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ABSTRACT 

In this paper the finite element methodis used as a numerical techniqueto 
investigatethe three-dimensional elastomeric materials (rubber or rubber-like 
materials) under finite, or large, strains analysis.The non-linear element equations for 
the displacement and pressure field parameters are formulated using the minimized 
variational approach. Essentially, approximate solutions for the displacement and 
pressure field parameters are obtained from the solutions of the two corresponding 
sets of non-linear simultaneous equations via the nonlinear Newton-Raphson iterative 
procedure. The basic iterative solution procedure convergence is further improved via 
breaking the applied load down into load incrementwith optimized incremental steps. 
Additionally,a complete finite element formulation is reported and detailed in this 
work,and the mathematical complexities conjoined with such kinds of analysis are 
simplified as possible. 

Solving some numerical examples and comparing the results with that obtained 
from some available results and ANSYS 12.0 showed that the current formulation of 
the finite element methods is correctand the resulted program is capable for solving 
incompressible elastomeric materials under finite strain. The formulation used for the 
finite element derivations for large strain analysis gave satisfactory results as 
compared with that of available results. 

Keywords:Nonlinear FEM, finite strain, large deformation, elastomers, rubber, & rubber-like 
 materials. 

  للمواد المطاطيـةالعناصر المحددة  ةقيطرب التحليل اللاخطي
  الكبيرة الانفعالاتتحت تأثير

 الخلاصــة
 عندتحليلالمواد المطاطية لتحري قنية عددية تالمحددة كالعناصر  ةقيطر في هذا البحثاستخدمت 

تم استخدام نهج تقليل التباين في صياغة معادلات العناصر اللاخطية لمعاملات . الانفعالات الكبيرة
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تم تحسين الحل للاجراءات .رافسن اللاخطية كون المسالة الحالية لاخطية بالكامل- على طريقة نيوتن

. واختيار خطوات الزيادة بأمثل اسلوباجراءات تزايدية التكرارية من خلال تجزئة الحمل المسلط ب

https://doi.org/10.30684/etj.30.14.4
2412-0758/University of Technology-Iraq, Baghdad, Iraq
This is an open access article under the CC BY 4.0 license http://creativecommons.org/licenses/by/4.0

mailto:muhsinnhamza@yahoo.com
http://www.pdffactory.com
http://www.pdffactory.com
https://doi.org/10.30684/etj.30.14.4
https://orcid.org/0000-0002-5974-5301


Eng. & Tech. Journal, Vol.30, No.14, 2012       Nonlinear Finite Element Analysis for Elastomeric  
                                                                                        Materials under Finite Strain 

 
 

2402 
 

لكيفية الاشتقاق وطريقة التعامل  ،نوعا ما ،سرد تفصيليفة الى ان العمل الحالي يذكر بالاضا
  .تذليل الصعوبات الرياضية المصاحبة لهذا النوع من المسائللومحاولة 

طريقة العناصر الاشتقاقات الرياضية لاثبتت المقارنات عند حل بعض المسائل العددية ان 
البحث صحيحة وممكن الاعتماد عليها لحل المسائل الخاصة بالمواد المستخدمة في هذا ا المححدة
او عند توفرة مالنتائج المع  امرضية عند مقارنتهعليها وكانت النتائج التي تم الحصول . المطاطية

العناصر المحددة مثل   ةقيطرمقارنتها بالنتائج التي تم الحصول عليها من البرنامج الهندسية الخاصة ب
  .12.0ANSYSـ الـ

  
Nomenclature   ,    ,    Finite direct strains in x, y and z directions m/m     ,     ,      Finite shear Strains  
εG Green’s or Lagrangian strain tensor m/m 
C Right Cauchy-Green strain tensor  
f Displacement derivative tensor  
Fe, FG Element and Global Nodal force vector, respectively N  
I Identity matrix  
KG Global stiffness matrix  N/m 
K Bulk modulus  
I1, I2 , I3 Stretch or strain invariants  

1I , 2I  Modified stretch or strain invariants  
J Determinant of deformation gradient  
JD Jacobain matrix  
Ni Shape functions  
p Hydrostatic pressure N/mm2 

S  2nd Piola-Kirchhof stress N/mm2 

Si j i,j= 1,2,3components of2nd Piola-Kirchhof stress N/mm2 
u, v, w Displacements components  m 

ue , uG Element and Global nodal displacements tensor, 
respectively 

m 

W Strain energy function  
 
INTRODUCTION  

uccessful analysis of elastomers, rubber or rubber-like materials, requires 
robust numerical methods and representative material models applicable to 
small/large strains and multiple deformation modes. Although the mathematical 

foundation of strain energy density function has been studied by many researchers, 
the application to engineering problems is not straightforward [1].  

