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Abstract 

This paper presents a set of investigations achieved through a simulation involving a swarm of 

six robots transporting heavy objects of complex shapes that require the cooperative efforts of all six 

robots. This study focuses on the complexity of the objects’ shapes, starting from a basic shape (i.e., 

Cuboid) to more complex shapes built from multiple basic shapes (i.e., Star and H-shape). The controller 

of the robots is a continuous-time recurrent neural network synthesized using artificial evolutionary 

techniques. The results indicate that evolution could find solutions for each object separately. However, 

a single generalized neuro-controller could not be obtained. This work unveils an interesting relationship 

between design choices and the complexity of object shapes. We analyze the effectiveness of cooperative 

transport strategies in terms of two metrics: the time required to sustain the transport and the quality of 

transport trajectories (i.e., sinuosity metrics). 
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1. Introduction 

Collective transport, or cooperative transport, involves a team of robots working together to convey 

objects too heavy or oversized for a single robot to handle. A cooperative transport task requires complex 

coordination of the robot’s forces to move the object. To successfully transport the object, the group 

must coordinate and synchronize their applied forces to initiate and sustain the object’s movement in a 

common transport direction. Given its importance, cooperative transport by multiple robots holds great 

potential for applications ranging from construction and manufacturing to waste retrieval, search and 

rescue, and even invasive surgeries, tissue engineering, and biomedical applications at nanoscales [1, 2, 

3, 4]. The research community has explored various aspects of cooperative transport, examining different 

transport strategies for pushing [5], pulling [6], grasping and lifting [7, 8], and different communication 

approaches, including centralized [9, 10], decentralized [11, 12] (also refer as distributed) and leader-

follower approached [13]. This study concentrates on cooperative transport involving the transportation 

of complex-shaped objects. For a detailed review of cooperative transport in multi-robotic systems, we 

refer the reader to [14]. 

 

Another approach to designing cooperative transport in multi-robotic systems focuses on the 

development of control mechanisms based on the force model of robot-object interactions [6, 15]. Such 

strategies require a priori knowledge of the object’s mass and shape. Conversely, other approaches focus 

on developing effective strategies that are agnostic to the object’s configurations [16]. The majority of 

research work in cooperative transport has studied the transportation of basic shapes (e.g., cuboid, 

cylinder). Very limited research has studied strategies for transporting complex shapes. For instance, the 

research work in [17] proposes a decentralized approach for transporting complex objects. The study 

focuses on coordinating the direction of movements for robots that are placed in rings physically linked 

to the object. The results indicate that coordination of efforts can be achieved for objects of complex 

shape without the need for explicit communication between the robots. However, the results do not 

reveal whether the object’s shape affects the coordination of the transport strategy since the robot-object 

interaction was constrained by the rings in which the robots were placed. Generally speaking, the process 

of cooperative transport involving complex shapes is not well understood. The strategies for reaching 

consensus or gathering quorum data on the direction of movement during the cooperative transport of 

objects with complex shapes remain ambiguous. Indeed, empirical data is scarce to explain the 
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mechanisms that establish this vital cooperative activity. Therefore, it is imperative to propose diverse 

beliefs involving the mechanisms for aligning and coordinating forces for transporting objects of 

complex shapes. 

 

This study examines what robots can collectively accomplish when engaged in the cooperative transport 

of complex objects. Specifically, we explore the development of strategies for a group of robots engaged 

in the collective transfer of complex-shaped objects constructed from basic shapes. The methodological 

approach employed in this study introduces a gradual increase in the shape complexity of the objects, 

starting from simple to more complex shapes. To achieve this objective, we designed three objects 

differing in shape. We began with a simple object of Cuboid shape refer to Fig.(1a), followed by an 

object with a relatively more complex shape called the Star object. The Star object consists of two Cuboid 

objects linked at the centre at a 90◦ angle see Fig. (1b). The complexity increases further for the third 

object, in which three cuboid objects are linked together such that short and long Cuboid objects are 

attached at both ends of an axial Cuboid object. The shorter object is linked at 120◦ and the longer object 

at 45◦ refer to Fig.(1c). We refer to this object as the H-shape object. We would like to bring to the 

reader’s attention that this study is an extension of a previous study [18], in which we developed an 

effective transport strategy for a swarm robotics system transporting a Cuboid object tested on a group 

of six physical e-puck robots. 

