Eng. & Tech. Journal, Vol.30, No.16, 2012

Control on 3-D Fixable Wing Flutter Using
an Adaptive Neural Controller

Dr. Mauwafak Ali Tawfik

Machines & Equipments Engineering Department, University of Technology / Baghdad
Dr.Mohammed |dris Abu-Tabikh

Machines & Equipments Engineering Department, University of Technology / Baghdad
Hayder Sabah Abd Al-Amir

Mechanica Engineering Department, Institute of Technology / Baghdad

Email: has 04@yahoo.com

Received on: 16/1/2012 & Accepted on: 3/5/2012

ABSTRACT

An adaptive neural controller to control on flutter in 3-D flexible wing is
proposed. The aeroelastic model was based on the coupling between structure-of the
equivaent plate (wing) and the aerodynamic model that is based on a hybrid unsteady
pand methodTime domain simulations were used to examine the dynamic aerod astic
instabilities of the system (e.g. the onset of flutter and limit cycle oscillation). The
gtructure of the controller consists of two modds namdy modified Elman neura
network (MENN) and feedforward multi-layer Perceptron (MLP). The MENN model
is trained with off-line and on-line stages to guarantee that the outputs of the mode
accurately represent the plunge motion of the wing and this neural modd acts as the
identifier. The feedforward neural controller is trained off-line and adaptive weights
are implemented on-line to find the generalized control action (function of addition
lift force), which controls the plunge motion of the wing. The general back
propagation algorithm is used to learn the feedforward neural controller and the
neural identifier. The simulation results show the effectiveness of the proposed
control agorithm; this is demonstrated by the minimized tracking error to zero
gpproximation with very acceptabl e settling time.

Keywords: Aerodasticity, Flutter, Adaptive Control, Neural Networks.
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INTRODUCTION
he performance of aircraft is often limited by adverse aerodastic interactions
such as flutter. Flutter is defined as: a dynamic instability of a flight vehicle
associated with the interaction of aerodynamic, dastic, and inertial forces. If
flutter can be controlled at cruise speeds, lighter wings can be designed and
consequently more efficient airplanes. It is therefore, in the aircraft designer’s
best interest to design innovative ways in which flutter can be controlled without
making the resulting structure too heavy.

Nowadays the researchers pay pronounced attention to the control of flutter in 3-D
wing modd, while earlier published works were often catered for the control of
flutter using rigid wing modd.

Many researches in this field proposed different flutter controllers, Palaniappan, et
a. [1] developed a feedback dgorithm for the control of flutter. The actuators are jets
in the walls through which there is a small mass flow, either by way of blowing or
suction. Afkhami and Alighanbair [2] presented nonlinear controller to contral flutter.
Integral-i nput-to-state stability concept is utilized for the construction of a feedback
controller. Haiwel and Jinglong [3] proposed the robust flutter analysis of a nonlinear
2-D wing section with structura and aerodynamic uncertain using p-method. The
parametric uncertainty was adopted to describe the uncertainties in structure and
aerodynamics.

Recently, the intelligent algorithm like neurd networks and fuzzy were introduced
in aerodastic filed as controller or flutter prediction device Mdin and Castillo[4]
combined adaptive model-based control using neural networks with the method for
modeling using fuzzy logic, and fractal theory to obtain a new hybrid neuro-fuzzy-
fractd method for control of nonlinear dynamic aircraft. The adaptive controller can
be used to control chaotic and unstable behavior in aircraft systems. Chen, et d. [5]
presented an approach using artificial neural networks (ANN) agorithm for
predicting the flutter derivatives of rectangular section models without wind tunne
tests. Marques et a. [6] presented an active aerodlastic control strategy for vibration
suppression of a flexible smart non-linear wing based on fuzzy logic. The finite
dement method has been used to mode the wing structural-dynamics. The vortex-
lattice method has been used for the unsteady aerodynamic modd. The fully coupled
fluid-structural interaction mode [7] isused in the present work.

In this work the designated modd is adopted to predict the flutter condition in the
wing. A hybrid pand-discrete vortex unsteady method combined with the numerical
lifting line method is used to describe the aerodynamic model. While the equivalent
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plate technique [8] which relays on a solved plate equation by an assumed mode
method is used to represent the structure wing model.