Two major challenges are encountered in the numerical analysis of rubber 
materials. The first is due to the material incompressibility of rubber. The finite 
element prediction is often much stiffer (locking) than analytical solution or 
experimental data resulting from the imposition of "constant volume constraint" in 
the numerical formulation. Locking usually accompanies with pressure oscillation 
that completely corrupts the numerical stress solution, even when the deformation is 
small [2]. The second difficulty is the mesh distortion caused by the large 
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deformation nature in many elastomeric applications. Therefore it is necessary to 
modify the numerical techniques which may be used to help in getting improved 
numerical analysis[3].  

The lack of inaccurate results of the conventional finite element method is due to 
Poisson’s ratio values in elastomers, which ranges between 0.499 and 0.5. The 
elements used in FEA need to be reformulated to accommodate this high value of 
Poisson's ratio. This is usually accomplished by utilizing an approach developed by 
Herrmann [4], by introducing a new variational principle that includes another degree 
of freedom called the “mean pressure function.” 

It can be seen from the literature that there are many material models, all of 
which share certain features [1]. One of these being the requirement to calibrate the 
material constants from test data. This is alluded to by Boyce [1] who points out that 
although the Neo-Hookian and Mooney-Rivlin material models only require one and 
two calibrated constants, respectively, their ability to represent accurately even 
modestly large strains is poor for moderately very large deformation. Better models 
exist but require the evaluation of more material constants. Boyce [1] therefore 
investigates the Gent and Arruda-Boyce material models concluding that despite 
these two models only requiring two calibrated constants they nevertheless 
successfully model three dimensional finite strain behaviors.  

Another common feature of the various material models is that their forms are 
either functions of the strain invariants or the principal extension ratios. Work by 
Davies et.al.[5], as well as Yeoh [6] indicates that for strain invariant based models 
the strain energy derivative with respect to the second strain invariant is negligible in 
comparison to the strain energy derivative with respect to the first strain invariant. 
Consequently, the second strain invariant is ignored in some material models.  

Apparently with so many forms of material model the question arises as to which 
model is the most accurate and efficient? Charlton et.al.[7] state that for larger and 
more complex strains, higher order terms in the Rivlin polynomial need to be 
included. Ogden [8] also investigated the accuracy of three different nearly 
incompressible material models, these being the Mooney-Rivlin, Ogden and Valanis-
Landel models, using Treloar uniaxial testdata for constant calibration purposes [9]. 
From the three models, the Valanis-Landel formulation provides the best 
correspondence between the theoretical and the experimental test data, for a variety 
of deformation modes.  

The mostearlier example of a finite element formulation for modeling finite 
strains in elastomers was given by Lindley [10]. His work describes the use of 
triangular elements to discretize a rubber sheet enabling the total strain energy of the 
sheet to be evaluated by the finite element method. Subsequently an iterative 
procedure was employed to move all the model nodes so as to minimize the strain 
energy of the sheet. Initial displacement estimates for the iterative procedure were 
obtained from small strain linear elasticity. The boundary conditions were applied to 
the model by means of prescribed displacements.  

