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ABSTRACT  

The generalization of DARCY’s law in 2.diemnsions has led to equations which 
describe permeability of the soil as a symmetric tensor of second rank (1, 2). In seepage 
problems it is common to define the GLOBAL coordinate axis to coincide with the 
principal directions of the permeability tensor, therefore, the cross product (off – 
diagonal) components (Kxy , Kyx) of the permeability tensor will be zero. It is therefore 
the purpose of this research to show the influence of the off- diagonal terms of the 
permeability tensor on the determined exit gradients behind a vertical sheet pile 
embedded in an anisotropic homogenous soil of finite depth. Also of interest is the 
derivation of an equation for the determination of exit gradients obtained from coordinate 
transformations of composite function. 
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تأثير الانحراف في الخواص غير الموحدة للترب على الانحدارات الهيدرولكية 
  عند نقاط الخروج

الخلاصة 
متجانسة غير موحدة  الانحراف في الإحداثيات الشاملة أو المحلية لتربجرت دراسة اثر عدم التطابق أو 

اعتمدت معادلة الجريان المستخدمة فـي. الخواص على قيم الانحدارات الهيدروليكية عند نقاط الخروج
 permeability)البحث على القانون العام لدارسي مع استعمال ممتـدة المستوصـليات الهيدروليكيـة    

tensor) . مناقشة ومقارنة القيم للانحدارات الهيدروليكية بوجود هذا التأثير مـع القـيم التـي تـمتمت
  الحصول عليها بافتراض تطابق الإحداثيات الشاملة والمحلية   

INTRODUCTION  
he problem of seepage around vertical sheet piles resting on a porous isotropic 
medium of finite depth was solved by pavlovsky , Muskat as presented by 
Liakopoulos (2) and polubarinova (3). Khosla solved the problem for the case of 
an isotropic porous medium of infinite depth. 

Reddy, Mishra and seetharamiah (4) by using the principles of coordinate transformations 
and conformal mapping presented a solution for steady state confined flow around 
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inclined sheet pile embedded in an isotropic and homogenous porous medium of finite 
depth. 
Krizek and Anand (5) studied experimentally the flow at steady state condition around a 
vertical sheet pile embedded in an inclined stratified porous medium underlain by an 
impervious layer. They used coordinate transformation based upon consideration of the 
layered system as homogenous but anisotropic. By consideration of the porous medium 
as a semi- infinite – space and by using coordinate transformation, complex variable 
theory and conformal mapping techniques, they obtained approximations for the flow 
quantity and exit gradient variations. Their results showed that exit gradient approach 
infinity when the angles of inclination of the vertical sheet pile in the transformed domain 
are grater than (90) degrees, where as if the inclinations are less than (90) degrees exit  
gradients start from zero. 
Mishra and Reddy (6) presented an analytical solution (which makes use of the calculated 
exit gradients of the corresponding fictitious domain) for the determination of the exit 
gradients under steady confined flow in an anisotropic porous medium. Results presented 
were for the distribution of exit gradients on the downstream side of vertical sheet pile 
embedded in an anisotropic homogenous flow domain of infinite depth. 
Analysis of their results which are of interest to the present study indicates that if the 
angle of inclination (θ) of the major axis of the permeability tensor is less than (90) 
degrees, exit gradient at the pile is infinite and reduces gradually, whereas if (θ) is greater 
than (90) degrees, exit gradient at the sheet pile starts from zero reaches maximum and 
then decreases. Results of their analysis are given for a degree of anisotropy equal to (4) 
and for various angles (θ) of inclination of the major axis of the permeability tensor. 
 
THEORY  
Analyzing steady – state flow in an anisotropic homogenous porous medium requires the 
conversion of the flow domain to an equivalent isotropic domain by an appropriate 
coordinate transformation and scaling and then solving Laplace's equation in the fictitious 
domain by conformal mapping or by numerical methods. 
Figure (1) shows the method of coordinate transformation for a section through a 
homogenous anisotropic flow region on the downstream side of a vertical sheet pile 
referenced by an X  and Y   coordinated axis system. 
The direction of K max makes an angle (θ) with the X  axis, u and v are orthogonal local 
axes chosen parallel to K max and K min respectively. The relation between the axes as 
given by simple resolution of vectors is: 
 
     u = X  cos (θ) + Y  sin (θ)                                                             … (1) 
     v = −X  sin (θ) + Y  cos (θ)                                                           …(2) 
 
Transforming an anisotropic flow region into an equivalent isotropic domain requires 
either an expansion in the direction of (v) or contraction in the direction of (u) scaling. 
Electing the former, the ordinate in the (v) direction becomes:-  
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      v = 1/  kv/ku (-X  sin (θ) + Y  cos (θ))                                       …. (3) 
The real downstream bed which is described by the equation Y  =0, transforms to the 
straight line (ox) in the new isotropic domain. 
The X and Y axes are chosen parallel and perpendicular respectively to line (ox) which is 
previously defined as the downstream bed in the factious domain (6). 
Consequently, the inclination of the sheet pile in the transformed fictitious plane is a 
function of (θ) and (N), which is the ratio of (kv/ku). The inclination is given by:-  
 
