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Abstract: Survival analysis is critical for evaluating the lifetime and performance of 

systems and goods, especially in sectors where exact failure predictions are required. 

The goal of this research is to compare the performance and accuracy of various 

defuzzification techniques in estimating survival times for fuzzy data using the 2 and 3-

Parameter Weibull distribution, and to identify the most effective method for improving 

reliability in survival analysis applications. The fuzzy logic process is divided into three 

stages: fuzzification, inference language, and de-fuzzification. We applied some basic 

methods for the De-fuzzification process to convert the fuzzified inputs into crisp 

outputs, and the Maximum likelihood Method was applied to estimate Weibull 

distribution’s parameters. After that, the real and fuzzy data were applied to calculate 

the probability density function and survival function, hazard rate of Weibull 

distribution, and to make comparisons Mean Square Error (MSE) is calculated. This 

study was focused on survival times of (127) heart disease patients who were admitted 

to Suleimani Centre for Heart Disease in Sulaymaniyah City during February-October 

(2024). In conclusion, by using MSE to differentiate between real and fuzzy data, 

confirming that fuzzified data provided the most accurate results for survival and hazard 

rate evaluations, and showed an inverse correlation between failure times and survival 

function. 

Keywords: De-fuzzification Process, Fuzzy logics, Maximum Likelihood Method, 

Survival Analysis, Weibull Distribution. 
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بالغ    المستخلص:  أمرًا  البقاء  تحليل  التي يعد  القطاعات  في  وخاصة  والسلع،  الأنظمة  وأداء  عمر  لتقييم  الأهمية 

تتطلب تنبؤات دقيقة بالفشل. الهدف من هذه الدراسة هو مقارنة أداء ودقة تقنيات إزالة الضبابية المختلفة في تقدير 

ذي   ويبل  توزيع  باستخدام  الضبابية  للبيانات  البقاء  لتحسين   3و  ٢أوقات  فعالية  الأكثر  الطريقة  وتحديد  معلمات، 

الموثوقية في تطبيقات تحليل البقاء. تنقسم عملية المنطق الضبابي إلى ثلاث مراحل: الضبابية ولغة الاستدلال وإزالة  

مخرجات   إلى  الضبابية  المدخلات  لتحويل  الضبابية  إزالة  لعملية  الأساسية  الأساليب  بعض  طبقنا  لقد  الضبابية. 

الفعلية  البيانات  تطبيق  تم  ذلك،  بعد  ويبل.  توزيع  معلمات  لتقدير  القصوى  الاحتمالية  واستخُدمت طريقة  واضحة، 

والضبابية لحساب دالة كثافة الاحتمالية ودالة البقاء ومعدل الخطر لتوزيع ويبل، ولإجراء المقارنات تم حساب خطأ  

( مريضًا بأمراض القلب  ١٢7(. ركزت هذه الدراسة على أوقات البقاء على قيد الحياة لـ )MSEالمربع المتوسط )

(. ٢0٢4تم إدخالهم إلى مركز السليمانية لأمراض القلب في مدينة السليمانية خلال الفترة من فبراير إلى أكتوبر )

باستخدام   الاستنتاجات،  الضبابية   MSEفي  البيانات  أن  على  التأكيد  تم  والضبابية،  الحقيقية  البيانات  بين  للتمييز 

قدمت النتائج الأكثر دقة لتقييمات معدل البقاء على قيد الحياة ومعدل الخطر، وأظهرت ارتباطًا عكسياً بين أوقات  

 الفشل ووظيفة البقاء على قيد الحياة. 

 عملية إزالة الضبابية، المنطق الضبابي، طريقة الاحتمال العظمى، تحليل البقاء، توزيع ويبل. الكلمات المفتاحية:
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1.Introduction 

Survival analysis is a field of statistics that examines the predicted length of time before one event 

happens. Survival analysis is primarily concerned with the duration of an event in domains such as 

medicine, engineering, and social sciences, where understanding system failure behavior is critical 

for risk assessment, maintenance planning, and quality control. Traditional reliability models, 

particularly those based on Weibull distributions, rely on precise parameter estimations to 

accurately anticipate a system's odds of failure and survival. Real-world data, on the other hand, is 

typically ambiguous owing to variables such as measurement constraints, subjective evaluations, or 

changing environmental circumstances. This is especially important if inaccurate or insufficient 

data is utilized to predict failure rates. 