The contribution of the present work is the utilization of a rdativdy simple
goproximation neural network to identify the posture of the fully coupled fluid-
structural interaction wing system and to design an adaptive neura controller.

FLUTTER ANALYSIS

Flutter is a sdf-feeding and potentially destructive vibration where aerodynamic
forces on an object couple with a structure's natural mode of vibration to produce
rapid periodic maotion. In flutter condition the wing undergoes plunge or pitch or both
motions during the flight [9].

Time domain simulation are used to examine the dynamic aerodastic instabilities
of the system (e.g. the onset of flutter and limit cycle oscillation (LCO)) as done in
Ref [10]. The simulation is performed by solving fluid-structural interactions problem
for different veocities and initia conditions. It is well known that the initia
conditions may affect the stability of a system; however this effect is not found in
present case study. It was found that LCO appear at U=153nVsec and never appears at
speed less than it what ever the initid conditions. Therefore the flutter speed is
153m/sec and the proposed controller must give a good performance at speed higher
than that value (unstable region).

Figures (1, 2, 3 and 4) show the generalized displacement responses at speed
120,135, 153 and 160 m/sec respectively. It is clear a velocity 120 nv/sec and below
the system is stable and does not need controller a this range of velocity. But at
velocity of 135 mi/sec the stability becomes less and decay time becomes more
Unstable responses appear at ve ocities above 153 m/sec. This behaviour is clear a
velocity 160 nvsec, as shown in figure (4).

Generlized displacement
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Figure (1): Timehistory of generalized displacement
of thewing at 120 m/s speed .
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Figure (2): Timehistory of generalized
of thewing at 135 m/s speed .
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Figure (3): Timehistory of generalized displacement
of thewing at 153 m/s speed ,flutter condition .
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Figure (4): Timehistory of generalized displacement
of thewing at 160m/s speed.

ADAPTIVE NEURAL CONTROL METHODOL OGY

The approach to control wing maotion depends on the available information about
the system and the control objectives. The wing system is considered as modified
Elman recurrent neural networks model. The first step in the procedure of the control
gructure is the identification of dynamics of wing system from the input-output data
Then a feedforward neural controller is designed using feedforward multi-layer
Perceptron neural network to find controller action that control on the plunge wing
motion.

The proposed structure of the adaptive nonlinear neural controller can be given in
the form of block diagram as shown in figure (5). It consists of:
1- Neural Network Identifier of Wing.
2- Feedforward Neura Controller.
In the following sections, each part of the proposed controller will be explained in
details.

WING SYSTEM NEURAL NETWORK IDENTIFIER

The modified Elman recurrent neural network modd is applied to construct the
wing system neura network identifier as shown in figure (6) [11]. The nodes of input,
context, hidden and output layers are highlighted. The network uses two
configuration models, series-paralld and paralle identification structures, which are
trained using dynamic back-propagation algorithm. The structure shown in figure (6)
is based on the following equations [11]:

g(k) = F{VH G(k),VCg° (k), biasVb} .. (D
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O(k +1) = L{Wg(k), biasb} .. (2

Where VH,VC and W are weight matrices, Vb and Wh are weight vectors and F is a
non-linear vector function. The multi-layered modified Elman neural network, shown

in figure (6), is composed of many interconnected processing units called neurons or
nodes.

The network weights are denoted as follows:

: Weight matrix of the hidden layers.

: Weight matrix of the context layers.

: Weight vector of the hidden layers.

: Weight matrix of the output layer.

Wb : Weight vector of the output layer.

L : Denotes linear node.

H : Denotes nonlinear node with sigmoidal function

BEEE:
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Figure (5): The proposed structure of the adaptive nonlinear
Neural Controller for the wing.
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In order to improve the ability of network memory, sef-connections, with fixed

value | , are introduced into the context units of the network to give these units a
certain amount of inertia [10]. The introduction of sef-connections in the context
units increases the possibility of modeling high-order systems by Elman network.

Output Layer
iie+2)
e

hias

input layer

Figure (6): The Modified EIman Recurrent Neural Networks
Actsasthe plunging motion of the wing.
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The output of the context unit in the modified Elman network is given by [11]:
g2(k)=1g2(k-1)+rg.(k-1) ... (3)

where g°(k) and g_ (k) are the outputs of the context and hidden units respectively.

| is the feedback gain of the self-connections and  is the connection weight from
the hidden units (j'") to the context units (c™) at the context layer. Thevalueof | and
r aresdected randomly between (0 and 1).

