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ABSTRACT

In this paper the finite dement methodis used as a numerica techniqueto
investigatethe three-dimensiond eastomeric materials  (rubber or  rubber-like
materias) under finite, or large, strains analysis. The non-linear € ement equations for
the displacement and pressure field parameters are formulated using the minimized
variational approach. Essentially, approximate solutions for the displacement and
pressure field parameters are obtained from the solutions of the two corresponding
sets of non-linear simultaneous equations via the nonlinear Newton-Raphson iterative
procedure. The basic iterative solution procedure convergence is further improved via
breaking the applied load down into load incrementwith optimized incremental steps.
Additionally,a complete finite dement formulation is reported and detailed in this
work,and the mathematical complexities conjoined with such kinds of analysis are
simplified as possible.

Solving some numerical examples and comparing the results with that obtained
from some available results and ANSY S 12.0 showed that the current formulation of
the finite element methods is correctand the resulted program is capable for solving
incompressible eastomeric materials under finite strain. The formulation used for the
finite element derivations for large strain analysis gave sdatisfactory results as
compared with that of available results.

Keywords:Nonlinear FEM, finite strain, large deformation, elastomers, rubber, & rubber-like
materials.

dhalhall 3 gall 3adaall jualiadl 48y yhay JadSU) Jalail
Bkl N ladMN 5l cuas

A__adaY
Jadasivie dglaladll of sall (5 jail Ao 408K soaadll jualiell 45 Hha ) J2a 0 3 Caeadnid
D baal phaS) jealiall Y alee A2lia b LAl Jlii gd lasind o3 5 Sl VL)
Tl 5 da)3Y) COlabaal G 8 Jolal o Jsemall Qi) 8 & ekl s dal V)
lalie) 4y ) S5 Ae )yl & ek e b A9Y) CV Al (e Gfie gene Ja e alaie YL
el a0 Jal et 5 JelSIL GahdY Al Allal) ()5S AaladSUI pudl =55 Al e
b il 330 ghd A5 Al el jaly Bhaaall Jeall 5585 DA (g ) S

2401

2412-0758/University of Technology-Iraq, Baghdad, Iraq
This is an open access article under the CC BY 4.0 license http://creativecommons.org/licenses/by/4.0


mailto:muhsinnhamza@yahoo.com
http://www.pdffactory.com
http://www.pdffactory.com
https://doi.org/10.30684/etj.30.14.4
https://orcid.org/0000-0002-5974-5301

Eng. & Tech. Journal, Vol.30, No.14, 2012 Nonlinear Finite Element Analysis for Elastomeric
Materialsunder Finite Strain

Jalall 3y ks AV e (e le g o lual dpe SY ) Jedl o SV Gy
Jiladd o g sl 13g) Lmlaal) Ay ) iy graal) L3 A aa g

aliall 28 ylal Acaly ) CBEEY) o Aael Jlad) (oany Ja die il i) cod

3 sally Aaldl Jilaall Jal Lgle alie¥) (Keas dagaea Gl 13 6 deddivalll 32asl

e 5 5l i) aa L jlie die Apim e Lgle Jpmndl & ) gl cilSy Akl

Jio s23ndl jealinl) 45y yhay Lalal Lpsigl zabiall o Ltle Jgemall 5 30 il L i

ANSYS12.0

Nomenclature
Ex1 Ey) & Finite direct strainsin x, y and z directions m/m
Yxy: Yxz: Vyz | Finite shear Strains
e Green’s or Lagrangian strain tensor m/m
C Right Cauchy-Green strain tensor
f Displacement derivative tensor
Fe, Fo Element and Global Nodal force vector, respectively | N
I I dentity matrix
Kg Global stiffness matrix N/m
K Bulk modulus
Iy, 12,13 Stretch or strain invariants

L, 1, Modified stretch or strain invariants
J Determinant of deformation gradient
Jo Jacobain matrix
N; Shape functions
p Hydrostatic pressure N/mn?
[S) 2nd Piola-Kirchhof stress N/mm?
S i,j=1,2,3components of2nd Piola-Kirchhof stress N/mm?
u, v, w Displacements components m
U U Element and Globa nodal displacements tensor, m

er 6 respectively
w Strain energy function

INTRODUCTION
uccessful andysis of dastomers, rubber or rubber-like materials, requires
robust numerica methods and representative materid models applicable to
small/large strains and multiple deformation modes. Although the mathematical
foundation of strain energy density function has been studied by many researchers,
the application to engineering problems is not straightforward [1].