      απ = tan-1 (tan (θ) / √N) + tan-1 (cot (θ) /√N)                              …  (4)  
 
The expression is derived from coordinate transformation given by polubarinova (3) and 
use throughout the analysis. The factor (α) will have the values between (0) and (1). 
Figure (2) shows the transformed fictitious isotropic flow domain. In this context, it 
should be noted that the analysis presented herewith is for  
    S /T  = V/ T = 0.5 
Mishra and Reddy (6) derived the following equation for the calculation of exit gradient 
at a point in an anisotropic domain: 
 
IE = IEF (  ((1 + tan δ/(N + tan δ )) cosec (tan-1 ((-√N cotδ - tan(θ)) /      
                (1-√Ncotδ.tan (θ))))                                                         …  (5) 
                                                                                                                        
IEF ; is the calculated exit gradient; at a similar point in the fictitious domain. 
 
NUMERICAL ANALYSIS  
For an anisotropic porous medium, DARCY’s law must be generalized. The proper 
generalization is in terms of the permeability tensor. The generalization requires that each 
component of the vector grad (h), therefore:- 
 
     qX = -Kx ( h /  x) – Kxy ( h /  y)                                              …   (6a) 
     
 qy = -Kyx ( h /  x) – Ky ( h /  y)                                                     …(6b) 
 
Continuity equation for steady state conditions demands that: 
     ( qX /  x) + ( qy /  y) = 0                                                               …(7) 
Therefore differentiating (6a) and (6b) w.r.t (x) and (y) respectively the following is 
obtained:- 
 -Kx(  h/ x2) - Kxy(  h/ x y) - Kyx(  h/ x  y) - Ky(  h/ y2) =0   …(8)   
Remembering that Kxy = Kyx globally, therefore eq. (8) can be written in its final form 
as:- 
Kx(  h/ x2) +2 Kxy(  h/ x y) + Ky(  h/ y2) =0                        …       (9)   
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The coefficients Kx, Kxy and Ky are the global components of a second order symmetric 
tensor which needs to be defined for each nod in case (for any geological reason) the 
local and the components Kxy and Kyx (the cross products of the permeability tensor) 
vanish only when the \soil is isotropic (Kx = Ky) or if θ = 0, π, 2π….. etc (when u and v 
coordinates coincide with x and y). Under such condition eq. (9) reduces to a form which 
is widely used in seepage studies and that form is:- 
 
Kx(  h/ x2) + Ky(  h/ y2) =0                                                            … (10)   
The permeability tensor components transform with coordinate rotation through the 
following identity:  
[K] = [R]-1 [K ] [R]                                                                                … (11) 
 
Where :- 
 

[K] =  Kx KxyKyx Ky   
[K ]  =  Ku 00 Kv  
Where Ku and Kv are the maximum and minimum local permeabilities in the u and v 
directions respectively. Also, 
  
[R] =  cos θ sinθ− sinθ cos θ  
[R]-1 =  cos θ − sinθsinθ cos θ   
Which can be simplified to the following equations:- 
 
Kx = Ku cos θ + Kv sin θ                                                               (12a) 
Ky = Kv cos θ + Ku sin θ                                                               (12b) 
Kxy = Kyx = - (Ku – Kv) sinθ cos θ                                                  (12c) 
Equation (9) and (10) are solved explicitly using a forward differences approxmiations 
which is described in various references on numerical analysis. 
Solution of eqs. (9) and (10) in the fictitious domain provides the determination of the 
exit gradient (IEF) in this domain. This value can be used in eq. (5) of Mishra and Reddy 
to obtain the corresponding value of the exit gradients in the anisotropic domain. 
As an alternative approach to the use of eq. (5), an equation (in terms of coordinate 
transformation) is derived by the simple rule of differentiation of the composite function 
h (x , y ) which provides the determination of exit gradients in an anisotropic domain. Full 
mathematical derivation was given in appendix (1). 
 
RESULTS AND DISCUSSION  
In order to determine the effect of skewed anisotropy on the exit gradients, a digital 
computer program is written for the solution of eqs. (9) and (10) respectively. 
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     To develop the numerical solution, the data corresponding to this particular problem 
are :- 

1- Depth (T ) of aquifer = 24m. 
2- Depth (S ) of the sheet pile = 12m.  
3- Upstream head = 10m. 