Subsequent developments have resulted in three different approaches that have 
been evolved to deal with the hydrostatic pressure related to the volumetric part of 
the strain. The displacement method with reduced integration [11], the penalty type 
formulation [12] and the mixed displacement, pressure field parameter method [13]. 
The most popular and developed of these methods is the mixed field parameter 
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approach which allows for full and near incompressibility. However the 
interpolations used are limited by instability in the mixed patch test[14]. The basic 
mixed field parameter finite element formulation is discussed by Canga et.al. [15] 
and Basar & Itskov [16] and consists of forming a set of non-linear simultaneous 
equations. These equations can be assembled in the usual finite element manner into 
a form compatible with the Newton-Raphson iterative solution procedure. For each 
iteration the tangent stiffness element equations are evaluated from the relevant 
constitutive model. For example, Chen et.al. [17] describe the tangent stiffness 
moduli matrix formulation based on the Rivlin polynomial material model. Holzapfel 
[18] and Basar & Itskov [16]utilize the Ogden material model to form the constitutive 
relationship. With the latter work describing how the Ogden model can be 
reformulated from a function in terms of principal stretches to one in terms of the 
strain invariants. Work by Kaliske & Rothert [19] suggests that generally constitutive 
material models in terms of strain invariants allow for simpler and more efficient 
formulations. By way of demonstration Kaliske & Rothert perform finite element 
analyses based on constitutive models utilizing the Neo-Hookian, Mooney-Rivlin, 
Swanson [20], Yeoh [6], Arruda-Boyce [21] and statistically derived Kilian material 
models. With regard to constitutive equations based on the Ogden model, Basar & 
Itskov state that the material model calibration is more complex as the calibration 
process itself requires an iterative non-linear solution procedure.  

The main contribution of the present work is to give a detailed mathematical 
procedure for obtaining the element equations of three dimensional elastomeric 
problems using the variational principles. The material model used in this analysis 
will be Mooney-Rivlin. The solution procedure will be performed by using the 
nonlinear Newton-Raphson procedure. A try, as well, will be been given to clarify 
and simplify, as possible, the mathematical complexities conjoined with such a kind 
of problems.  

 
FINITE ELEMENT APPLIED TO ELASTOMER  

When forming the element equations for rubber or rubber-like materials, or 
generally elastomers, two sources of nonlinearity are introduced due to the ability of 
rubber to undergo finite (large) elastic deformations. These are geometric and 
material non-linearity. The presence of geometric non-linearity dictates that stress and 
strain measures should be used which are accurate for finite deformations. In present 
work the stress and strain measures used are the 2nd Piola-Kirchhof stress and Green’s 
strain refer to undeformed or reference coordinates. 

The material non-linearity requires the use of an appropriate material model to 
form the constitutive relationship between stress and strain. The constitutive 
relationship in the present analysis is based on Mooney-Rivlin strain energy 
expression which has the following form [1]: 

( ) ( ) ( )2
2211 1

2
133 −+−+−= JKICICW                (1) 

The first two terms in the above expression account for deviatoric strain energy 
and the third term accounts for the volumetric strain energy. The constants C1, C2 and 
K (bulk modulus) are material constants which can be evaluated from some 
experimental tests [23]. 
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The 2nd Piola-Kirchhoff stress can be written as follows [24]: 
 

 C∂
∂

=
∂
∂

=
WW

S 2
Gε

                                 (2) 

The Green’s strain tensor, , and the Right Cauchy-Green strain tensor,C, are 
related as: IC += Gε 2 . 

Differentiating equation (1) with respect to Right Cauchy-Green strain tensor, 
 

( )
CCCC ∂

∂
−+

∂
∂

+
∂
∂
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∂
∂ JJKICIC 12

2
1

1
W

                            (3) 

Simplifying and rearrange equation (3), see Appendix A, leads to: 
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 (4) 

Hence, the 2nd Piola-Kirchhoff stress may be written as[23]: 
 

( ) 11
321  1 −− −+−−= CCCI JJKDDDS                              (5) 

where: 
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Equation (5) can further simplify by using the definition of the bulk modulus K as: 

 

1     and    −=
−

=−= J
dV

dVdVpK
o

o
V

V

ε
ε  

 
Where p is the hydrostatic pressure which defined as [22]:   

( )  
3
1

zyxp σσσ ++−=  
Therefore, equation (5) can now be rewritten as: 
 

11
321   −− −−−= CCCI JpDDDS             (6) 

FINITE ELEMENT FORMULATION  

From theory of elasticity the strain vector for three-dimensional, large strains, 
Green’s strain-displacement equations, are of the form: 

Gε 
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These equations can be written as the sum of small and large strain vectors as: 
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Where u is the nodal displacements tensor, and matrix B represents a strain-

displacement transformation of the element. The strain vector can be expressed as a 
sum of linear and non-linear terms, depending upon displacements u. Therefore 
matrix B may be written as a sum: 

nll BBB   +=  
The small strain vector smallε isrelated to the nodal displacements by using lB matrix: 
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The Cartesian shape function derivatives are obtained from intrinsic shape function 

derivatives as follows: 
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The above relationship enables the arbitrary form of the discretized elements in 