 

 In this study, we aim to investigate the possibility of developing more effective transport strategies 

capable of transporting complex objects (i.e., Star and H-shape) derived from the object used in [18] 

(i.e., Cuboid). In this study, the neuro-controller used by the robot swarm is synthesized using an 

(a) (b) (c) 

Figure 1. (a) The simulation environment for Cuboid object. (b) The simulation environment 

for Star object. (c) The simulation environment for H-shape object. 



  Vol. 04,  No. 01    ( 2024 )                                                                                                                                                                ISSN: 2709-6718 
 

artificial evolution process. The results indicate that artificial evolution can find solutions that effectively 

transport either Cuboid, Star, or H-shape objects. However, generalized solutions could not be obtained. 

In other words, the evolution cannot produce a single neuro-controller strategy that transports all three 

objects without degradation in performance. A series of experiments have been carried out to analyze 

the best solutions for transporting the three objects using two metrics: the time required to sustain the 

transport to the end of the trial and the quality of the transport strategy in terms of the sinuosity metric. 

 

2. Methods 

In this study, a neuro-controller is synthesized using an evolutionary process to generate an 

effective cooperative transport strategy for a swarm of homogeneous robots (i.e., the neuro-controller is 

replicated across all robots in a homogeneous robotic swarm) to transport objects of complex shapes. 

The task involves moving objects shaped like cuboids, stars, and H-shapes (see Figure 1) at least 1 meter 

from their initial positions. The selection of these particular object shapes is intentionally designed to 

progressively increase the complexity of the transport strategies needed, ranging from the Cuboid to the 

H-shape objects. The aim is to explore how effectively the evolutionary process can develop solutions 

for the challenges presented by the diverse shapes of these objects. 

2.1 Task and Simulation Model  

The task required a swarm of six robots to transfer heavy objects with complex shapes at least 1 meter 

from their starting positions. The mass of the object is set to 600 grams to ensure that it cannot be 

transported without the collective efforts of all six robots. Initially, the robots are positioned in a limitless 

hall with a flat landscape, arranged in an imaginary circle with the object at the circle’s centre (see Figure 

1). The distance between each robot's centre and the object's centre is set at 50 cm. This initial setup 

ensures that the robots approach the object from different directions, necessitating complex coordination 

of their push forces to settle on a shared transport direction. 

The simulated robot models the physical e-puck robot [19], a popular platform often used in swarm 

robotics experiments. It is equipped with 8 Infrared proximity sensors IRi, with i = 0, 1, ..., 7 (indicated 

by the small eight white rays around each robot in Figure 1). The camera’s visual range is limited to 50 

cm and is modeled in the simulation such that the field of view is divided into three sectors Ci, with i = 

1, 2, 3 (indicated by the pink rays for each robot in Figure 1). Each sector provides four distinct values: 
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0 if nothing is within the sector domain of view, 0.4 if it detects red colour (i.e., another robot), 0.7 for 

green colour (i.e., the object), and 1.0 if both red and green colours are seen simultaneously. The robot 

is also equipped with an optic-flow sensor and an optical camera mounted under the robot’s platform, 

providing 2D displacement information along the X-axis (i.e., [−X, +X]) and Y-axis (i.e., [−Y, +Y]). This 

optic-flow sensor provides important feedback on the consequences of its movement. This sensor 

is specifically designed and built for this cooperative transport task (see [18]). 

Our simulation employs a Bullet physics engine, a robust tool that offers a realistic simulation of force 

dynamics, including torques, frictions, and collision responses. Additionally, the robots’ sensors and 

actuators, as well as the initial positions and orientations of the robots, are incorporated with noise that 

varies in each trial. Each evolutionary run is associated with a different seed number fed into the random 

number generator, affecting not only the noise in the simulation but also the random initial parameters 

for the evolved neuro-controllers. Our simulation has proven its ability to bridge the reality gap, ensuring 

that the evolved controller can be transferred to the physical e-puck robot without any drop in 

performance (see out experiments with physical robots in [20]. 