Conventional models with exact parameters might not work well in certain circumstances, which 

could result in overly optimistic or incorrect forecasts. Instead of utilizing a single point estimate to 

describe uncertainty, fuzzy set theory provides a mathematical framework by employing "fuzzy 

numbers" that span a range of potential values. This method makes it possible to estimate "fuzzy 

hazard rates," which more accurately account for failure rate uncertainty than deterministic models. 

Because it can accurately reflect the time-to-failure of real-world occurrences and is sufficiently 

easy despite having two parameters, the Weibull distribution is especially favored in survival 

analysis. This paper focuses on developing a fuzzy survival time based on a two-parameter Weibull 

distribution.  In (2003) Carroll and Kevin [1], This paper explores The Weibull model can be 

advantageous when analyzing survival data in clinical trials, highlighting its practical benefits. In 

(2011) Zhu, et al. [2], used Weibull distribution to analyse the prognostic factors in patients with 

gastric cancer. In (2022), Roohanizadeh,et al,[3], explored various estimation methods for two-

parameter Weibull distribution by using intuitive fuzzy lifetime data with maximum likelihood and 

Bayesian estimation methods. In (2022), Jain, et al., [4] examined various methods for de- 

fuzzifying fuzzy output, which involves converting a value quantity into a concrete value. In 

(2010). Hadi-Vencheh and Allame,[5] studied the method of determining the centroid and left/right 

spread of an unknown fuzzy number given its information. 

This article's goal is to model fuzzily hazardous rates in survival analysis. Applying Weibull 

distribution: The survival and hazard functions are estimated after the parameter of the Weibull 

distribution is estimated using the maximum likelihood method. The actual data has been fuzzified 

using trapezoidal membership based on the process of fuzzification and linguistic inference then be 

converted to a crisp data using some basic techniques of defuzzification process. Lastly, the 

survival and hazard functions are determined for each of the real and fuzzy data. 
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 2. Methodology  

A. Weibull Distribution 

(1) 2-Parameter Weibull Distribution 

 

Survival and Reliability functions are one of the most important probability distributions, this 

distribution was first found by the Swedish physicist Walddi Weibull in 1939 [6].  

In this section, we will provide the probability density function(pdf) of Weibull distribution, which 

is as follows: 

         f(t, σ, κ) = {
σ

κ
(
t

κ
)σ−1e− (

t

κ
)
σ

, t > 0  

0 ,                   o. w
                   (1) 

σ(shape), κ(scale) are parameters > 0 

The Cumulative Distribution Function (CDF) is: 

 FT(t, σ, κ) = P(T ≤ t) = ∫ f(u)du =
t

0
1 − e− (

t

κ
)
σ

             (2) 

Where S(t) is the survival function, which defined by: 

           S(t) = 1 − F(t) = e−(
t

κ
)
σ

                                         (3) 

The hazard function of Weibull distribution is: 

           h(t) = λ =
f(t)

S(t)
=

σ

κ
(
t

κ
)σ−1                                       (4) 

 Mean and Variance of the distribution are given respectively: 

E(t) = μ = κΓ (1 +
1

σ
) 

var(t) = σ2 = κ2 [Γ (1 +
2

σ
) − (Γ(1 +

1

σ
))
2

] 

 

(2) 3-Parameter Weibull Distribution 

 

Let T be a random variable represents time to failure with probability density function (𝑡), where (𝑡) 
is the pdf of the 3-parameter Weibull distribution [7]: 

                                                     f(t, σ, κ, ζ) = {
σ

κ
(
t−ζ

κ
)σ−1e− (

t−ζ

κ
)
σ

, t > 0 

0 ,                   𝑡 ≤ 0
                            (5) 

where  σ(shape), κ(scale) are parameters > 0 and  ζ(location) ≤ t . 
The (CDF) is: 