Cartesian space to have generic shape function expressions in intrinsic space.  
The large strain vector largeε can be written as follows:  
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The Θ vector can be derived in terms of nodal displacement as: 
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(11) 

Therefore, equation (8) can now be written as: 

ΘAΨεεε  
2
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
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The variation in Green’s strain can now be written as: 
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ΘAΘAεε δδδδ  
2
1 

2
1

++= smallG
 (12) 

It can be easily prove that ΘAΘA δδ   = , therefore, equation (12) will now be 

rewritten as: 

( ) ( ) uΒΒuΒuΦAΨΘAεε δδδδδδ nllsmallG +==+=+=     (13) 

where   ΦAΒ =nl , equation (13) represents the Green’s strain tensor in terms of 

nodal displacements. 

 

ELEMENT EQUATION FORMULATION  

Starting from the strain energy: 

∫∫∫=
V

T
G dV SW  εδ  (14a) 

Using equation (13) into equation (14) and the principle of virtual work 

 ( )donework (δδ =W ), in terms of nodal displacements: 

FuFuBu T
ext

T

V

TT dV δδδ =−∫∫∫  S  

The above equation represents an imbalance between internal and external virtual 
energy. Since uδ represents a vector of arbitrary virtual infinitesimal nodal 
displacement: 

FFB =−∫∫∫ ext
V

T dV S 
 

(14b) 

Assumingexact equilibrium, equation (14b), after rearranging and 
simplification,can be written as: 

 

∫∫∫∫∫∫ +=
V

T

V

T dVdV   SS   BBF δδδ   (15)
 

To evaluate the terms of equation (15), an equivalent variational form of equation 
(14) may be written as: 
 

( )∫∫∫∫∫∫ +=
V

G
V

G dVdV   SSW : : εε δδδδδ  (16)
 

To evaluate the second term of equation (16), starting from Green strainwhich can be 
expressed as [25]: 
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( ) ( )[ ]ffff  
2
1 TT

G ++=ε   

where f is the displacement derivative tensor defined as: 
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The differentiation of the above leads to: 
 

( ) ( ) ( )[ ]

( ) ( )[ ]      
2
1

      
2
1

II

ε

+++=

+++=

ffff

ffffff

TT

TTT
G

δδ

δδδδδ
 (17) 

And, 

( ) ff   δδδδ T
G =ε  (18) 

 
To evaluate the first term of equation (16), the differential Sδ must be evaluated, 

this is may be achieved via the use of equation (5), 
 

( ) ( )
( ) ( )[ ]11

1
3

1
3221

   
    

−−

−−

+−

+−+−=

CC
CCCCI

JpJp δδ

δδδδδδ DDDDDS
 (19) 

 
Evaluating each term of equation (19) separately leads to: 
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 (20) 
The second term at the right of equation (16) can now be written as: 
 

( ) ( )∫∫∫∫∫∫ =
V

T

V
G dVdV   SS :  : ff δδδδ ε

 (21) 
The above expression may be written after some mathematical manipulation as: 
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Using equation (11), equation (22) can now be written as: 

( ) e
V

TT
e

V
G dVdV uΦΦuε δδδδ 








= ∫∫∫∫∫∫  SS ˆ:                   (23) 

Therefore, equation (15) can now be written as: 

pdVdVdV
V

e
V

T

V
e δδδ     ˆ  TT  








+








+= ∫∫∫∫∫∫∫∫∫ HSD BuΦΦBBF  

 (24a) 
or, 
 

peeee δδδ PK   += uF  (24b) 
 

where 







+= ∫∫∫∫∫∫

V

T

V
e dVdV ΦΦBB  SDK ˆ   T , 








= ∫∫∫

V
e dV  T HP B , 

T-1
3   pI NH C−=  , and pN   is the hydrostatic pressure shape function. 

Equation (24) represents the element equation of the current problem. The 
subsequent analysis includes standard finite element procedure, which consists 
of discretization, assembling all elements matrices, … etc.,tillgetting the 
global system of equations.  

