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ABSTRACT 
The purpose of this research programme is to develop quantitative models for the 

prediction of mechanical properties (fracture toughness) using experimental data 
collected from the literature, together with a powerful computational technique known 
as neural network. Creating a truly general model requires a combination of available 
data and metallurgical knowledge.        

This model is proposed for martensitic and ordinary bainitic steels in addition to the 
more recent class of non-structural super-bainitic steels. Super-bainitic steels are 
attractive for many applications such as armour. The model of fracture toughness, 
based on chemical composition, heat treatment an 

d mechanical properties is proposed.  
The predictions of fracture toughness are generally acceptable but the uncertainties 

are high and more input data need to be collected for super-bainitic steels when 
available in the future to improve the predictions of this model. 

Keywords: fracture toughness, predictions, neural network. 

  نموذج لتنبؤ متانة الكسر باستخدام الشبكة العصبية
  الخلاصة

باستخدام ) متانة الكسر( يهدف هذا البحث الى التوصل الى نماذج كمية للتنبؤ بالخواص الميكانيكية 
. الشبكة العصـبية  بيانات عملية تم جمعها من بحوث سابقة ، واعتماد طريقة حسابية رصينة تعرف ب

ان استحداث نموذج عام يتطلب في الحقيقة بيانات متوفرة ومعروفة بعلم المعادن وتصـلح النمـاذج
المقترحة للصلب المارتنسيتي والصلب البينايتي العادي ، اضافة الى الصنف الحـديث مـن الصـلب

. سية كدروع المركبات العسكرية البينايتي الفائق الجودة والذي يعتبر مناسبا لكثير من التطبيقات الهند
تم اقتراح نموذج خاص بمتانة الكسر بالاعتماد على التركيب الكيماوي والمعاملة الحرارية والخواص 
. الميكانيكية في بنائه وكانت تنبؤات النموذج المحسن مقبولة عامة ولكن مدى تذبذب النتائج كان كبيرا

نات جديدة خاصة بالصلب البيانايتي الفائق الجودة عندما لتحسين تنبؤوات هذا النموذج يجب تجميع بيا
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INTRODUCTION 
racture toughness is an indication of the amount of stress intensity, K, required 
to propagate a pre-existing flaw. It is an important material property since the 
occurrence of flaws is not completely avoidable in the processing, fabrication, or 

service of a material or component. Flaws may appear as cracks, voids, metallurgical 
inclusions, weld defects, design discontinuities, or some combination therefore. Since 
engineers can never be totally ensure that a material is flaw free, it is a common 
practice to assume that a flaw of some chosen size will be present in components and 
linear elastic fracture mechanics (LEFM) approach is used to design critical 
components.  The minimum value of the streets intensity factor, which occurs under 
plane strain conditions, is designated K1c [1]. 

K1c is a basic material property and it is strongly dependent on such metallurgical 
variables as heat treatment, texture, melting practice, chemical composition, impurities, 
etc.[1]. 

Creating a model using neural network method requires a large amount of data and 
it is sometimes not possible to accomplish easily [2]. Creating a truly general model 
requires a combination of data and metallurgical knowledge [3]. In building the model, 
the intention of this investigation was to include data for super-bainite steels in 
addition to the ordinary bainitic and martensitic steels. Super-bainitic steels have found 
application in armour because of their ballistic properties [4,5].  Many models have 
been developed in recent years and have been briefly described in [6].   

The aim of this paper is to predict the plane strain fracture toughness; the data have 
been collected from published literature. Different types of steels and austempered 
ductile irons have been included in these data to create the model.  In this work, neural 
network is used to model the plane strain fracture toughness as a function of chemical 
composition, transformation temperature, including isothermal transformation and 
direct quenching, tempering for wide range of steels and mechanical properties 
(yield stress and hardness).  The design of the model is described and to test its 
validity, prediction is compared with experimental values and expectations. 

EXPERIMENTAL PROCEDURE 
Material 

  A high carbon low alloy steel has been used in the experimental tests to 
validate the model of plane strain fracture toughness. The chemical composition 
of this alloy is shown in Table (1). The material was made in the form of 50 kg 
ingot by vacuum induction melting [7]. 