To explain these calculations, consider the general j™ neuron in the hidden layer.
The inputs to this neuron consist of an i— dimensional vector, wherei is the number of
the input nodes. Each of the inputs has VH and VC weights associated withiit.

Vb isthe weight vector for the bias input that is set equal to -1 to prevent the neurons
quiescent. The first calculation within the neuron consists of calculating the weighted
sum "et; of the inputs as [11 and 12]:

& s

net, =3 VH, G+ VC, g2 +bias’ Vb, - (4)
i=1 c=1

Where j.is the number of the hidden nodes, ¢ is the number of the context nodes

and G is the input vector. The output of the identifier is the modedling plunge motion

in generalized form and is defined as: Clm

The learning agorithm will be used to adjust the weights of dynamica recurrent
neural network. Dynamic back propagation algorithm is used to train the Elman
network. The sum of the square of the differences between the desired output ( and

neural network identifier output q,,is given by equation (5).
1
E=2a(-a) - (9
i=1

where np is the number of patterns.
The connection matrix between hidden layer and output layer is W, .

DW, (k+1) =-h = = ph_TE__Tn(k+1) flo_finet, - (6)

W fo.(k+1) o,  Tnet, TW,
where h islearning rate.

DW, (k+1)=h"g,” & - (7)

W (K +1) =W, (k) + DW,; (k +1) ... (8
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The connection matrix between input layer and hidden layer is VH

DVH, (k+1) =-h € _ _TE Ta,(k+D fo finet, Tlg, finet, .. (9
TVH;; To.(k+2) Yo,  Tnet, T9; finet; TVH;
DVH, (k+1) =h " f(net)¢ G & W, -+ (10)
k=1
VH  (k+1) =VH () + DVH  (k +1) - (1)

The connection matrix between context layer and hidden layer is VC; .

Ve, (k+)=-h 1o = TE Tau(k+D To. et 19, fnet .. (12)
NC,  To.(k+) fo, Tnet, fg, Tnet, VC,
K
DVC, (k+1)=h" f(net,)¢ g2Q eW, .. (13)
k=1
VC,.(k+1) =VC, (k) +DVC, (k+1] .. (14

FEEDFORWARD NEURAL CONTROLLER

The Feedforward Neura Controller (FFNC) is essential to stabilize the tracking
eror of the wing system when the response of the wing is drifted from the desired
condition during transient state and kept the steady-state tracking error at zero. The
controller generates controller action that minimizes the cumulative error between the
desired condition and the output response of the wing. The FFNC is supposed to learn
the adaptive inverse modd of the wing with off-line and on-line stages to calculate
wing's reference input control action and will keep the wing stable without flutter
gtatein the presence of any disturbances or dynamics parameters changing.

To achieve FFNC, a multi-layer Perceptron modd is used as shown in figure (7)
[13]. The network notations are as follows:
vife : Weight matrix of the hidden layers.

Vbffc : Weight vector of the hidden layers.
Wrfc : Weight matrix of the output layer.

Wb ffc : Weight vector of the output layer.
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Hidden Layer o Output Layer
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Figure (7): The Multi-Layer Perceptron Neural Networks
of the Feedforward Neural Controller[13].

To explain these calculations, consider the general a™ neuron in the hidden
layer shown in figure (7). The inputs to this neuron consist of an n-dimensiona
vector, where n is the number of the input nodes. Each input has an associated weight
of vifc. The first calculation within the neuron is to calculate the weighted sum of the

inputs, netc, as[13, 14 and 15]:

nhc
netc, = g Vffc,,~ Z, +hias” Vbffc, ... (15)

a=1

Where nhc is the number of the hidden nodes and
Z, =[e(m);&(m- 1);q,,(M); g, (M- D; Q. (M- 1);Q.(m- 2)].

Next, the output of the neuron 1, is caculated as the continuous sigmoid function of
the netc, as:
o, = H(netc,) ... (16)

H (netc ,) = 2 __ .. (17)

l+e-naca
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Once the outputs of the hidden layer have been calculated, they are passed to the
output layer.

In the output layer, the linear neuron is used to caculate the weighted sum netco
of itsinputs, which are the output of the hidden layer as:

nhc
netco, = g Wifc,,~ oc, +bias” Whffc, ... (18)

a=1
where wc,, are the weights between the hidden neuron gc, and the output neurons.