2.2 The Controller and the Evolutionary Algorithm 

Fig .(2)shows the structure of the continuous-time recurrent neural network (CTRNN) that controls the 

robot. This network comprises 15 input neurons corresponding to the values from 15 sensors (8 IRs, 3 

camera sectors, and 4 values for the optic flow sensors), 6 hidden neurons, and 4 output neurons. 

These output neurons are responsible for controlling the left and right wheels of the robot. Figure 2 

shows the efferent connections for a single neuron in each layer. Each hidden neuron is connected 

afferently to every neuron in the input layer and to each other hidden neuron, ensuring a self-connection. 

In a similar manner, every output neuron is connected afferently to all hidden neurons. The parameters 

of the CTRNN are synthesized using a simple genetic algorithm featuring tournament-based selection. 

The population consists of 100 individuals. The top 10 individuals with the highest scores (i.e., the elites) 

are carried over to the new generation unchanged. The next 60 individuals undergo mutation (with a 

probability of 0.04) and recombination (with a probability of 0.3). The remaining 40 low-scoring 

individuals are disregarded. In [18], a detailed illustration of the controller and the evolutionary 

algorithm can be found. 
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During the evolution, all groups are evaluated nine times E = 9. Three evaluations for each object’s shape 

(fcuboid, fstar, fH−shape). Each trial lasts for 600 simulation steps (1 second = 0.01 simulation steps). At the 

start of every trial, the six robots are positioned 50 cm away from the object, with 

random positions and orientations, to ensure that the evolved neuro-controller is robust to variations in 

initial positions and orientations. In every trial (e), the fitness function (f) rewards groups that move 

closer to the object and transport it as far as possible from its initial position (refer to equation 1). The 

genotype fitness score (F) is computed as follows: 

𝑓𝑐𝑢𝑏𝑜𝑖𝑑, 𝑓𝑠𝑡𝑎𝑟 , 𝑓𝐻−𝑠ℎ𝑎𝑝𝑒 =  ∑ (1 − 𝑑𝑟) + 𝐷𝑜𝑏𝑗;        𝑤𝑖𝑡ℎ 𝑅 = 6;𝑅
𝑟=1                                    (1) 

𝐹𝑒 =  𝑓𝑐𝑢𝑏𝑜𝑖𝑑 + 𝑓𝑠𝑡𝑎𝑟 + 𝑓𝐻−𝑠ℎ𝑎𝑝𝑒                                                                                             (2) 

𝐹 =  
1

𝐸
∑ 𝐹𝑒;        𝑤𝑖𝑡ℎ 𝐸 = 9;𝐸

𝑒=1                                                                                                 (3) 

With fcuboid, fstar , fH−shape is the fitness for Cuboid, Star, and H-shape objects, respectively. dr is the 

distance between the robot r and the object at the end of the trial time. Dobj is the distance between the 

object’s place at the start and end of the test. The average fitness score F for the genotype 

Figure 2. The Continuous-time recurrent neural network that controls the robot. For clarity 

purpose, the figure shows the efferent connections for a single neuron in each layer. Every 

hidden neuron is connected afferently to each neuron in the input layer as well as to every 

other hidden neuron, including a self-connection. Similarly, each output neuron is linked 

afferently to all hidden neurons. Below the input layer, the connection between sensory 

neurons and sensors is detailed. 
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for the nine evaluations E = 9 is computed using equation 3. Regarding computational complexity, the 

time required to complete a single evolutionary run, when executed on a Dell PowerEdge server 

equipped with 64 cores and 256 GB of main memory, is approximately 10 hours. 