Two mgjor challenges are encountered in the numerical analysis of rubber
meterias. The first is due to the material incompressibility of rubber. The finite
dement prediction is often much stiffer (locking) than andytica solution or
experimental data resulting from the imposition of "congtant volume constraint” in
the numerical formulation. Locking usualy accompanies with pressure oscillation
that completely corrupts the numerica stress solution, even when the deformation is
smal [2]. The second difficulty is the mesh distortion caused by the large
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deformation nature in many eastomeric applications. Therefore it is necessary to
modify the numerical techniques which may be used to help in getting improved
numerical analysis[3].

The lack of inaccurate results of the conventional finite dement method is due to
Poisson’s raio vaues in eastomers, which ranges between 0.499 and 0.5. The
dements used in FEA need to be reformulated to accommodate this high vaue of
Poisson's ratio. This is usualy accomplished by utilizing an approach deve oped by
Herrmann [4], by introducing a new variational principle that includes another degree
of freedom called the “mean pressure function.”

It can be seen from the literature that there are many material models, al of
which share certain features [1]. One of these beng the requirement to calibrate the
meateria constants from test data. This is aluded to by Boyce [1] who points out that
athough the Neo-Hookian and Mooney-Rivlin material models only require one and
two cdibrated constants, respectively, their ability to represent accuratdy even
modestly large strains is poor for moderatey very large deformation. Better models
exist but require the evaluation of more material constants. Boyce [1] therefore
investigates the Gent and Arruda-Boyce material models conduding that despite
these two models only requiring two calibrated constants they nevertheless
successfully model three dimensional finite strain behaviors.

Another common feature of the various material models is that their forms are
either functions of the strain invariants or the principa extension ratios. Work by
Davies et.al.[5], as well as Yeoh [6] indicates that for strain invariant based models
the strain energy derivative with respect to the second strain invariant is negligible in
comparison to the strain energy derivative with respect to the first strain invariant.
Consequently, the second strain invariant is ignored in some material models.

Apparently with so many forms of material model the question arises as to which
mode is the most accurate and efficient? Charlton et.al.[7] state that for larger and
more complex strains, higher order terms in the Rivlin polynomial need to be
included. Ogden [8] also investigated the accuracy of three different nearly
incompressible material modds, these being the Mooney-Rivlin, Ogden and Vaanis-
Lande models, using Treloar uniaxia testdata for constant calibration purposes [9].
From the three modes, the VaanisLandd formulation provides the best
correspondence between the theoretical and the experimental test data, for a variety
of deformation modes.

The mostearlier example of a finite ement formulation for modding finite
strains in eastomers was given by Lindley [10]. His work describes the use of
triangular ements to discretize a rubber sheat enabling the total strain energy of the
sheet to be evaluated by the finite eement method. Subsequently an iterative
procedure was employed to move al the modd nodes so as to minimize the strain
energy of the sheet. Initial displacement estimates for the iterative procedure were
obtained from small strain linear easticity. The boundary conditions were applied to
the model by means of prescribed displacements.