Then the sum (netco,) will be passed through a linear activation function of sope 1;
another slope can be used to sca e the outpuit, as:

Oc, = L(netcg,) ... (19

The outputs of the feedforward neural network controller represent control action.

The training of the feedforward neural controller is performed off-line as shown in
figure (8). And adaptive weights are adapted on-line. It depends on the posture neura
network identifier to find the wing Jacobian through the neurd identifier modd. This
gpproach is currently considered as one of the better approaches that can be followed
to overcome the lack of initia knowledge.

2

0 L-IF
Eack Fropaganon oo
Alsorithin 4 { |
(41 ik
_a_‘,:a'l_ ll_

[
0 Pasture O

Newal Networks -
Tdeutiion

Figure (8): Thefeedforward neural controller structure
for wing model.
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The dynamic back propagation algorithm is employed to redlize the training the
weights of the feedforward neural controller. The sum of the square of the differences

between the desired posture g and neural network posture g, is:

1%
Ec:Ea (@, - 9,)’ ... (20)
i=1

Where: npc is number of patterns.

To achieve equation (20) a modified Elman neura network will be used as posture
identifier. This task is carried out using an identification technique based on series-
paralle and paralld configuration with two stages to learn the posture identifier. The
first stage is an off-line identification, while the second stage is an on-line
modification of the weights of the obtained wing neura identifier. The on-line
modifications are necessary to keep tracking any possible variation in the dynamic
parameters of the wing system. Back Propagation Algorithm (BPA) is used to adjust
the weights of the posture neural identifier to learn dynamic of the flexible wing
system by applying asimple gradient decent rule.

The connection matrix between hidden layer and output layer is weont,, -

o, (c+2) = -n TS = p_ TES T, (+D 10K To5, Tnetg .. (21)

Mg,  Ta,k+D) TQ(K) Tog fnetg Wi,

1o 0 g2
_ﬂza(qo Om)

TEe (22
flgn (k +1) flgn(k +1)
Sacobian = Yan(k +1) _ g, (k +1) To, (k) fnet, Tg; finet, .. (23)

Q. (k) flo (k) fnet, Yg; finet; Q. (k)

For linear activation function in the outputs layer and nonlinear activation
functions in the hidden layer for neural network identifier the equation (23) becomes

as follows:
% = ?hl f (net,)O/H ;;K}lWM - (24)
Substituting equations (22 and 24) into equation (21), Dwfc,,(k+1) becomes:
DWifG,,(k+3) =he, a_.l f (et WH  (ecl, (K + W) - (29)
Wfc,, (k +1) =Wfc,, (k) + DWFfc,, (k +1) ... (26)

2869

PDF created with pdfFactory Pro trial version www.pdffactory.com



http://www.pdffactory.com
http://www.pdffactory.com

Eng. & Tech. Journal, Vol.30, N0.16, 2012 Control on 3-D Fixable Wing Flutter Using an
Adaptive Neural Controller

The connection matrix between input layer and hidden layer is vffc, -

TEc —h TEc  Tq.,(k+1) 1Q.(k) Toc, Tnetc, Toc, Tnetc, .. (27)

Dvfic, (k+1) =-h =
fIvitc,, Mo, (k+1) Q,(k) fYog, Tnet, Toc, Tnetc, Tvffc,,

.. (29)

TEc =-h fEc  To.(k+D). éB.\thcba' f(netg)¢ Z,

-h =
Mic,  fak+) QK =

Substituting equations (22 and 24) into equation (28), Dvffc, (k +1) becomes:

DVfe, (k+1) =hZ, f (netc, )& WG, 3 Fnet )@ VH, (e (k+DW, )~ (29)

The B and | are equa to one because there is one output in the feedforward neural
controller.

Vfet,, (k +1) =Viffc,, (k) + DVffc,, (k +1) ... (30)

Once the feedforward neura controller has learned, it generates the control action
to keep the output of the wing at reference value and to overcome any externd
disturbances during motion.

RESLUTS AND DISCUSSION

The proposed controller is verified with computer simulation using Matlab
program. Because of the vast number of the recorded data that resulting from the
solution structure -fluid interaction and to learn the neura network algorithm these
date in easy way and reasonable time in persona computer that has limited memory,
first generalized displacement is used only to modulate the wing system.

