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Abstract:

Newton's method is used to calculate approximately the roots of any
complex or real valued function consists iteration. For each complex
polynomial P(z), Newton's method defines a dynamical system on the
complex Riemann sphere.

The our goal is to prove that any quartic polynomial with at least two
distant roots topologically conjugate to N, and any two polynomials with

roots has a similar quartic shape then the Newton function for each
polynomial are conjugate.

Finally ,we study the symmetry of Newton's function with real and
complex axis. The software MatLab will use to view the dynamics of
quartic polynomial after the iterations of Newton's method. The graphical
nature of the iterations gave us very nice properties that allow us to
describe the behavior of the points in the plane.
1-Introduction

Newton's method is one of the preferred methods to find roots of
differentiable function, Newton's method defines a dynamical system. |If
consists of iterating the function f(z) then N(z) = z—:%

By starting with an initial approximation, z,, sufficiently close to the
root of f(z) ,the sequence of iterates, z,=N(z,), will converge to the

root[1]. The study of iterated maps is the study of the dynamics of orbits
of points under repeated composition of a function with itself[2].If the
function f(z) is polynomial ,then the iteration function N(z) will be a

rational function of the form,
R(2)
N(z) = =2
=)
Where R(z) and Q(z) are polynomials with real of complex coefficients
[1]. The global study of Newton's method can now be analyzed using the
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theory of the complex dynamics of rational functions on the Riemann
sphere (C =c u{e}). Any complex analytical function will decompose the
plane into two complementing sets, the stable set , where the dynamics are
mostly tame, and the unstable set ,where the dynamics become chaotic
and unpredictable [3]. The study of this idea was started by G. Julia and P.
Fatou in the 1920[3],[4].

The orbit of a pointz, IS the set of
iterates{z,,z,,z,,..}={z,,N(z,),N(N(z,))...}. The point z is a fixed point of
N(z)if N(z) =z, for Newton's method applied to a polynomial P(z), each
root of P(z) will be a fixed point of N(z),and these will be the only finite
fixed points. If P(z) is not degree one, then « will also be a fixed point of
N(z)[1]. The pointz is periodic point ifN'(z)=z, for some positive
integert. The least such integer t is called the period and the orbit of zis a
t-cycle [1].

In the Newton's method ,we would like our initial point z, to
converge to the fixed point that root. The certainly happens most of the
time ,but other things can happen. The orbit of z, could converge to a t-
cycle, or it could wander chaotically about the Riemann sphere [3]. If
z 1S periodic point of period t, then the derivative 1 =(N"')'(z)is called the
eigenvalue of the periodic point z. It follows from the chain rule that A is
the product of the derivatives of N(z) at each point on the orbit ofz. A
periodic point z classified as : superattracting if A=0 ; attracting if
14| <1; repelling if |2 >1; and neutral if |1 =1[2].

The Julia set is the set of points whose orbits have unpredictable or
chaotic behavior. We define the family of functions {f"}to be normal on
U if every sequence of f" has a subsequence that either converges
uniformly on compact subsets of u or converges uniformly to « on
compact subsets of U . The Julia set, J, of f is defined to be the set of all
points for which the family of iterates {f"} is not normal at
z [5].equivalently, the Julia st of a rational map is equal to the closure of
the set of repelling periodic points.. the Fatou set or stable set is the
complement of the Julia set [4].

If we are interested in dynamics of N(z) on the Riemann sphere, we
can always conjugate N(z) by invertible linear fractional (Mobius)
transformationT, and the dynamics of the iterates of N(z) ill be same as
the iterates of ToNoT*[1]. A Mobius transformation is a rational map of
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az+b
cz+d

T () =%, T(—%) = o0 ,for more details see [4],[6].

the form T(z) = , ad —bc =0, where we have the usual convention that

From the properties of the Fatou and Julia sets we saw that they were
compliments of one another of one another ,and the Julia set was the
boundary for the points that converge that those that do not [3],[7] . Since
the dynamics of quartic polynomials are more complicated than that
quadratics and cubic polynomials which study in [1],[3] .we shall be
relying more on computer graphics to illustrate their behavior and help
give us a better understanding of what is actually happening. The
conclusions for quadratics were somewhat easily obtained, and would be
ideal if the same approach could be taken for quartic, along with getting
the same sort of results. However ,the global conditions of the dynamics
of N, seem to be much more complex .we will assign a coloring scheme
to the points on the dynamical plane and use it for part of our
investigation. we do not want to get ahead of ourselves thus we are going
to develop idea like those in [3] for quartic polynomial.

The main results of this paper are prove the following propositions.
Proposition(1-1) :

For any complex quartic polynomial p with at least two distinct
roots, N, is to topologically conjugate to N, for some pecC.
Proposition (1-2):

If p(z)and qg(z)are quartic polynomials whose roots similar quadrate
shape s, and s, respectively then N is conjugate to N, via some affine
map.