Subsequent deve opments have resulted in three different approaches that have
been evolved to deal with the hydrostatic pressure related to the volumetric part of
the strain. The displacement method with reduced integration [11], the penalty type
formulation [12] and the mixed displacement, pressure field parameter method [13].
The most popular and developed of these methods is the mixed fidd parameter
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approach which alows for full and near incompressibility. However the
interpolations used are limited by instability in the mixed patch test[14]. The basic
mixed field parameter finite eement formulation is discussed by Canga et.al. [15]
and Basar & Itskov [16] and consists of forming a set of non-linear simultaneous
equations. These equations can be assembled in the usual finite e ement manner into
a form compatible with the Newton-Raphson iterative solution procedure. For each
iteration the tangent stiffness dement equations are evaluated from the rdevant
congtitutive modd. For example, Chen et.a. [17] describe the tangent stiffness
moduli matrix formulation based on the Rivlin polynomial materid model. Holzapfel
[18] and Basar & Itskov [16] utilize the Ogden materia mode to form the constitutive
reationship. With the latter work describing how the Ogden modd can be
reformulated from a function in terms of principal stretches to one in terms of the
strain invariants. Work by Kaliske & Rothert [19] suggests that generally constitutive
materia modes in terms of strain invariants dlow for simpler and more efficient
formulations. By way of demondration Kaliske & Rothet perform finite dement
analyses based on constitutive models utilizing the Neo-Hookian, Mooney-Rivlin,
Swanson [20], Yeoh [6], Arruda-Boyce [21] and stetisticdly derived Kilian material
modes. With regard to constitutive equations based on the Ogden modd, Basar &
Itskov state that the materid modd calibration is more complex as the calibration
process itself requires an iterative non-linear solution procedure.

The main contribution of the present work is to give a detailed mathematica
procedure for obtaining the element equations of three dimensional eastomeric
problems using the variational principles. The material modd used in this analysis
will be Mooney-Rivlin. The solution procedure will be performed by using the
nonlinear Newton-Raphson procedure. A try, as wdl, will be been given to darify
and simplify, as possible, the mathematical complexities conjoined with such a kind
of problems.

FINITE ELEMENT APPLIED TO ELASTOMER

When forming the dement equations for rubber or rubber-like materids, or
generally elastomers, two sources of nonlinearity are introduced due to the ability of
rubber to undergo finite (large) eastic deformations. These are geometric and
material non-linearity. The presence of geometric non-linearity dictates that stress and
strain measures should be used which are accurate for finite deformations. In present
work the stress and strain measures used are the 2™ Piola-Kirchhof stress and Green’s
strain refer to undeformed or reference coordinates.

The material non-linearity requires the use of an appropriate material modd to
form the congtitutive relationship between stress and strain. The constitutive
rdationship in the present anaysis is based on Mooney-Rivlin strain energy
expression which has the following form [1]:

W :Ci(l_l' 3)+C2(|_2 B 3)+%K(J B ])2 @

The first two terms in the above expression account for deviatoric strain energy
and the third term accounts for the volumetric strain energy. The constants C,, C, and
K (bulk modulus) are material constants which can be evaluated from some
experimental tests[23].
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The 2" Piola-Kirchhoff stress can be written as follows [24]:

w = 2M 2
flee ic

The Green’s dtrain tensor, €, and the Right Cauchy-Green strain tensor,C, are

rdated as:C = 2eg +1 .

Differentiating equation (1) with respect to Right Cauchy-Green strain tensor,

S =

M:Cl&ﬁuczmﬂq\]-l)E 3
ic qiC ic qiC

Simplifying and rearrange equation (3), see Appendix A, leads to:

e L 2y 2 1 25
W I33+QI33Iljl—QI33C—aQQIlI33+—2CZI2I33jCl+—1KJ(J—])Cl 4)
ic p 3 3 5 2

Hence, the 2" Piola-Kirchhoff stress may be written as[23]:

S =DJ-D,C-D,C*+KJ(J-1)C (5)
where:
e ! 20 .2 a ) 29
D1:2§C1I33+C2|33|1i’ D, =2C,1;® and D3:2§73C1|1|33+§C2|2|33i
2 a

Equation (5) can further simplify by using the definition of the bulk modulus K as:

_dv-av,
av

o

K=-2 and e J-1
eV

Where p is the hydrostatic pressure which defined as[22]:
1
__g(sx+sy+sz)