The resulted global system of equations is highly nonlinear due to:the 
nonlinear behavior of the material, the presence of hydrostatic pressure related to 
the volumetric part of the strain, and geometrical nonlinearity results from large 
deformation. Consequently an iterative solution procedure based on nonlinear 
Newton-Raphson algorithm is required. 

 
SOLUTION ALGORITHM 

Equation (24) represents non-linear set of equations,the non-linearity source, as 
mentioned above consists of material and geometrical terms,which are functions of 
the displacement derivatives and hydrostatic pressure. Thus a solution to equation 
(24) must involve an iterative solution procedure.As with most iterative solution 
procedures the first step is to solve the equivalent linear problem to obtain an initial 
estimate of the solution. The solution vector to this equation can then be used to 
evaluate the displacement derivatives and hydrostatic pressures to use in the full non-
linear system of equations including the non-linear terms.Obviously this first solution 
vector, and subsequent solution vectors before convergence, will not fully satisfy the 
full non-linear set equations and a residual or error value will result if the solution 
vector is substituted back into equation (24). This residual can be reduced if a new set 
of hydrostatic pressures and stresses are calculated based on the previous iteration 
results. These values can then be used to compute new non-linear terms to augment 
the standard linear force vector. The solution to this set of equations will result in an 
improved vector of total nodal displacements. The difference between the new 
solution vector and the old one gives the iterative improvement in the solution vector. 
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This process is repeated until the ratio of the square of the solution vector increment 
over the square of the total solution vector results in a value less than a given 
permissible.  

The basic iterative solution procedure convergence is further improved via 
breaking the applied load down into load increments. Therefore it is essential to 
develop an incremental version of the basic iterative solution algorithm. This can be 
achieved with the following algorithm shown in Figure 1. The significant difference 
however with the incremental algorithm is that for each iteration the 'old' and 'new' 
values of the solution vector and the non-linear stresses are stored. Therefore the total 
solution vector is formed from the total cumulative sum of the change in 
displacements at each iteration of each increment. The change in non-linear stress, or 
the difference between the current and previous iteration values, is used in the non-
linear domain term. This means that for each increment the non-linear domain term 
reduces for each iteration until convergence occurs. Therefore, this algorithm is 
pseudo incremental because at each iteration of every increment the system of 
equations are still solved for the total displacements and hydrostatic pressure. 

The non-linearity of the element equations is noticeable for the reason that the 
matrices in equation (24) are functions of the displacements and hydrostatic 
pressures. The standard Newton-Raphson algorithm is used based on the Taylor’s 
series to linearize the element equations, higher order terms is omitted.The load is 
split up into incremental steps which are optimized by choosing steps according to the 
feeding back errors.  This basically means that a separate Newton-Raphson solution is 
run for each load step. 
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Figure (1): Incremental procedure withan iterative solution 

 
NUMERICAL EXAMPLES 

This section is concerned with the numerical evaluation of the constructed program 
which based on the nonlinear finite element methods derived in this paper.This was 
achieved via solving two numerical examples. The first one is hyperelastic circular 
plate subjected to water pressure, whereas, the second is concern with hyperelastic 
elastomeric cylinder.  
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Hyperelastic Circular Plate 
In this example a flat circular membrane made of a rubber material is subjected to 

uniform water pressure, as shown in Figure (2). The edges of the membrane are fixed. 
The response of the membrane will be studied as pressure is increased from zero to 
165kPa. 

 

 
 

Figure (2): Flat circular rubber membrane 
 
The dimensions and loading of the current problem is listed as: 

Radius (mm) Thickness (mm) Water Pressure (kPa) 
190 12.7 165 

 
The results of the current problem are drawn in Figure 3, which shows the vertical 

displacements along the radial distance under different pressure values. The results 
are drawn, for both, ANSYS 12.0 and the corresponding ones of the current analysis. 
In ANSYS the problem is considered as a thin plate and the element type used in this 
simulation is chosen to be SHELL181, a finite strain layered shell, the model used for 
the material modeling, for both ANSYS and the current analysis,is Mooney-Rivlin.  
 

 
 

Figure (3): Vertical displacement of flat circular rubber 
 Membrane under different pressure values. 