Proposition (1-3):

If zeR,then N, is symmetric with respect to the real axis.

We also will be studying the types of graphs one would get if they looked
at these same Newton's function in the complex plan.
2-Newton's Method on Complex Quartic Polynomial

Let P(z) be a fourth degree complex polynomial (Quartic Polynomial)
P(z)=a,z* +a,2° +a,z% +a,z +a, With four roots .it is also known that we can
view this same polynomial in terms of its roots ,if we first factor out a,
,we now have P(z)=a,(z-a)(z-b)(z—c)(z—d) where a,b,c,d are roots of
P(z) [3].Newton's method on any general quartic polynomial P:C —C that

has at least two distinct root is N (z)=z- FF:((ZZ))
i T {532 1< 4 e
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To simplify the understanding of the dynamical properties of
Newton's Method on quartic polynomials, we will utilize the one-
parameter family p,(z) = (z— w)(z+ p)(z-1)(z+1) rather thanP(z) itself. This
still contains quartic with at least two distinct roots, and we will refer to
the function created after applying Newton's method as N,. This is
74 _zluzzz —,UZ
47° —4p%7
We must introduce the notion of a cross ratio to find a conjugacy
between N, and N, . We are allowed to use this category of maps, since

they are the class that is analytical and differentiable on the Riemann
sphere .
We us the cross-ratio of five distinct point z,,z,z,,z,,z, as the Mobius

transformation [6];[8] .

defined by N, (z)=">

— (Zo B 22)(21 B Zz)(zs B 24)
4) - (Zo - 23)(21 - Z3)(22 - 24)
which brings us to the following proposition
Proof of Proposition (1-1):
Let us assume, we have a polynomial P(z) with at least two distinct
roots ,so we will have to consider two cases for this.
First case:
when a,b,c,d are all distinct, let's choose a complex quartic polynomial
P(z)=a,(z—-a)(z—b)(z—-c)(z—-d).
Considering the cross ratio of the roots of P(z) and the roots of
P, (2)=(Z—pm)(z+m)(z-1)(z+1),
we can derive a Mobius transformation ,call it T ,which conjugates N,
and N,. We find T by setting
(z,a,b,c,d) = (W, z£,—1,1,-1)
(z-b)@a-b)(c—d)  (W+p)(u+p)A+D)
(z—c)a-c)(b—-d) (W-D)(u-D(-x+1)

(20’217227237Z

z(ac—bc—ad +bd) —b(ac—-bc—ad +bd) A1+ 41
z(ab-cb—-ad +cd)—c(ab—cb—ad +cd) (—ux®+2u—1)(w-1)
and solving for w yields:

Cross multiplying

a,z+b

w=T(z)=
c,z+4d,;

Where
a, =(ac—bc—ad +bd)(—z* +2u—1) +4u*(@b—cd —ad +cd)
L 4 sl iS 1< 4 laa
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b, =b(ac—bc—ad +bd)(—z* +2u—1) —4u*c(ab—cd —ad +cd)
¢, =(ac—bc—ad +bd)(—x* +2u—1)—4u(ab—cd —ad +cd)

d, =b(ac—bc—ad +bd)(-z* +21—1)—4uc(ab—cd —ad +cd)

This is somewhat tedious to work with, so let's simplify by find a value of
u for which the map T is affine map. That is, make the function a linear
mapping, we set ¢, =0 we get the following transformation

T(z):ﬁz+&
1 1

And solve for 4 to give us

_ —(2ac+2bc +2ad + 2bd —4ab—4cd)iJ(2ac+2bc+2ad +2bd —4ab—4cd)? —4(ac —bc —ad +bd)?
"= 2(ac—bc —ad +bd)

So ,we have two :

—(2ac+2bc +2ad + 2bd —4ab—4cd)+\/(2ac+2bc+2ad +2bd — 4ab—4cd)? —4(ac —bc—ad +bd)?
M=
2(ac—bc—ad +bd)

and
—(2ac+2bc+2ad+2bd—4ab—4cd)—\/(Zac+2bc+2<31d+2bd—4ab—4cd)2—4(ac—bc—ad+bd)2

e = 2(ac —bc—ad +bd)
It immediately follows that N, ~N, and N, ~N_, .
Second case :
let P(z) have only two distinct roots ,bandc. By letting c=a in our
original equation for ¢, ,then we have x=1 , N,~N, where
P(z) =a,(z—c)*(z-b)(z—d) 0

Let us define a quadrate shape created by the roots of N, when
ueC—-R. We will denote this quadrate s, where each side of s, is

determined by any pair of distinct root. Note that if x<R, then all the
roots will lie on the real axis and thus will be collinear[3].we will be able
to infer some things about N, just by looking at this quadrate shape. we
can even generalize the following property to generic quartic polynomial
Remark][1],[4]:

Any Mobius transformation can be represented as the composition
of a finite number of inversions , created by the function v(z)=%,
magnifications, created by the function m(z) = Az where AeR*,rotations ,
created by the function r(z) =e'?z ,whereo <R , and translations, created by
the function t(z)=z+B where BecC.