F 
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Table (1) Chemical composition of alloy wt % [7]. 
C Si Mn P S Cr Ni V 

0.97 1.43 1.59 0.0018 0.0012 0.26 0.04 0.09 
 
FURNACE HEAT TREATMENTS 

The as received material was austenitised at 1000°C for one hour in a salt bath and 
then isothermally transformed at 200°C using a salt pot for 9 days. The samples were 
then oil quenched to room temperature. All the samples were as blanks, and the final 
notch was machined after the heat treatment. Some of the samples were tempered at 
different temperatures and different times as listed in table 2. 
Table (2) The values of tempering temperature and tempering time on the 

alloy. 
Tempering Temperature °C Tempering time 

300 6 hours and 1 month 

400 (50, 100, 150, 200, 250, 300) minutes and 
 (2, 6  and 8) hours 

450 6 hours 
500 6 hours 
600 6 hours 

 
Plane strain fracture toughness tests 

The fracture toughness test was conducted according to ASTM  E 399-90 standard 
[1] in order to obtain the plane strain fracture toughness K1c of the material. Compact 
tension specimens were machined from the blanks. One sample was used for each 
tempering temperature, and the test was conducted in laboratory air at ambient 
temperature. 

The samples were tested on two different machines, the first machine was Mayes 
100 kN Servo Hydraulic Machine, to fatigue pre-crack the sample using a sine wave 
loading with a frequency of (50 Hz). A step-down loading method was used during 
fatigue pre-cracking. After the pre-crack has reached the required length, the sample 
was removed and prepared for the fracture toughness test. 

   The second machine was an LCF tester with a maximum load capacity of (100 
kN). The sample was loaded with a very slow loading rate of 1 mm/min. The load-
displacement was digitally recorded by a computer and the Bluehill®2 Software was 
used for data output. 

 
THE EXPERIMENTAL RESULTS 

This work studied the effect of tempering for different times and temperatures on 
the stability of the microstructure and mechanical properties in this alloy. 
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XRD test results 
X–ray diffraction was used to determine the phase fractions, using Cu Kα 

irradiation at 40 kV and 40mA. The sample was scanned over the 2θ range 30–150◦ 
and the fractions of ferrite and austenite was calculated using the Philips Highscore–
plus software.     

The volume fraction of the phases in the alloy were measured in the as-transformed 
condition and after tempering using X–ray diffraction as shown in fig. 1, and table 3. It 
can be stated that the volume fraction of retained austenite decreases with the increase 
of the tempering temperature. It is speculated that a small amount of austenite will still 
be present in the structure until the tempering temperature reaches 500 °C, but will 
completely decompose just below 550 °C which leads to a change in thickness of the 
bainite plates as was explained in [8].   

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure (1) The XRD of material, (a) as transformed, (b) after tempering  
at 400 °C for 6 h (c) after tempering at 450 °C for 6 h 
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Table (3) Result of X-ray diffraction analysis. 
Condition Austenite 

(volume percent) 
Lattice Parameter 
( for austenite/ Å) 

Ferrite  
( volume percent) 

As transformed 32±0.000113  3.6265±0.000084 67.9±0.000736 
Tempered at 400 
°C for 6h 

15.5 ± 0.4 3.60743 ± 0.0004 84.52 ± 0.4 

Tempered at 450 
°C for 6h 

4.5 ± 0.55 3.5988 ± 0.0056 95.48 ± 0.55 

 
Tensile properties 

The tensile properties were determined from stress-strain traces from standard 
tensile tests. The yield and ultimate tensile strength of the alloy in the isothermally 
hardened condition were 1383 MPa and 1622 MPa respectively. The results of tensile 
tests for the alloy after tempering at different temperatures are shown in Table 4. The 
mechanical properties did not greatly change with different tempering temperatures. 
The sample tempered at 400 °C gave an unreliable value possibly due to presence of 
defects or inclusions in the sample. 
 

Table (4) The values of yield strength (σy) and ultimate tensile strength (σu) for 
the samples tempered at different tempering conditions.  