       FT(t, σ, κ, ζ) = P(T ≤ t) = ∫ f(u)du =
t

0
1 − e− (

t−ζ

κ
)
σ

                                 (6) 

Where S(t) is given by: 

                       S(t) = 1 − F(t) = e− (
t−ζ

κ
)
σ

                                                           (7) 

The h(t) of the distribution is: 

                        h(t) = λ =
f(t)

S(t)
=

σ

κ
(
t−ζ

κ
)σ−1                                                         (8) 

The mean (μ) and variance (σ2) of the distribution are given respectively: 

E(t) = μ = ζ + κΓ (1 +
1

σ
) 

var(t) = σ2 = κ2 [Γ (1 +
2

σ
) − (Γ(1 +

1

σ
))
2

] 
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 B. Estimation Method 

Maximum Likelihood Estimation (MLE) 

The most crucial way for estimating the parameters in any probability function is the maximum 

likelihood approach. This method's concept is aimed at discovering the parameter value that 

maximizes the likelihood function for any distribution. In this section we have separately estimated 

(2 and 3) parameters of Weibull Distribution. 

(1) MLE for 2-Parameter Weibull distribution 

The 2-weibull distribution's parameters likelihood function is:            

f(t; σ, κ) =
σ

κ
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𝜅
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   , t ≥ 0    
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  differentiating eq(9) w. r. to σ: 
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differentiating eq(6) w. r. to κ: 
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                                     κ̂ = (∑
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σ
                                                            (11) 

Since it is difficult to separate σ and κ from equations (10)&(11) so, we will use iterative methods 

like Newton-Raphson-Method, to obtain the parameters of (σ,κ): 

ti+1 = ti −
f(ti)

f ′(ti)
 

consider f(ti) is f(σ̂) 

f(σ̂) =
n

σ̂
+∑ln (

ti
κ
) −∑(

ti
κ
)
σ̂

ln (
ti
κ
) 

And, f ′(ti) is f′(σ̂) 

f(σ̂) =
∂f(σ̂)

∂σ̂
= −

n

σ̂2
−∑(
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κ
)
σ̂

 ln (
ti
κ
) ln (
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κ
) 

Through the numerical solution we can obtain the parameters. 
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 (2) MLE for 3-parameter Weibull distribution 

 The 3-weibull distribution's parameters likelihood function is:            

                                       Lf(σ, κ, ζ; t1, t2, … , tn) = ∏
σ

κ
(
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κ
)σ−1e− (
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)
σ

 n
i=1                     (12) 

Taking logarithms of both sides eq(12): 
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    (13) taking the partial derivatives of 

equation (13) for σ, 𝜅 and ζ , we obtain the following estimated equations: 
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𝜎𝑛
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∂lnL
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= −(𝜎 − 1)∑

1

ti−𝜁

𝑛
𝑖=1 +

𝜎

𝜅
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𝜅−1𝑛
𝑖=1 = 0           (16)                                                       

It can be noted that the equations (13),(14),(15) are nonlinear, so Numerical solutions can be used to 

get the values of the parameters. 

 

3. Evaluation metrics 

(A) Mean Squared Error (MSE) 

 

                   MSE(R(ti)̂) = ∑
[R(ti)̂−R(ti)]

2

n

n
i=1                                      (17) 

Where R(ti)̂ is estimated survival function, R(ti) is empirical survival s.t.  R(ti) =
i−0.5

n
                                                                                                         

(1) Akaike's Information Criterion (AIC) 

The most practical methods widely used in statistical modeling is the Akaike information criterion 

(AIC). In 1973, Hirotugu Akaike developed the technique as an extension of MLE principle. AIC 

was the first criteria for selecting models to become widely accepted. 

 

AIC = −2 ln f(y|θ̂) + 2k                               (18) 

Where f(y|θ̂) is goodness of fit (ML), k number of parameters. 

 

(2) Bayesian information criterion (BIC) 

The BIC was found by Gideon E. Schwarz and published in 1978 a paper. 