 

3. Results 

          The preliminary objective of this study is to develop a control system for a homogeneous swarm 

of robots to transport heavy objects with complex shapes. The goal is to generate solutions that can adapt 

to the challenges involved in the group coordination process for Star and H-shape objects, yet the 

performance should not degrade for cuboid objects. To achieve this objective, we conducted five 

different evolutionary simulations. Each simulation lasted for 2000 generations, following the 

methodological setup described in Section 2. In order to select the best genotype in every evolutionary 

simulation (i.e., neuro-controller), we re-evaluated all genotypes from generation 1000 to 2000. Each 

genotype underwent a total of 240 trials (i.e., evaluations). For each object, 80 trials were conducted. In 

every trial, the starting position and orientation of the six robots varied. To ensure the requirement of 

collective transport, the mass of the three objects was set to 600 g, making it impossible to transport 

them without the collaborative effort of all six robots. 

In every trial of the re-evaluation test, the object was positioned in the center of an endless flat hall, and 

the six robots were placed 50 cm from the object, with random positions and orientations. The 

requirement of a 50 cm initial distance between the robots and the object was necessary to ensure that 

each robot could initially see the object, as it was within its camera range. Otherwise, the robots would 

need to develop an exploration strategy to locate the object, which is not within the scope of this research. 

Each trial could last for a maximum time of 180 seconds, and the trial could end earlier if the swarm 

managed to transfer the object at least one meter from its starting place. Transporting the object, a 

distance of one meter, was a condition for considering the trial successful. 

 

Fig. (3) reveals different performance trends for the best group in each run. For example, the best group 

from run H displays the best performance with the H-shape object, but its performance significantly 

degrades with the Cube and Star objects. Similarly, the best group from run S shows the best performance 

with the Star object, yet its performance degrades with the Cube and H-shape objects. For the best groups 

from runs X, C, and M, a similar trend is observed, with good performance in the Cuboid object but a 
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drop in performance with the Star and H-shaped objects. It can be concluded that the three objects require 

different group coordination skills. In other words, the evolutionary process can synthesize neuro-

controllers with specialized skills for transporting Cuboid, Star, or H-shape objects. However, it 

struggles to generate a single neuro-controller with effective transport strategies that can handle all three 

objects  

without a drop in performance. 

 

  

Despite this limitation, it is interesting how the evolutionary process finds solutions for the Star or H-

shape objects, which require complex coordination of actions to synthesize the push force of the robots 

to push the object. From the videos' observations of transporting the Star object (see [21]) and the H-

shape object (see [22]) show that the robots adopt different strategies to coordinate their pushing forces, 

clustering around the object and varying the position and direction of the applied forces. Despite this 

Figure 3. Box plot showing performance of the best group across five runs (i.e., X, C, S, H, 

and M) for the three types of object shape (i.e., Cube, Star, and H-shape). The y-axis 

indicates 

the distance in meters the object has been moved in each trial. Each box plot comprises 100 

trails in which the groups attempt to transfer the object from beginning place up to 

maximum 
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complexity, evolution can synthesize a neuro-controller that specializes in transporting either one of the 

three objects effectively. 

3.1 Further analysis of the best evolved groups 

We choose the best group from run C for further analysis to better understand the performance of the 

evolved neuro-controller. The reason for choosing the genotype in the best group of run C is because it 

shows the highest accumulated success rate among all other groups. Fig. (4) displays the group C 

performance in a bar plot format for the Cuboid, Star, and H-shape objects. The x-axis indicates the 

number of successful trials out of the total 80 trials conducted for transporting each object. The y-axis 

shows the distance the object has been transported from its initial position to the final position at the end 

of the trial.  

The Cuboid bar plot indicates 70 successful trials out of 80 trials. However, for the Star and H-shape 

objects, the performance degrades to 44 and 48 successful trials, respectively. This suggests that the 

group C neuro-controller is specialized in transporting the Cuboid object, yet it still exceeds the 50% 

threshold success rate for the Star and H-shape objects. It’s worth mentioning that the poor performance 

in Star and H-shape does not necessarily mean that the robots were unable to move the object in the 

unsuccessful trials. In fact, in the majority of these unsuccessful trials, the group was able to coordinate 

and move the object but did not meet the 1-meter transport criterion. Indeed, the success criteria defined 

are quite stringent in terms of the mass chosen for the object and the distance transported. 