Now, we prove the proposition (1-2).
A R {am > 1< la g
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Proof of Proposition (1-2) :

Consider the geometric representation of the two quadrate shape
s,and s,. We only need to make . we only need to make three
manipulations to achieve our goal. Recall a linear transformation is the
form g(z) =az+b,where a,beC and a=0.

Now ,let us consider
9(z) =(meret)(z)
=m(r(z+c))
=m(e' (z +c))
= A(e'/(z+¢))
= Ae'’z + Ae'’c))
=Az+B,

Where A =Ae“ andB, = Aec. Each of these mappings are non-
fractional, linear mappings, thus g(z) is conformal for all points in
complex plane. With a few calculations, one can see that the angles of s,
are preserved under each mapping. This is independent from our choice of
c,0 and A. Therefore, we can choose these such thatg(z) will conjugate
s,ands,. Thus implying that p(z)conjugates to q(z),and from our

previous knowledge, making N_conjugate to N, through this affine map.

The following pictures illustrates the rate of convergence for each
point in the plane with a different color .we can see that the points form a
right quadrate shape in the plane. Thus, any roots from another
polynomial that a right quadrate shape will be conjugate to this
polynomial.

2.5
2
1.5
1

0.5 |

D S : s

2.5 -2 -1.5 -1 -0.5 ] 0.5 1 1.5 2 2.5

Figure(1):Newton's method on quartic polynomial p(z)=z*+2z®+2z*+z+1

-
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Not only can the function created with the Newton's method of our
particular family of quartic polynomial be examined by quadrate shape
created with the roots, even when we do not see a quadrate shape, N,
exhibits some very nice properties. In fact, what we realize is that the
roots of the quadrate shape have become collinear and form a line the
plane.

This exemplifies the following proposition .
Proof of Proposition (1-3):
we need to show is that for the two complex roots of the function
Re(N,(2)) =Re(N, (2))and Im(N ,(2)) =—Im(N ,(2))
Re(N , (x+1iy)) = Re(N , (x —iy)) and IM(N , (x+1y)) = —Im(N , (x —iy))
We call our function N, since we are assuming that we have neR. Refer
back to our original Newton's function
4 2,2 2
N, @)=
Now ,if we substitute z = x+iy and simplify we get
3(x+iy)* —2p* (x +iy)* - u*
A(x +iy)® —4p® (x +iy)
3(x* —y*)* —12x%y’ —2pu(x* —y*) — p® +1A20xy (x* — y*)) +44°xy)
N#(Z)Z 4(X3—3 2\ _4,,2 ; 2y, 3y _4,,2
Xy“) —Ap X +i(4GBx7y —y*) —4uy)
With the same approach, let us examine z =x—iy
Ly 3(x—ly)t —2pf (x—iy)? -
) =y 4w x—)
N (z)= 30T Y)T 12K - 2p(x ) - —I2AXY(K ~y)) + 4u')
’ 4067 ~3xy”) - 4u’x ~i(403x"y ~ y°) ~ 4u’y)
Consider the following substitutions,
r=3(x* —y®)? —12x"y* = 2u(x* —y*) - u*
s, =120y (x* —y*)) +4u’xy
r, = 4(x* —3xy?) — 4u’x
s, =4(3x°y —y°) —4u’y

N#(x+iy):

So ,we have that

r, +1S

N,LI(Z) =l—-1
r, +1s,
r,—is

N, (2)= 2=
r, —is,

2 [} xum; 2 ( (K} 23 \‘( 2 ‘\A
- ) <50 4, x
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Multiplying the top and the bottom by complex conjugate of each

. nr,+ss, .(-s,+sr
denominator, we have N, (2) = a2 ¥ 5% | (08, +5i%)
r; +s’ r; +s’
nr, +§,;S . (S, — ST
N, (2) =+5—7 |(1§ 122)
r, +S, r, +5s,

With this representation it is clearly that the real parts of N, (z)and N ,(z)

are in fact equal, and the corresponding imaginary parts are complex
conjugates.
3-Graphical analysis
In proposition (1-1),we prove that any complex quartic polynomial
with at least two distinct root is topologically conjugate to
374 —2/1222 _qu
N,.(2)= 47° — 4%z

where
—(2ac + 2bc + 2ad +2bd—4ab—4cd)i\/(2ac+2bc+2ad +2bd —4ab —4cd)? - 4(ac —bc —ad +bd)?
/L[:
2(ac —bc—ad +bd)
iIs only parameter with a,b,c,das the coefficients of our quartic
polynomial. This Newton's function, N, (z)is that in which we will be

referring to for the remainder of the discussion. we want to utilize the
ability of computer graphics created with the program MatLab which will
enable us to describe and visualize the dynamics of quartic polynomials.
Let us focus on the behavior of a particular point in the plane. The Julia
set of a complex function is the set of all points on the boundary between
the set of points that escape to infinity and the set of points that do not
escape to infinity. We see this with the following example.