Therefore, equation (5) can now be rewritten as:
S =DI-DC-DC*- pJC™* (6)

FINITE ELEMENT FORMULATION

From theory of eadticity the strain vector for three-dimensional, large strains,
Green’s strain-displacement equations, are of the form:
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These equations can be written as the sum of small and large strain vectors as:
) . g Fug , v ae‘IIWo 3
g % 3 8 e‘ﬂXg e‘ﬂXg e‘ﬂXﬂ a
ée 0 ¢ v U SEud Ve ;
éexxl] e Ty o e gﬂyﬂ g‘ﬂyg gﬂyﬂ a (8)
& wi é fw u g é;ae‘ﬂuo é;aéﬂvo é;aéﬂwc) 3
U é a o o =
£g :ézzzl;':ssmau t €large :éﬂuﬂzﬂv Eé efize efze €lzs u=gu
& U gzaélI_uﬂ_u+1I_v1Iv ‘ﬂw‘ﬂwou
&Y g%’ 1%3 g 8Mx Iy TxTy  Tx Ty g
&, Sty GENIL VAV Tw w ol
Aﬂv ﬂw & efx Iz Tx 9z 1x ‘ﬂzﬂ

g‘ﬂz ‘Hyg gzaéﬂu fu ‘ﬂ_v‘ﬂv ‘ﬂw‘ﬂwou
g€y 1z Ty vz o

Where u is the nodal displacements tensor, and matrix B represents a strain-
displacement transformation of the element. The strain vector can be expressed as a
sum of linear and non-linear terms, depending upon displacements u. Therefore
metrix B may be written as a sum:

B =B, +B,
The small strain vector €, isrelated to the nodal displacements by using B, matrix:
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The Cartesian shape function derivatives are obtained from intrinsic shape function
derivatives asfollows:

éTN; U TN, U é‘ﬂx Ty ‘ﬂzu
&g, U €qy U v

ST S
e (=105 0 \whereJ Y

éfy u €qh U &h fh fhu
&N U u é a
NG g M Ty %z
efzu 81z g gz 1z 1z g

The above relationship enables the arbitrary form of the discretized dements in
Cartesian space to have generic shape function expressions in intrinsic space

The large strain vector €, can be written as follows:

efuu
SaxY
¢ qul o o U g
Z%Jﬁxﬁ%bﬁ UIVIW G 5 0 0 0 o%ka
& 2 2 2 4 Ix Tx Tx tefwg
€ afud  afvg afwd U ¢ fu v fw Epcd
8 T+ T,z 0 60 0 0 VWi g gk
(:ang; ng; ng;@ é fy v @EE
1géﬂjg+¢a§v9+¢@9 3 180 0000 OELNMLE%U 1
Errge™ ~aélzg &Tzg éWMzo g *%uwwvﬂuww/ﬂzww u A@
28fufu Vv, T s 28 0 OL\%M,U
@gﬂxw "y X fy éWWWT[XTIXT[X
T efu v ﬂUTN'ﬂ\/VLEﬂyu
ﬁm Wiy, Wiwl - ey g g O ™ X I
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et WiV, wing; g wﬂzwwww@u
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i
Erztl (10)
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The Q vector can be derived interms of nodal displacement as:
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Therefore, equation (8) can now be written as:

86 = Eomall T &jarge :?*’%Ag@

9
where
600000000}
00010000
y_ 000000001

"$ 10100000y
010010000
e u
@00001010g

The variation in Green’s strain can now be written as:
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de, =de,, +—dA © + 1A dO
2 2 (12)

It can be easlly prove thatdA ® = AdO, therefore, equation (12) will now be
rewritten as:

de, =de_, +AdO = (¥+A)®du=Bdu=(B, +B,)du 13)

where B, =A ® , equation (13) represents the Green’s strain tensor in terms of

nodd displacements.