Fig. (5) presents a box plot of the time required to transport the object at the smallest 1 meter from its 

beginning position for the three types of objects. Recall that the maximum duration of the trial is set to 

180 seconds. Observing the medians of the three boxes, it’s evident that the robots require relatively less 

time for the Cuboid object compared to the H-shape and Star objects, where their medians are almost at 

the maximum trial time. This serves as further evidence that the H-shape and Star objects necessitate 

complex coordination efforts to align the pushing force of the robots for successful transportation. 

Moreover, the medians for the Star and H-shape objects hitting the maximum trial time indicate that 

the robots require more time for these types of objects to successfully transport them at least 1 meter 

distance. However, in this research, we adhere to the 180-second trial limit because we are interested in 

the development of efficient cooperative transport strategies that do not require significant time to 

generate coordinated action. Hence, this criterion is chosen. 
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(Cuboid) 

(Star) 

(H-Shape) 

Figure 4. The bar plot shows the number of successful trials in which the robots 

transport the object at the smallest one meter from the beginning position for 

Cuboid, Star and H-shaped, respectively. The x-axis indicates the distance in 

meters of the object has been transported during the trial time, and the y-axis 

shows the number of successful trials (> 1.0 meter). 
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A key metric used to measure the quality of the transport strategy is referred to as sinuosity. This 

metric was originally proposed in [23] to assess the efficiency of transport strategies in real ant species. 

Sinuosity (S) is defined as follows: 

𝑆 =  
𝐽𝑜𝑏𝑗

𝐷𝑜𝑏𝑗
                                                                                                (4) 

where Dobj corresponds to the object’s displacement (i.e., the straight line distance from the object’s start 

position to its final position), and Jobj is the actual trajectory length that the object follows during 

transport from the beginning to the end of the test. The Jobj and Dobj are calculated concerning the object’s 

centre of mass. A higher sinuosity value indicates an inefficient transport trajectory, which is often due 

to poor coordination of the pushing force, causing the object to frequently change its direction of 

movement, resulting in a longer trajectory path. On the other hand, a lower sinuosity indicates efficient 

transport, where coordination of pushing forces is quickly established and maintained throughout the 

trial. The lowest possible sinuosity value is 1, indicating that  

Jobj = Dobj 

Fig. (6) presents a box plot for the sinuosity values of the successful trials. The white, light-grey, and 

dark-grey boxes correspond to the sinuosity values for the Cuboid, H-shape, and Star objects, 

respectively. It is evident from the white box that the trajectories for the Cuboid object are less sinuous 

Figure 5: Box plot showing time required to accomplish the task successfully 

for the three types of object shape (i.e., Cube, Star, and H-shape). The y-axis 

indicates the time in seconds the object has been moved in each trial 

(remember the maximum trial time is 180 s). Each box plot comprises only the 

successful trails in which the groups transport the object at the smallest one 

meter from its beginning position. 
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(i.e., with a sinuosity median closer to 1) compared to those for the H-shape and Star objects. This finding 

is supported by visual observations of the robots’ behaviour during the transport of the Cuboid object. 

These observations indicate that the robots quickly and efficiently coordinate their moving forces in a 

shared direction of transportation and maintain this coordination throughout the duration of the transport. 

Conversely, in the case of the H-shape and Star objects, the robots take a significant amount of time to 

change their point of applying force on the object in order to find a common direction of pushing. This 

behaviour results in two consequences: one is the increase in trial time, and the other is the frequent 

change in the object’s direction of movement, which leads to a longer transport trajectory and ultimately 

a higher sinuosity.  

The results of the time and sinuosity tests demonstrate a correlation between the duration of the trial and 

the sinuosity of the transport; both metrics decrease in efficient strategies, as observed in the transport 

of the Cuboid object, and increase in less effective strategies, such as those for the H-shape and Star 

objects. This suggests that a completely different set of skills is required for each type 

of object to be successfully transported. Despite these challenges, the evolutionary process is capable of 

finding a successful path to synthesize a neuro-controller with an efficient strategy for transporting either 

the Cuboid, Star, or H-shape objects see Fig. (3). 