BIC = −2 ln f(y|θ̂) + 2k ln n                 (19) 

 

4. Fuzzy set theory 

Realistic and exciting life requires the creation of fuzzy sets, which are an extension of crisp sets in 

traditional set theory. A fuzzy set is a mathematical construct that generalizes the classical notion of 

a set. Unlike classical sets, which assign a binary membership (either 0 or 1) to an element with 

respect to the set, fuzzy sets allow for partial membership. This indicates that an element can belong 

to a fuzzy set to a certain degree between 0 and 1. [8] 

This section includes some basic mathematical operations described in fuzzy sets, as well as some 

basic definitions and basic concepts connected to fuzzy set theory. To provide a comparison with 

fuzzy sets and to explain why fuzzy sets were introduced, we begin this section with defining 

ordinary or non-fuzzy sets. [9] 
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 Definition (1)[12] 

Let X be a universal set of classical objects, whose components are represented by x. A 

characteristic function  from X into {0, 1} is often used to describe membership in a classical 

subset S of X, such that: 

𝜒(𝑥) = {
1             if  x ∈ S           
0           if    x ∉ S           

                            (20) 

The set {0, 1} is called a valuation set. 

The symbol "~" is used to distinguish fuzzy sets from non-fuzzy sets, i.e. fuzzy sets will be 

abbreviated as S and non-fuzzy sets are denoted by  S̃. 

 

Definition (2)[12] 

Let X be the universal set and  S̃ be any subset of X, then S̃ is called fuzzy subset of X, which is 

characterized by a membership function μ S̃: X ⟶ [a, b], where a, b ∈ ℝ and in special case  

μ S̃: X ⟶ [0,1], i. e.,  
S̃ = {(x, μ S̃(x))|x ∈ X, 0 ≤ μ S̃(x) ≤ 1}                   (21) 

Definition (3)[12] 

-Cuts or -Sets 

α-Cut sets can be considered as a transitional set that bridges the gap between normal and fuzzy 

sets. S_α represents the ordinary set of these elements, which are known as the α-cut sets of S ̃.  

Sα = {x ∈ X: μ S̃(x) ≥ α, α ∈ (0,1]} 

And the strong  -cut set: 

Sα+ = {x ∈ X: μ S̃(x) > α, α ∈ (0,1]} 
 

Definition (4)[10] 

The trapezoidal membership function is specified by four parameters S̃ = (a, b, c, d) which is given 

by : 

μ S̃(x) =

{
 
 

 
 
x − a

b − a
         a ≤ x < b

1                  b ≤ x < c
x − d

c − d
          c ≤ x ≤ d

0                    o. w.

 

 

 
 

Figure (1): Graph of Trapezoidal membership function. 
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 A. The procedure of fuzzy logic  

The procedure of fuzzy logics can be divided into four main parts: 

(1) Fuzzification:   It is used to transform inputs i.e. crisp numbers into fuzzy sets. In this step we 

need to define linguistic variables (e.g., "survival time" as low, medium, high) and then 

choosing an appropriate membership functions (e.g., triangular, trapezoidal, Gaussian) to show 

the degree of membership for each fuzzy set. There are some basic methods used in this stage:  

(a) Inference  

(b) Order Ranking 

(c) Intuition 

(d) Neural Networks 

(2) Rule base: Creation set of IF-THEN rules to define the relationship between input and output. 

(3) Inference Engine: Since the Inference Engine processes all of the data, it is a crucial part of 

any fuzzy logic system (FLS). It enables users to determine the degree of correspondence 

between the rules and the current fuzzy input. 

(4) A module or component called defuzzification converts the fuzzy set inputs produced by the 

inference engine into a distinct value.  It is the final stage of a fuzzy logic system's operation. 

 

 

Figure (2): The process of fuzzy logics. 

B. Techniques used in the defuzzification process [4]  

(1)  Centre of Area Method: 

Center of Area (COA) method  which is also known as Center of gravity. This method was created 

by Sugeno in 1985. The most popular approach is this one. This method's computational difficulty 

for complex membership functions is its sole disadvantage Of all the known defuzzification 

techniques, the centroid method's algebraic formulation is the most aesthetically beautiful. [11,12] 

xCOA =
∫μS(x)xdx

∫μS(x)dx
                              (22) 

 

Where 𝑥𝐶𝑂𝐴 is the crisp output, 𝜇𝑆(𝑥) is the aggregated membership function and the output 

variable is 𝑥. 