Sample Condition σy  / MPa σu / MPa 
Isothermally hardened 1383 1622 
Tempered at 300 °C for 6 hours 1285 1285 
Tempered at 400 °C for 8 hours 950 968 
Tempered at 450 °C for 6 hours 1253 1289 

 
Tempered at 606 °C for 6 hours 1267 1514 
 
Fracture toughness  

The reported plane strain fracture toughness value is 30 MPa m0.5 for the 
isothermally transformed material. In this work, KQ was found to be 31.18 MPa m0.5 
as shown in table 5 which is close to the standard value. 

Table 5 lists the KQ values for these tempering conditions and the validity of the 
plane strain fracture toughness tests in this table ac  the average crack length does not 
satisfy the standard  requirements, Pmax maximum applied load, PQ the fracture 
toughness load and Pf  the maximum fatigue load. The general trend is a decrease in 
fracture toughness as the tempering temperature increases. This is related to the 
microstructure of this alloy. As it was explained in [9],  this is consistent with grain 
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growth when it starts to occur and is not chiefly dependent upon carbon in solid 
solution. 

Table (5) The values of KQ for the samples tempered at different tempering 
conditions on the alloy.     

Sample Condition KQ (MPa 
m0.5) Status Reason 

Isothermally hardened 31 Not valid ac out of the 
range 

Tempered at 300 °C for 6 hours 27 Not valid Pmax /PQ > 1.1 

Tempered at 300 °C for 1 month 23 Not valid ac less than the 
range  

Tempered at 400 °C for 8 hours 23 Valid - 

Tempered at 450 °C for 6 hours 20 Not valid ac less than the 
range 

Tempered at 500 °C for 6 hours 22 Valid - 
Tempered at 606 °C for 6 hours 13.8 Not valid Pf / PQ > 0.6 
 
THE MODEL OF THE FRACTURE TOUGHNESS 

Plane strain fracture toughness database 
Many attempts were made to build the best model capable of estimating the value 

of KIc correctly. Three general models have been created which depend on the choice 
of input variables. These models are: 
1- Mechanical properties model. 
2- Chemical composition model. 
3- Chemical composition, heat treatment and mechanical properties model.  
Since the KIc is a function of many variables, the choice of the inputs for the third 
model is as follows: 

                                     1 1 2 2( , , , , , , )Ic i a t t t t pK f C T T t T t M=                (1)             
where Ci is the chemical composition (carbon, manganese, silicon, chromium, nickel 
and molybdenum), Ta  the austenitisation temperature °C, T1t the transformation 
temperature °C,  tt1 the hold time at temperature in minutes , Tt2 the second step  
temperature °C, tt2  the hold time for the second step temperature in minutes and Mp 
mechanical properties (yield, and hardness). 

A dataset consisting of 443 experiments was compiled including sixteen variables. 
The decision was made to exclude the dimensions of the test sample, the orientation of 
the notch and the loading direction of the sample. This may add noise to the calculation 
of toughness but including these variables would limit the size of the dataset. When the 
austenitizing temperature was missing in the data, it was estimated from other data 

PDF created with pdfFactory Pro trial version www.pdffactory.com

http://www.pdffactory.com
http://www.pdffactory.com


Eng. & Tech. Journal, Vol. 30, No.5, 2012              A Model for the Prediction of Fracture           
                                                                                     Toughness Using Neural Network 

 
 

874 
 

with approximately similar carbon content or from the Ae3 temperature for that steel. 
When either the hardness or yield strength was a missing, it was estimated from the 
relationship σy=h/3. Hardness values in Rockwell and Brinell were converted to 
Vickers hardness before being fed to the data [8]. The minimum and maximum values 
for each variable are presented in table 6. 

Some of the experimental results explained in this work were added as new data 
points. These new data points included four values for fracture toughness values for 
tempered nanostructure bainite in the alloy. All the data which were collected from 
literature represents tests carried out at room temperature. 