ELEMENT EQUATION FORMULATION

Starting from the strain energy:

W = Giylel S dv (142)
\Y

Using equation (13) into equation (14) and the principle of virtual work
(dW =d(work done)), interms of nodal displacements:
du' gpB’ S dV - du'F,, =du'F
\Y
The above eguation represents an imbalance between internal and externa virtual

energy. Since du represents a vector of arbitrary virtual infinitesmal nodal
displacement:
@nB' S dv - F,, =F (14b)
\Y
Assumingexact  equilibrium,  equation (14b), after rearranging and
simplification,can be written as:

dF = gpB' dS dV + @B’ S dv (15)
\

\%

To evauate the terms of equation (15), an equivalent variational form of equation
(14) may be written as:

dW = Giydes :dS dV + e (dee ): S av (16)
\ \

To evaluate the second term of equation (16), starting from Green strainwhich can be
expressed as[25]:
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oo =2l )

where f is the displacement derivative tensor defined as:

éfu fu fuu
(S) o, «-U
2Ty Tz
(el vy
efx Ty TzU
u

aw Tw o w g
gTx Ty fz§

The differentiation of the above leads to:
e :%[(d frd £7)+(d £ £)+(Faf)

(17)
:%[(I A )d Frd F(F+1)]

And,
d(de;)=d f'd f (18)

To evaluate the first term of equation (16), the differentid S must be evaluated,
thisis may be achieved viathe use of equation (5),

dS =dbj - (dD, C +D,dC)- ([dD,C*+D,dC)

- [ap(s c2)+ pa(a ¢ 19

Evaluating each term of equation (19) separately leads to:
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e 0]
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13
szalszcl:CK:

(20)
The second term at the right of equation (16) can now be written as:

C\i!\)d(dae):s dv = (‘in‘)(d fTd f):S av

v v (21)
The above expression may be written after some mathematical manipulation as:
T
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Using equation (11), equation (22) can now be written as:

é - u
Gid (e ): Sdv =dul @ ™S @V (du, (23)
v v a
Therefore, equation (15) can now be written as:

é\\\ T AN\ T < U é\\\ T U
dF.=e@pB D BdV +qqp® S @dV gdu, +gqgpB H dV gdp
v v a év a
(249)

or,

dF, = K, du,+Pdp (24b)
€. it T 2 u €. it u
where K. = eauP DBdV+GmI> S @dVy, P.=eaqpp H dvy,
év v a év a

H =- \/EC'l N ,and N, isthehydrostatic pressure shape function.

Equation (24) represents the element equation of the current problem. The
subsequent analysis includes standard finite element procedure, which consists
of discretization, assembling all elements matrices, ... etc. tillgetting the
global system of equations.

The resulted globa system of equations is highly nonlinear due to:the
nonlinear behavior of the materia, the presence of hydrostatic pressure related to
the volumetric part of the strain, and geometrical nonlinearity results from large
deformation. Consequently an iterative solution procedure based on nonlinear
Newton-Raphson agorithm is required.

SOLUTION ALGORITHM

Equation (24) represents non-linear set of equations,the non-linearity source, as
mentioned above consists of material and geometrical terms,which are functions of
the displacement derivatives and hydrostatic pressure. Thus a solution to equation
(24) must involve an iterative solution procedure As with most iterative solution
procedures the first step is to solve the equivalent linear problem to obtain an initid
estimate of the solution. The solution vector to this equation can then be used to
evaluate the displacement derivatives and hydrostatic pressures to use in the full non-
linear system of equations induding the non-linear terms.Obviously this first solution
vector, and subsequent solution vectors before convergence, will not fully satisfy the
full non-linear set equations and a residual or error value will result if the solution
vector is substituted back into equation (24). This residual can be reduced if a new set
of hydrostatic pressures and stresses are calculated based on the previous iteration
results. These values can then be used to compute new non-linear terms to augment
the standard linear force vector. The solution to this set of equations will result in an
improved vector of total noda displacements. The difference between the new
solution vector and the old one gives the iterative improvement in the solution vector.
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This process is repeated until the ratio of the square of the solution vector increment
over the square of the total solution vector results in a value less than a given
permissible.

