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ABSTRACT 
    The aim of this paper is to prove the correctness of the relation 
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 نظریات في الدوال الكسریة الخاصة مع المشتقات

 الخلاصة
  العلاقة ةیسي في ھذا البحث ھو برھان صحالھدف الرئ 
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|hα(x)| ≤ M و(M∈R+, M>0) لكل x∈(a,∞).  

INTRODUCTION 
ractional Calculus is three Centuries old as the conventional calculus, but not
very popular among science and engineering community. This subject was
with mathematicians only; in last few years this was pulled to several 

applied fields of science, economies and engineering. The advantage of fractional 
derivative apparent in mechanics and stability analysis of fractional control of 
robotic time delays systems by [1], [2] and in nuclear energy science by [3], [4] 

F 

https://doi.org/10.30684/etj.30.2.6
2412-0758/University of Technology-Iraq, Baghdad, Iraq
This is an open access article under the CC BY 4.0 license http://creativecommons.org/licenses/by/4.0

mailto:@yahoo.com
https://doi.org/10.30684/etj.30.2.6


Eng. & Tech. Journal .Vol.30 , No.2, 2012            Theorems on Certain Fractional Function                                                                                   
                                                                                                             and Derivative                                                        
    

 

262 
  

also in the other physical and chemistry fields by [5], [6] and in computer hard disc 
by control [7]. In this paper we shall prove that: 
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on (a,∞) for all x>a, 0<α≤1, where μ is constant, f, g are continuous functions on 
(a,∞). 
 
THEOREM OF CONTINUITY 

 Let 0<α≤1 and f, g be continuous functions on (a,∞), where a∈R and such that 
sup {|f(g(x))|: x∈(a,∞)}=M<∞. 
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Proof  

Clearly g1(x) is continuous for all x>a. 
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[The proof is similar for the case x1>x2] 
Then from (2.1) we have 

∫∫ −− −−−

=−
12

))(()())(()(

)()(

1
1

1
2

12

x

a

x

a

dttgftxdttgftx

xyxy

αα

∫

∫∫
−

−

→

−

→

−

−−

−−−+−=

δ
α

δ

α

δ

α

δ

δ

1

2

1

1

1
10

1
20

1
2

)(lim

))(()(lim))(()(

x

a

x

x

x

a

dttx

dttgftxdttgftx  

Since f is bounded by M and 0<α≤1, x2>x1 it follows that 
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This shows that y(x) is continuous on [a,∞). 
Since hα(x)=g1(x)+y(x),(x∈(a,∞)) therefore hα is continuous on (a,∞). 
 

THEOREM OF DERIVATIVE 
If 0<α≤1 and hα(x) is continuous on (a,b], 

| hα(x)| ≤ M for all x∈(a,b], where (M∈R+, M>0). 
Then  
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Proof 

Since hα(x) is continuous and bounded by (theorem2). 

)(hI x
x

a α
α  exists for a≤t≤x≤b. 

Now since 0<α≤1 take n=1 then by [8] p(11) we have 
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CONCLUSIONS  

In this paper we proved (theorem1) of continuity and (theorem2) of 
derivative. In the future we will use them to find the solution of certain kind of 
fractional differential equation. 
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