 

4. Conclusion 

         This research describes a list of experiments conducted in simulation. The task required a swarm 

of six robots to transport heavy objects of complex shapes, which necessitated the cooperative efforts of 

Figure 6. Box plot showing Sinuosity metric used to evaluate the effectiveness of the 

transport trajectories for the successful trials of the three types of object shape (i.e., 

Cube, Star, and H-shape). The y-axis indicates the Sinuosity value. 
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all the robots. In particular, three objects have been investigated, which vary in their shape complexity, 

starting from a basic shape (i.e., Cuboid) to more complex shapes built from multiple basic shapes (i.e., 

Star and H-shape). The robot’s controller is a dynamic neural network (i.e., CTRNN) synthesized using 

artificial evolutionary techniques. We ran five different evolutions, each lasting for 2000 generations. 

The results indicate the best neuro-controllers in every run are specialized for transporting a single 

object effectively but not the others. These results indicate evolution can find solutions for the 

complexity of the object’s shape, but it could not produce a single neuro-controller that generalizes to 

transport all three objects.  

This study sheds light on an interesting relationship between design choices and the complexity of the 

shape of the object being transported. We analyze the effectiveness of the evolved group transport 

strategies of the best neuro-controllers using two metrics: the time required to sustain the transport to the 

end of the trial and the quality of the transport strategy in terms of sinuosity metric. The results 

indicate that time and sinuosity increase as the shape complexity of the objects increases. 

Generally speaking, the analysis of time and sinuosity, in addition to the visual observations of the 

robots’ behaviours during transport, provides evidence that even a relative increase in shape complexity 

of the object requires the group to adopt different strategies in order to coordinate their pushing forces 

in a shared direction and maintain the transport for the entire time of the task. 

Consequently, the designer needs to adopt the design methodology considering the particular aspects of 

the shape complexity of the object.  

This study suggests that there is a necessity for further investigation into the effect of the complexity of 

objects’ shapes on the effectiveness of transport strategies. In the future, we will continue looking at the 

problem of designing a single neuro-controller that can effectively transport the three objects efficiently. 

One possibility to address this problem is to use multi-object optimization, a single objective for each 

object’s shape. Another possibility is to use perceptual discrimination means to differentiate between the 

objects so that the group can switch between different neuro-controllers specialized for the detected 

object. Furthermore, we also plan to deploy the developed solutions to the physical e-puck robot.      
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  تطور سرب الروبوتات القادر على نقل الأشكال المعقدة

ة تصف هذه الورقة مجموعة من التجارب التي أجريت في مجال المحاكاة والتي تتضمن سرباً من ستة روبوتات تنقل أشياء ثقيلة ذات أشكال معقد: الخلاصة

لى الأشكال الأكثر ب( إتتطلب جهودًا تعاونية من جميع الروبوتات الستة. تركز هذه الدراسة على مدى تعقيد أشكال الكائنات، بدءًا من الشكل الأساسي )أي المكع

(. وحدة التحكم في الروبوتات عبارة عن شبكة عصبية متكررة ومستمرة تم تصنيعها Hتعقيدًا المبنية من أشكال أساسية متعددة )مثل الشكل النجمي والشكل 

ذلك، لا يمكن الحصول على وحدة تحكم عصبية باستخدام تقنيات تطورية اصطناعية. تشير النتائج إلى أن التطور يمكنه إيجاد حلول لكل كائن على حدة. ومع 

قل التعاوني من حيث معممة واحدة. يكشف هذا العمل عن علاقة مثيرة للاهتمام بين خيارات التصميم وتعقيد أشكال الكائنات. نحن نحلل فعالية استراتيجيات الن

  نحناء(.مقياسين: الوقت اللازم للحفاظ على النقل وجودة مسارات النقل )أي مقاييس الا

 .المعقدة الأشياء السربية، الروبوتات التعاوني، النقل التطورية، الروبوتات :الكلمات المغتاحية