The basic iterative solution procedure convergence is further improved via
breaking the applied load down into load increments. Therefore it is essential to
develop an incremental version of the basic iterative solution agorithm. This can be
achieved with the following algorithm shown in Figure 1. The significant difference
however with the incremental algorithm is that for each iteration the 'old' and 'new'
values of the solution vector and the non-linear stresses are stored. Therefore the tota
solution vector is formed from the total cumulative sum of the change in
displacements at each iteration of each increment. The change in non-linear stress, or
the difference between the current and previous iteration vaues, is used in the non-
linear domain term. This means that for each increment the non-linear domain term
reduces for each iteration until convergence occurs. Therefore, this agorithm is
pseudo incremental because at each iteration of every increment the system of
equations are still solved for the total displacements and hydrostatic pressure.

The non-linearity of the element equations is noticeable for the reason that the
metrices in equation (24) are functions of the displacements and hydrostatic
pressures. The standard Newton-Raphson algorithm is used based on the Taylor’s
series to linearize the ement equations, higher order terms is omitted. The load is
split up into incrementa steps which are optimized by choosing steps according to the
feeding back errors. This basically means that a separate Newton-Raphson solution is
run for each load step.
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Figure (1): Incremental procedurewithan iterative solution

NUMERICAL EXAMPLES

This section is concerned with the numerical evaluation of the constructed program
which based on the nonlinear finite dement methods derived in this paper.This was
achieved via solving two numerical examples. The first one is hyperdastic circular
plate subjected to water pressure, wheress, the second is concern with hyperdastic
dastomeric cylinder.
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Hyperdastic Circular Plate

In this example a flat circular membrane made of a rubber material is subjected to
uniform water pressure, as shown in Figure (2). The edges of the membrane are fixed.
The response of the membrane will be studied as pressure is increased from zero to
165kPa.

'//////¢ : VoA A

REAERRRRERRR

Water Pressure

Figure (2): Flat circular rubber membrane

The dimensions and loading of the current problem islisted as:
Radius (mm) Thickness (mm) Water Pressure (kPa)

190 12.7 165

The results of the current problem are drawn in Figure 3, which shows the vertical
displacements aong the radial distance under different pressure values. The results
are drawn, for both, ANSY S 12.0 and the corresponding ones of the current analysis.
In ANSY S the problem is considered as a thin plate and the e ement type used in this
simulation is chosen to be SHELL 181, afinite strain layered shdl, the mode used for
the material modding, for both ANSY S and the current analysis,is Mooney-Rivlin.

0

—  ANSYS

—— ----  Current

&
|
¢
i
i
¢

|
.'I.'
?,'.F
&
o

Verlieal Dusplacement (mm)

ﬁ
|
L
il
i
a -
A

Foadial Dhstanee (mm)

Figure (3): Vertical displacement of flat circular rubber
Membrane under different pressurevalues.
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While, for the current study, the problem is considered as three dimensional solid
and the element type is taken to be eight nodes brick eement. The plate is discretized
using a mesh of 24 8-nodes brick eements for 3-D modeing of this problem.It is
evident from these curves that there are relatively good agreements. And as the
pressure values increase, which results larger deformation, the difference seems to be
larger between the current results as compared with ANSYS. The maximum
percentage error is 6% at the center of the plate for the highest pressure. This error is
decreases as the pressure value decreases, also the error decreases as the deformation
decreases, i.e. near the edges of the plate.

Hyperelastic Elastomeric Cylinder

In this example a hyperdastic dastomeric cylinder, Figure 4, subjected to internd
pressure is considered, the geometric and loading properties of the current problem is
chosen to coincide with Shi Shouxia and Yang Jiaing [26], while the materia
properties is considered as Mooney-Rivlin and listed as:

M ooney-Rivlin I nner Outer

Coefficients Diameter Diameter I(‘ﬁn%th (P;Feisure
Cio Co1 (mm) (mm)

1.37890 0.324855 | 140 372 400 4000

Figure (4):Hyper elastic elastomeric cylinder

The cylinder is discretized using a mesh of 96(8-nodes) brick eements for 3-D
modeling of this problem. Whilein ANY SY, SOLID185 is used for 3-D modeing of
hyperdastic solid structures. It also has mixed formulation capability for simulating
deformations of fully incompressible hyperdastic materials. The nhumber of dements
is kept 96 to make a comparative study.