The hydraulic heats obtained from a coarse network of (21×4) elements are reused in a 
network with one – half the mesh spacing i.e. (42×8) elements of the coarse grid which 
resulted in a better set of calculated hydraulic heads. 
The method suggested by Rushton and Redshaw (7) regarding the representation of 
irregular boundaries and the determination of the coefficients of the finite difference 
equations for each node is used throughout the analysis. 
      Results are presented for a degree of anisotropy of (4) i.e. (Ku/Kv) = 4; and for 
various angles of skewness (θ) of the permeability tensor. 
Results of the numerical solutions are presented in figures (3-6). Figures (3) and (4) 
represent the solutions of eq. (10) whereas figures (5) and (6) represent those of eq.(9). 
Figures (3) and (4) for the case of  (θ < 900) show that exit gradients start from infinity 
and reduce gradually if eq. (10) is used but the reduction is steeper in the case of eq. (9) 
as show in figure (4). 
      Similarly figures (5) and (6) for the case of (θ > 900) show that exit gradients start 
from zero reach maximum and then reduce gradually in the case of eq. (10), whereas if 
eq. (9) is used the reductions are steeper as shown in figure (6). 
However, results obtained from eq. (10) as shown in figures (3) and (5), indicate 
similarity in trend and behavior if compared with those obtained by Mishra and Reddy 
(6) for the case of infinite soil. 
       Generally speaking, all figures show similarity in trend and large differences in the 
magnitudes of the calculated exit gradients at any given θ except 0, 90 and 1800 . The 
reason is attributed to the influence of the cross – product terms of the permeability 
tensor especially, when this tensor does not coincide globally and locally. 
In this context it should noticed that exit gradients calculated from equations (17) and 
(18) or from equation (5) of Mishra and Reddy give similar results. 
 
CONCLUSIONS  
      A numerical solutions (based upon the generalization of DARCYs law) for the 
problem of seepage around vertical sheet pile embedded in an anisotropic domain of 
finite depth is given. The solutions clearly show the influence of the cross – product 
terms of the permeability tensor which, resulted in steeper descend and greater reductions 
of exit gradients (in case of θ < 900) and smaller peaks of exit gradients (in case of θ > 
900). Only when θ is 0, 90, 1800, both solutions gave identical results. The Kxy terms, 
dissipate the head in their direction and, reduces exit gradients at the downstream section 
of the sheet pile. 
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NOTATIONS  
x, y = Global coordinates in the fictitious isotropic domain. x  , y  = Local coordinate in the anisotropic domain. 
u, v = Coordinate axes parallel to the direction of maximum and minimum  coefficients 
of permeability respectively in the anisotropic domain. Θ = Angle of inclination of the major principal axis of the permeability tensor with the x    
axis. 
δ = Angle between u and x axes. 
Ku , Kv = Major and Minor principal coefficients of local permeabilities. 
[K] = Global permeability tensor. 
[K ] = Local permeability tensor. 
h = Hydraulic head. T  = Aquifer thickness. S  = Depth of sheet pile. 
T = Aquifer thickness of the transformed fictitious domain. 
v = Vertical projection of the inclination of the fictitious domain. 
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Appendix (1) 
Figure (1) is used to derive an expression for the exit gradient in an anisotropic domain in 
terms of axes transformation:  
Case   ≤90 
(∂h/∂y ) = (∂h/∂u) (∂h/∂y ) + (∂h/∂v) (∂v/∂y )                                    (13) 
( h/  ) = (∂h/∂x) (∂x/∂u) + (∂h/∂y) (∂y/∂u)                                    (14) 
(∂h/∂v) = (∂h/∂x) (∂x/∂v) + (∂h/∂y) (∂y/∂v)                                    (15) 
Knowing that:- 
x = u cosδ- v sinδ 
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and ,  
y = u sinδ + v cosδ 
Therefore,  x/ y = cosδ   ,  x/ v = -sinδ 
And            y/ u = sinδ   ,  y/ u = cosδ   
Substitution leads to:- 
(∂h /∂y ) = ((∂h/ ∂x)cosδ + (∂h/∂y)sinδ) (∂u/∂y ) + ((∂h/ ∂x)(-sinδ)  
                  + ((∂h/∂y)cosδ)(∂v/∂y )                                                  (16) 
The relation between the u, v, x , y  axes and θ as given by polubarinova (3) is :- 
                u = x  cosθ + y  sinθ 

                 v = 1/       (-x  sinθ + y  cosθ) 

Thus, ∂u/∂y  = sinθ and ∂v/∂y  = (1 /      ) cosθ 

Final substitution of the above identities will give an expression for the exit gradient in an 
anisotropic domain in a direction perpendicular to the downstream bed (6):- 

(∂h /∂y ) = (∂h/∂x)cosδsinθ+(∂h/∂y)sinδsinθ - (∂h/∂x) (1/     )sinδcosθ       

                 + (∂h/∂y) (1 /      )cosδcosθ                                                  (17) 

 
Case  > 90 
Using eq. (13), (14) and (15) with the proper axes transformation will give the following 
equation for the exit gradient in an anisotropic dimain acting also in a direction 
perpendicular to the downstream bed (6) :- 

(∂h /∂y ) = (∂h/∂x)(-cosδ)sinθ +(∂h/∂y)sinδsinθ (∂h/∂x)(1/     )sinδcosθ  

                 + (∂h/∂y)(1 /      )cosδcosθ                                                 (18)  
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Figure (5)
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 Figure (6) 
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