 
Table (6) Data used in the chemical composition, heat  

treatment and mechanical properties model. 
Variables Minimum Maximum Average St. Dev 
C / wt% 0.040 3.81 1.52 1.43 
Si / wt% 0 3.21 1.33 1.10 

Mn / wt% 0.04 2.58 0.63 0.42 
P / wt% 0 0.48 0.015 0.02 
S / wt% 0 0.46 0.03 0.102 

Mg / wt% 0 1.25 0.07 0.21 
Cu / wt% 0 1.60 0.183 0.31 
Cr / wt. % 0 16.91 1.28 2.94 
Ni / wt% 0 10.06 1.157 1.21 

Austenitisation temp. / °C 816 1423 936 104 
Temperature step 1 / °C 30 780 161 150 

Time step 1 / min 2 14400 137 812 
Temperature. Step  2 / °C 28 720 226 205 

Time step 2  / min 30 5400 112 402 
Yield stress / MPa 236 2300 1174 388 

Hardness / HV 48.96 889 547 188 
KIc / MPa m0.5 9.8 295 62.7 35 

 
Models training  

The data in table 6 was trained and tested. The training and testing method is 
explained elsewhere [2,3]. Training and testing have shown that both of mechanical 
properties and chemical composition models have large scatter and noise.  Predictions 
were made using these committees for the chemical composition, heat treatment and 
mechanical properties.  A total of 100 networks were trained by half of the data and 
tested with another half. The complexity is shown in fig. 2a. The test error has a 
minimum value at about nine hidden units, fig. 2b. The LPE displays a high degree of 
scatter; with a rough peak in eight hidden units, fig. 2c. More reliable results were 
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obtained by combining models into a committee. In this case, the optimum committee 
was found to have fifteen sub models, fig. 2d with the minimum test error.  

Fig. 3 shows prediction of the modified model for the entire data. Fig. 4 shows the 
neural network perceived significance, σw, for each input variable. In particular, note 
the committee opinions on the significance of carbon, copper, silicon, manganese and 
nickel. For heat treatment, temperature and time of tempering and austenitizing 
temperature have high significance and the hardness has higher significance than the 
yield stress.  
 
 
 
                                   (a)                                                                (b) 
 
 
 
 
 
 
 
 
 
 
                                             (c )                                                   (d)   
 
 
 
 
 
 
 
 
 

 
 

Figure (2) Optimum model training reports: (a) Perceived level of noise for training, 
(b) the error between the models and the test data, (c) log predictive error for 

increasing model complexity, (d) combined test error for different sizes of committee. 
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Figure (3) Predictions by the committee model, for the entire dataset for the chemical 

composition, heat treatment and mechanical properties optimized model. 
 
 

 
 
 
 
 
 
 
 
 
 
 

 
Figure (4)  Perceived significance for the committee of  

the optimized model. 
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Model predictions 
The toughness of steels depends on many variables as stated before. Therefore, it is 

not possible to predict the plane strain fracture toughness with any reliability.  
The input compositions for all the predictions were made with (0.98C- 1.46Si-1.89Mn-
1.26Cr wt%), austenitisation temperature 1000 °C, transformation temperature to 
bainite 200 °C for ten days. All the information about this alloy is found in [9]. 
Estimates were not made for all alloys in the database.  
3.1 Effect of chemical composition on fracture toughness 

The effect of carbon content on KIc was explained previously and is shown in fig 5. 
The trend is an increase in KIc with increasing carbon content. There is a change in 
error bars, starting with a relatively high error bar at about 0.5 wt% carbon content and 
then decreasing to a minimum at about 0.9 wt% carbon content and then increasing 
again up to 1.2 wt% carbon content. From iron carbon equilibrium phase diagram, 
carbon dissolve completely in the austenite phase between 0.6-1.5 wt% carbon content 
at 1000 °C and the increase of carbon content in the austenite phase increases the 
stability of that phase [10]. The volume fraction of bainite, is calculated according to 
eq.2 

                                           

0

0 b

T
b

T

x x
V

x xα

′

′

−
=

−
                   …..(2) 

where bV  the volume fraction of bainite, 0T
x

′ the austenite carbon content given by the 

0T ′
 boundary (the boundary at which the α and γ have the same free energy at a 

specified temperature)[11], x  is the alloy average carbon concentration and b
xα is the 

carbon concentration of the bainite [11]. 

The bV  will decrease with increasing carbon content and the volume fraction of the 
austenite stable phase will increase. This austenite is supposed to be a tough phase. 
After 1.2 carbon content, the toughness might decrease because the brittle cementite 
phase will appear with austenite. In the region between 1-1.2 C wt%, the prediction 
shows high error bars and sparse and noisy data that give an indication of a probable 
drop in toughness.  