 

Water Pressure 
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While, for the current study, the problem is considered as three dimensional solid 
and the element type is taken to be eight nodes brick element. The plate is discretized 
using a mesh of 24 8-nodes brick elements for 3-D modeling of this problem.It is 
evident from these curves that there are relatively good agreements. And as the 
pressure values increase, which results larger deformation, the difference seems to be 
larger between the current results as compared with ANSYS. The maximum 
percentage error is 6% at the center of the plate for the highest pressure. This error is 
decreases as the pressure value decreases, also the error decreases as the deformation 
decreases, i.e. near the edges of the plate. 

 
Hyperelastic Elastomeric Cylinder 

In this example a hyperelastic elastomeric cylinder, Figure 4, subjected to internal 
pressure is considered, the geometric and loading properties of the current problem is 
chosen to coincide with Shi Shouxia and Yang Jialing [26], while the material 
properties is considered as Mooney-Rivlin and listed as: 

 
Mooney-Rivlin 
Coefficients 

Inner 
Diameter 
(mm) 

Outer 
Diameter 
(mm) 

Length 
(mm) 

Pressure 
(kPa) c10 c01 

1.37890 0.324855 140 372 400 4000 

 
 

Figure (4):Hyperelastic elastomeric cylinder 
 

The cylinder is discretized using a mesh of 96(8-nodes) brick elements for 3-D 
modeling of this problem. While in ANYSY, SOLID185 is used for 3-D modeling of 
hyperelastic solid structures. It also has mixed formulation capability for simulating 
deformations of fully incompressible hyperelastic materials. The number of elements 
is kept 96 to make a comparative study.  

Similar to the first example, the problem is solved by using ANSYS 12.0 and 
compared with the current analysis. The material model used in ANSYS is Mooney-
Rivlin.Table 1shows the results of the radial displacement at the inner surface under 
different internal pressure values. The results showed a good agreement between the 

L 

P 
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current work and ANSYS 12.0 especially when the pressure value is low, and as the 
value of the pressure increases the difference between the results is slightly increases. 

 
Table (1): Radial Displacement At The Inner Surface For Hyperelastic 

Elastomeric Cylinder under Different Internal Pressure Values. 
 

 Radiad Displacements (mm) 
Internal Pressure 
(kPa) Current FEM ANSYS 12.0 % Discrepancy 

1000 14.9 15.2 2.01 
2000 39.6 42.3 6.81 
2500 68.1 72.7 6.75 
3000 114.3 126.5 10.67 

 
The results of hoop stresses at the inner surface for different internal pressure 

values are shown in Table 2, which shows a very good agreement between the current 
work with that of ANSYS. 

  
Table (2): Hoop stresses at the inner surface for hyperelastic 

 elastomeric cylinder under different internal pressure values. 
 
 Hoop Stresses (MPa) 

Internal Pressure (kPa) Current FEM ANSYS 12.0 % 
Discrepancy 

1000 1.70 1.71 0.58 

2000 3.02 3.09 2.31 
3000 5.10 5.32 4.31 
3500 9.62 10.5 9.14 
4000 20.8 22.5 8.17 

 
CONCLUSIONS  

Proper use of nonlinear finite element analysis can make good predictions for the 
behavior of elastomeric materials components for the design purposes. Recently, this 
subject received excessive attention by many researchers to model such kinds of 
problems, but to the author knowledge, there is no full analysis available in the 
literature, all authors concentrated on specific part of the problem but not as a whole. 
Therefore, the main contribution of the present work is to give a detailed 
mathematical procedure for obtaining the element equation of this kind of the 
analysis. Afterwards, the numerical results if further improved via the use 
ofoptimized incremental stepsfor solving the nonlinear Newton-Raphson. This study 
assumes that the material obeysthe Mooney-Rivlin constitutive model with 
moderately large deformation up to approximately 100% extra streches.  
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Comparing the obtained results with that of ANSYS 12.0verified that the current 
formulation and the resulted computer program are valid and correct.There after,the 
obtained results are satisfactory enough for designing these kinds of problems. 
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APPENDIX A 
DIFFERENTIATION OF STRAIN INVARIANTS 
A.1 Differentiation of I1 
The first modified strain invariants is defined as [22]: 
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A.2 Differentiation of I2 
The second modified strain invariants is defined as [22]: 
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A.3 Differentiation of I3 
The third strain invariants is defined as [22]: 
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