Similar to the first example, the problem is solved by using ANSYS 12.0 and
compared with the current analysis. The material model used in ANSY'S is Mooney-
Rivlin.Table 1shows the results of the radial displacement at the inner surface under
different internal pressure values. The results showed a good agreement between the
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current work and ANSY S 12.0 especialy when the pressure value is low, and as the
value of the pressure increases the difference between the results is slightly increases.

Table(1): Radial Displacement At The Inner Surface For Hyperelastic
Elastomeric Cylinder under Different Internal Pressure Values.

Radiad Displacements (mm)
'(Eltg)”a' Pressure | o, rent FEM | ANSYS120 | % Discrepancy
1000 14.9 152 2,01
2000 396 423 6.81
2500 68.1 727 6.75
3000 114.3 1265 1067

The results of hoop stresses at the inner surface for different internal pressure
values are shown in Table 2, which shows a very good agreement between the current
work with that of ANSY S.

Table(2): Hoop stresses at theinner surface for hyperelastic
elastomeric cylinder under different internal pressurevalues.

Hoop Stresses (M Pa)
Internal Pressure (kPa) | o rent FEM | ANSYS 120 | 2
Discrepancy

1000 1.70 171 0.58
2000 3.02 3.09 231
3000 5.10 5.32 431
3500 9.62 105 9.14
4000 20.8 225 8.17

CONCLUSIONS

Proper use of nonlinear finite dement analysis can make good predictions for the
behavior of eastomeric materids components for the design purposes. Recently, this
subject received excessive attention by many researchers to mode such kinds of
problems, but to the author knowledge, there is no full analysis available in the
literature, all authors concentrated on specific part of the problem but not as a whole
Therefore, the main contribution of the present work is to give a detailed
mathematical procedure for obtaining the element equation of this kind of the
andlysis. Afterwards, the numerical results if further improved via the use
ofoptimized incremental stepsfor solving the nonlinear Newton-Raphson. This study
assumes that the material obeysthe Mooney-Rivlin constitutive mode with
moderately large deformation up to approximatey 100% extra streches.

2417

PDF created with pdfFactory Pro trial version www.pdffactory.com



http://www.pdffactory.com
http://www.pdffactory.com

Eng. & Tech. Journal, Vol.30, No.14, 2012 Nonlinear Finite Element Analysis for Elastomeric
Materialsunder Finite Strain

Comparing the obtained results with that of ANSY S 12.0verified that the current
formulation and the resulted computer program are valid and correct. There after,the
obtained results are satisfactory enough for designing these kinds of problems.
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APPENDIX A

DIFFERENTIATION OF STRAIN INVARIANTS
A.1 Differentiation of 1,

Thefirst modified strain invariants is defined as [22]:

e IS'%I L= [Iq]'%Trace(C)

Hence,

dll:- :—3’
Or:

B <[cf>- Zlstracdc)c

c
6

1 1
=13 - Z1ct
e 3 o
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A.2 Differentiation of |,
The second modified strain invariants is defined as [22]:

[, =13,
Where,
l, :%(If - Trace(CZ))
Hence,
_ 2 .2 .2
di, =- 5|33|2c:-1:o|c:+|33(|l| - C):dC
Or:
r 2 .
M o138 -c- 2y 10
[ e 3 o
A.3 Differentiation of I3
Thethird strain invariants is defined as[22]:
=]
Hence,
di,=1.C*:dC
Or:
T )
—3=|,C !
ic

Using J =./1, , then [22]:

1
dJ:%ISZdIS

E:Eléc'l
c 2°
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