Fig ure(6) shows the effect of silicon on the KIc. The KIc increases with an increase 
in the silicon content from approximately 0.6 to 2.6 wt%. Silicon hinders the formation 
of the cementite phase, leading to an increase in KIc with increasing silicon content 
[11]. Silicon is a ferrite stabilizer; it slows the kinetics of transformation to bainite [10] 
which means more tough austenite will form. 
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                                                (a)                                                       (b)   
                                                   
 
 
 
 
 
 
 
 
 

Figure ( 5) Predictions of plane strain fracture toughness in MPa m0.5  
against carbon content in wt%, (a) with error bars, (b) general trend. 

 
Figure (7) shows that KIc decreases as the chromium content increases. Chromium 
leads to solid solution hardening which may make the ferrite more stable than the 
austenite. The error bars look almost constant, i.e. they come from an uncontrolled 
variables noise.  

Figure (8) shows that KIc has a minimum value at a copper content of 1 wt%. 
Figure ( 9) shows that the minimum value of KIc is at a nickel content of about 2 wt%. 
These two elements may not influence much the microstructure and the toughness of 
super bainite.  
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In general, alloying elements (except carbon) do not affect the plane strain fracture 
toughness that much and only the carbon content has a significant effect.                                                                                         

 
 
 
                                                  (a)                                                        (b) 
 
 
 
 
 
 
 
 
 
 

Figure (6) Predictions of plane strain fracture toughness in MPa m0.5 against silicon 
content in wt%, (a) with error bars, (b) general trend. 

 
 
 
 

(a)                                                         (b) 
 
 
 
 
 
 
 
 
 
 

Figure (7) Predictions of plane strain fracture toughness in MPa m0.5 against silicon 
content in wt%, (a) with error bars, (b) general trend. 
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                                                     (a)                                                            (b) 
 
 
 
 
 
 
 
 
 
 
 
Figure (8) Predictions of plane strain fracture toughness in MPa m0.5 against 

copper content in wt%, (a) with error bars, (b) general trend. 
 

 
 
 
                                                   (a)                                                           (b) 
 
 
 
 
 
 
 
 
 

Figure( 9) Predictions of plane strain fracture toughness in MPa m0.5 against nickel 
content in wt%, (a) with error bars, (b) general trend. 
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Effect of mechanical properties on plane strain fracture toughness 
 
Fig. 10 shows a decrease in KIc with an increase in hardness.  
 
 
                                                      (a)                                                   (b) 
 
 
 
 
 
 
 
 
 
 
 
 
Figure (10) Predictions of plane strain fracture toughness in MPa m0.5 against Vicker 

hardness in committee, (a) with error bars, (b) general trend. 
 

PREDICTIVE ABILITY 
The general performance of the model can be tested by predicting on unseen data. 

These were grouped into those within the range of data used for training and those 
outside the range.  

The general performance of the model can be tested by predicting on unseen data. 
Fig. 11 shows the predicted plane strain fracture toughness against the actual values 
[12,13, 14, 15].  Other data concerning alloys with super bainite was collected and 
tested by the model. Fig. 12 shows the relation between the predicted and measured 
values. 

Table 7 shows the perceived error of the models, and the root mean squared error, 
to compare the performances of the model. The model fracture toughness has the least 
difference between the perceived error and the root mean squared error 
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Figure (11) Predictions of plane strain fracture toughness in MPa m0.5 against the 
measured plane strain fracture toughness in MPa m0.5 for the model of chemical 

composition, heat treatment and mechanical properties. 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure (12) Predictions of plane strain fracture toughness in MPa m0.5 against the 
measured plane strain fracture toughness in MPa m0.5 for the model, the measured 

values are for the alloy in this work and other alloys from references [8, 16, 17] . 
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Table (7) The performance of the model is in terms of the root mean square and 
perceived error. 

The modified  model Root mean squared error Perceived error 
For unseen data 29 25 
 
 
CONCLUSIONS 
The main conclusions of this investigation are: 

1. A neural network model based on chemical composition, heat treatment and 
mechanical properties has been proposed to predict the fracture toughness of 
steels.  

2. The model can be applied to super-bainite steels. In general, the predictions are 
acceptable but the modeling uncertainty tends to be large.  

3. More input data need to be collected for bainitic steels as more research is 
published in the future to improve the predictions of the model. 
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