Also the first generdized displacement has predominate effects on aerodastic
wing behaviour than others generalized displacement.

The simulation is carried out by tracking a desired plunging before, through and
after flutter condition.

The first stage of operation is to set the position (plunging motion) neural network
identifier. This task is performed using series-pardlel and paralld identification
technique configuration with modified Elman recurrent neural networks model. The
identification scheme of the wing system is needed to input-output training data
pattern to provide enough information about dynamics wing modd to be modd led.
This can be achieved by injecting a sufficiently rich input signal to excite dl process
modes of interest while also ensuring that the training patterns adequately covers the
specified operating region. A hybrid excitation signal has been used for the wing
modd.

The training set is generated by feeding a pseudo random binary sequence (PRBS)
sgnas, with a sampling time of 0.0005 second, to the modd and measuring its
corresponding outputs, position (plunging motion) . Back propagation learning
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agorithm is used with the modified Elman recurrent neural network of the structure
6-8-8-1. The number of nodes in the input, hidden, context and output layers are 6, 8,
8 and 1 respectively as shown in figure (6).

A training set of 2000 patterns has been used with a learning rate of 0.1 and
variable speed inputs U= [135 153, 160] nvVsec. After 5439 epochs, the identifier
output of the neural network, plunge motion is approximated to the actual outputs as
shown in figure (9).

The testing set is generated by difference feeding a PRBS signals as shown in
figure (10), and it is applied to the system. Figure (10) compare the time response of
the parald mode output with the actud plant output, and there is excelent
identification.

generlized displacment

; : . : : : ; ; ;
0 200 400 600 800 1000 1200 1400 1600 1800 2000
Sample time 0.0005 sec

Figure (9): Theresponse of the neural network
Identifier with the actual flexible wing
Model output for thelearnina set.

generlized displacment

: L L : L : L L :
200 400 600 800 1000 1200 1400 1600 1800 2000
Sample time 0.0005 sec

Figure (10): The response of the neural network
I dentifier with the actual flexible wing mode
output for thetesting set.
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The controller performance is simulated at three values of the flight speed
(135,153,160 nvVsec) which in unstable region and at different initial conditions of
plunging motion. Figure (11) shows the closed loop responses for the controlled wing
system. The controller reach the requirements and the closed-loop simulation
obtained is stable .The over shoot and settling time increase slightly with increasing
of the vedocity. Also the osdllation during the transent period appears with
increasing of the velocities, but its amplitude is small and converge to desired
condition very quickly with settling time 0.7sec at high velocity U=153nvsec.

Also in the figure (11) can be seen the responses of the controller action (function
of additional lift) at U=135m/sec, 153 m/sec and 160m/sec.The controller action in
real may represent any external controller device like control surface, jets in the walls
through which there is a smal mass flow, either by way of blowing or suction and
smart wing that change the shape of the airfoil of the wing to change the lift.

The values of the initial conditions are varying to make the stable or unstable, so
the present controller performance is tested at different initial conditions as shown in
figure (12). When the initial values of plunging increase the over shoot, the
oscillation and setting time increase during the transient period. The present
controller can give acceptable performance and reaches to desired condition at very
short setting time about 1sec at largeinitial condition.

0.1

T T T
—— U=160 (m's) —— U=160 (m/s)
25 [\ ffffff v=s3eis)f| VAL L U=153 (m/s)
g —e— U=135 (m/s) 0.0 —— U=135 (m/s)
02 ﬂ
£ o0
_ 2 ooy
£ 015 k|
s 3
£ S 004
g g ’
3 01 Y, =
(=) ¢ @
5 002
0.05 u\ @ \q‘
o 0
0,05 -0.0:
0 02 04 06 08 1 12 14 16 0 02 04 06 08 1 12 14 16

Time (sec) Time (sec)

5000 T T

— U=160 (m/s)
””” U=153 (m/s)
—— U=135 (m/s)

-5000

-10000|

Generlized controller action

-15000

-20000
0 0.2 0.4 0.6 0.8 1 12 14 16

Time (sec)

Figure (11): System responseswith controller at different speed.
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Figure (12): System responses with controller at different initial condition

CONCLUSIONS

Time domain simulations are used to predict the dynamic aerodlastic instabilities,
find the flutter speed and LCO for modd of a flexible wing with fully coupled fluid-
dtructural interaction. The adaptive neural control methodology for nonlinear flutter
wing is presented in this paper. The proposed controller consists of two parts:
(plunging mation) neural network identifier and feedforward neural controller. The
control scheme minimizes the cost function of tracking errors. It uses two models of
neural networks in the structure of the controller, multi-layer Perceptron and modified
Elman neural network. They are trained off-line and adapted on-line using back
propagation algorithm with series-parallel and parald configurations to guarantee
that the model outputs of the neura network match those of the wing modd outputs.

