combinations of objects taken i.

Proof

By an inductive argument, the statement is certainly true for k = 1. assuming it holds for an arbitrary k, then

$$D(\otimes(\equiv^* Z_p)) = diag \left\{ \pm p^k; \underline{\pm p^{k-1}, \dots, \pm p^{k-1}}; \underline{\pm p^{k-2}, \dots, \pm p^{k-2}}; \underbrace{\pm p^{k-2}, \dots, \pm p^{k-2}}_{\binom{k}{k-1}}; \underline{\pm p^{k-2}, \dots, \pm p}; \underline{\pm 1} \right\}$$

$$\dots; \underline{\pm p^2, \dots, \pm p^2}; \underline{\pm p, \dots, \pm p}; \underline{\pm 1}$$

Where \pm appearing at the end is forced by the fact that $\equiv^* (Z_p^k)$. We must show that it also holds for k + 1. But this is immediate from lemma (3-5), we obtain $(\otimes \equiv^* Z_p) = (\otimes (\equiv^* Z_p)) \otimes \equiv^* (Z_p)$.

Hence

$$D(\overset{k+1}{\otimes}(\overset{*}{\equiv}^*Z_p)) = D(\overset{k}{\otimes}(\overset{*}{\equiv}^*Z_p)) \otimes D(\overset{*}{\equiv}^*(Z_p)).$$

References

- 1. Hussain, B. Ahmed; "A Combinatorial Problem on the Group $K(Z_p^{(n)})$ ", M.Sc. Thesis, University of Technology, 2001.
- 2. Hill, V. E.; "Groups Representations and Characters"; Haener Press, A Division of Mac Mill and Publishing Co. Inc., New York, 1976.
- 3. I. M. Isaacs; "Character Theory of Finite Groups", Academic Press, New York, 1976.
- 4. L. E. Singler; "Algebra", Springer-Verlag, 1976.
- 5. M. S. Kirdar; "The Factor Group of the Z-Valued Class Function Modulo the Group of the Generalized Characters", Ph.D. Thesis, University of Birmingham, 1982.
- 6. M. S. Kirdar; Fuad Al-Heety; "On Rational Valued Characters of $\mathbb{Z}_3^{(n)}$ ", University of Technology, 1994.
- 7. M. N. Al-Harere; "On Arcurrence Relation in the Group $K(Z_p^{(n)})$ ", M.Sc. Thesis, University of Technology, 1998.
- 8. S. D. Al-Wakiel; "The Cyclic Decomposition of the Factor Group of $(Z_5^{(n)}, Z) / \overline{R}(Z_5^{(m)})$ ", M.Sc. Thesis, University of Technology, 1997.
- 9. Sh. K. Sharaza; "Some Combinatorial Results on $K(Z_p^{(n)})$ ", M.Sc. Thesis, University of Technology, 1999.

المستخلص فى هذا العمل سنقدم بعض المفاهيم التي سوف تستخدم لتحديد المصفوفة عدم n عدد القطرية الصرب الممتد (tensor) لمصفوفة جدول الشواخص النسبية وZ، عندما p عدد أولي فردي.