Consider p(z)=z*+z*+z*+z+1 , we calculate the values of x from

proposition(1-1) z, =-37.9526+20.4559i ,which ., =18.6806-16.2022i. Let's
look at the convergence of the points under Newton's method ,for deferent
value of x .we see this in Figure (2) and Figure(3).
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Figure(2):N, for , =-37.9526+20.4559i from -1.5t0 1.5

045

0.5

qE
-1.5 -1 0.4 1] 0.5 1 1.5

Figure(3): N, for ., =18.6806-16.2022i from -1.5t0 1.5
Now, we zoom in on the portion in the center that looks like it is
glowing. As we zoom in, we see this part taking shape. This is our Julia
set for the particular polynomial created with , =-37.9526 + 20.4559i
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Figure(4):N, for ., =-37.9526 +20.4559i from -0.5t0 0.5

The is not only figure that we can see with a particular value of
u .wWe also gets pictures that illustrate parts of nature .

0.1

0.08
0.08
0.04
0.0z
1]
-0.02
-0.04

-0.06

.0.08 T

_D'-1D.1 -003 -00s -004 -002 ] o0z 004 005 003 01
Figure(5):N, for ., =-37.9526+20.4559i from —0.1t0 0.1
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Appendix
A: Newton's Method on Complex Quartic Polynomial
%$This program will plot convergence of the values for the
Newton function
$0f quartic polynomial for any choice of coefficients.
function NMQ(a b ¢ d e)
% default settings
min re=-1.5;
max re=1.5;
min im=-1.5;
max im=1.5;
n re=400;
n 1im=400;
tol=0.01;
coeff=[a b ¢ d e];polyRoots=roots (coeff)
format compact;
max steps=20;
$step size
delta re=(max re-min re)/n re;delta im=(max im-
min im)/n im;
x=min re:delta re:max re;y=min im:delta im:max im;
[X,Y]=meshgrid(x,vy);Z=X+i*Y;
for j=1:n im+l

for k=1:n re+l

z=%2(3,k);
if z==
z=tol;
end
m=0;
flag=0;
i R <Gl A2 R¥ laa
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while (flag==0)
%$iteration
z=z-
(a*z. +b*z . "3+c*z."2+d"z+e) ./ (4d*a*z . "3+3*b*z . "24+2*c*z+d)
if norm(a*z. 4+b*z . "3+c*z."2+d"z+e)<=tol
flag=1;
end
if m>max steps
flag=1;
end
m=m+1;
end
$assign color according to number of steps
Z(3,k)=m;
end
end
splot the result
colormap (hot) ;colormap (jet (20)) ;
brighten (0.5);
image (Z)
pcolor (X,Y,7)
axis off;
shading flat;

B: Newton's Method on » Quartic

$This program will plot the rate of convergence for value
of the Newton

% function of quartic polynomial simply change the wvalues
for the mim and

% max of the x axis and y axis to zoom in or out .Figures
(2), (4)and (5)

% with 4 =-37.9526+204559iand Figures (3) with g, =18.6806-16.2022i .
function NMmu (mu)

min re=-1.5;

max re=1.5;

min im=-1.5;

max im=1.5;

n re=400;

n im=400;

tol=0.01;

mu = -37.9526 + 20.4559i ;

$forms x and y vectors of n points between min and max
default values
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x=linspace (min_re,max re,n _re);y=linspace (min_im,max im,n
_im);
max steps=50;
$step size
[X,Y]=meshgrid(x,y) ;Z2=X+1*Y;
for j=1:n im
for k=1:n re
z=72(3,k);
if z==
z=tol;
end
m=0;
flag=0;
while (flag==0)
%iteration
z=z-(z."-((mu) . "2+1) *z."2+ (mu) ."2) ./ (4*z."3-
4* ((mu) ."2*z)) ;
if norm(z.”4-((mu)."2+1)*z."24+ (mu) ."2)<=tol
flag=1;
end
if m>max steps
flag=1;
end
m=m+1;
end
%assign color according to number of steps
Z(j,k)=m;
end
end
$plot the result
colormap (hot) ;
colormap (jet (50));
brighten (0.5) ; image (2)
pcolor (X,Y, Z)
shading flat;
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