The simulation results show that the proposed controller has the capability to
generate smooth and suitable controller action commands without sharp spikes.
Moreover, it has the capability of compensating any different velocities and from any
initial conditions sudden change of the agrodastic system .Therefore, the proposed
adaptive neural control methodology can be considered capable of effectively
eradicating the tracking errors for the flexible wing modd.

Simulation results show that the proposed controller is robust and effective in
comparison with the controller in [2] in terms of fast response with minimum settling
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times and minimum tracking error until in flutter condition until when it use in
unstabl e region.

REFERENCES
[1]. Paaniappan K, Sahu P.and Alonso J.J " Design of Adjoint Based Laws for
wing flutter control",American Institute of Aeronautics and Astronautics Paper
AlAA-(2009)-148.

[2]. Afkhami S. and. Alighanbari H. "Nonlinear control design of an arfoil with
active flutter suppression in the presence of disturbance’, IET Control Theory
Appl., Val. 1, No. 6, November (2007)

[3]. Hawel, Y. and Jinglong H. " Robust flutter analysis of a nonlinear aerodastic
system with parametric uncertainties', Aerospace Science and Technology , Vol 13
,(2009) pp.139-149

[4]. Mdin P.and Castillo O." Adaptive intdligent control of aircraft systems with a
hybrid approach combining neural networks, fuzzy logic and fractal theory",
Applied Soft Computing vol3, (2003) pp.353-362

[5]. Chen C., Wu J.and Chen J. " Prediction of flutter derivatives by artificial neural
networks', Journa of Wind Engineering and Industrial Aerodynamics ,Vol. 96
,(2008), pp.1925-1937

[6]. Marques F.D,. Gruppioni E. M,and. De Marqui Jr. C. " Active agrodadtic
response control of a flexible wing with structural nonlinearity”, Brazilian
conference on dynamics ,control and application,may,2008

[7]. Tawfik M. A. , Abu-Tabikh,M.l and. Abd Al-Amir H. S "Influence of Flap
Angle on the Aeodastic Behavior of Wing-Flap Configuration Using Fully
Coupled Structure-Fluid Interaction Modd”, Eng. & Tech. Journal, Vol. 29, No.7,
2011

[8]. Hodges D. H. "Introduction to structural dynamics and aerodasticity” Cambridge
University press, 2002.

[9]. Giles, Gary L., “Equivalent Plate Modeling for Conceptual Design of Aircraft
Wing Structures,” AIAA-1995-3945, Presented at 1st AIAA Aircraft Engineering,
Technology and Operations Congress, Sept. 1995.

[10]. Abbasl L K, Chenl Q. and Milanese A. " Non-linear aerodastic investigations
of store(s)-induced limit cycle oscillations', J. Aerospace Engineering Vol. 222 Part
G (2008).

[11]. Pham D. T. and Xing L. " Neural Networks for Identification, Prediction and
Contral", Springer, (1995).

[12]. Omatu, S. M. Khalid, and R. Yusof "Neuro-Control and its Applications"
London: Springer-Vdag, 1995.

[13]. Zurada J. M., Introduction to Artificid Neurd Systems. Jaico Publishing House,
Pws Pub Co. (1992).

[14]. Narendra, K. S. and K. parthasarathy, “Identification and control of dynamical
systems using neural networks,” IEEE Trans. Neural Networks, vol. 1,pp. 4-27,
1990.

[15]. Narendra, K. S. and K. parthasarathy, “Gradient methods for the optimization
of dynamical systems containing neural networks,” IEEE Trans. Neural Networks,
vol. 2 No. 2, pp. 252-262, 1991.

2874

PDF created with pdfFactory Pro trial version www.pdffactory.com



http://www.pdffactory.com
http://www.pdffactory.com