 

For more clarification of the method, we solved an example: 

Let t=5 and fuzzy set= [3, 5, 7, 20] where the trapezoidal membership function μS(x) is defined by : 

μS(x) =

{
 
 

 
 

x − 3

5 − 3
            for 3 ≤ x ≤ 5

      1               for   5 ≤ x ≤ 7
20 − x

20 − 7
           for 7 ≤ x ≤ 20

               0                 for  x < 3  or  x > 20

 

 

xCOA =
∫ μS(x)xdx
20

3

∫ μS(x)dx
20

3

=
∫ (

x − 3
2 ) xdx

5

3
+ ∫ xdx

7

5
+ ∫ (

20 − x
13 )xdx

20

7

∫ (
x − 3
2 )dx

5

3
+ ∫ dx

7

5
+ ∫ (

20 − x
13 )dx

20

7

≅ 9.47 
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 According to centroid method the crisp value for the fuzzifed set [3, 5, 7, 20] is 9.49. 

(2) Bisector Method: 

The area under the curve where area on both sides are equal, is calculated using this approach. The 

action that divides the area into two areas of the same size is generated by the BOA. 

∫ μS(x)dx
x∗

a
= ∫ μS(x)dx

d

x∗
                        (23) 

(3) Mean of Maximum Method: 

The greatest membership values of an element in this procedure is the defuzzified value. The mean 

value of the maxima is determined when multiple elements have maximum membership values. 

x∗ =
∑xi∈μS(xi)

|M|
                                             (24) 

(4) Largest of Maximum method: 

gives the maximum value of the domain with largest membership value. 

μmax = max
x
μS (x)                                          (25) 

Where 𝜇𝑆(𝑥) is the membership function value at any point 𝑥, and 𝜇𝑚𝑎𝑥 is the maximum 

membership value in the fuzzy set. 

(5) Smallest of Maximum method: 

This technique determines the smallest value of the domain with maximum membership value.   

xSoM = min (Xμmax)                                          (26) 

This is the defuzzied value using the SoM method. 

 

 

Figure (3): Defuzzification methods 

 

5. Evaluation of Data and Interpretation of Outcomes 

The analysis in this study was conducted using Python, Easy Fit, and Stata software. The data was 

collected from Suleimani Centre for Heart Disease in Sulaymaniyah City. The study period spanned 

from February 1, 2024, to October 15, 2024, during which a total of 127 patients were included. 

The survival times of these patients were recorded in hours. 

T=[5,10,11,11,12,13,…,346,350,359,367,432,480] 
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 A. Results  

(1) Fit Assessment of Raw Data to Various Distributions 

To know which distribution is best fits the actual data, we evaluate the measures of Log-likelihood, 

(AIC) and (BIC): 

Table 1: Evaluating Model Performance Using AIC and BIC 

Distribution Loglikelihood AIC BIC 

Exponential 1-Parameter -740.7307 1483.4614 1486.305587 

Exponential 2-Parameters -14709.50313 29423.006 29428.695 

Gamma 2-Parameters -736.5284 1477.0568 1482.745174 

Gamma 3-Parameters -734.657 1475.314 1483.847 

Lognormal 2-Parameters -741.7201 1487.4402 1493.129 

Lognormal 3-parameters -740.4305 1486.861 1495.394 

Weibull 2-Parameters -736.3229 1476.6458 1482.3342 

Weibull 3-Parameters -734.1967 1474.3934 1482.925961 

 

The table above shows that the 3-parameter Weibull distribution has the lowest loglikelihood and 

AIC values, making it the best-fitting model for the data. Therefore, the optimal model based on 

these criteria is the 3-parameter Weibull distribution. 

(2)  Methods of Defuzzification process  

From the diagram of fuzzy logic process, first the survival times classified into three trapezoidal 

membership functions: Low, Medium, and High. From The definition of trapezoidal function for 

each survival time [a, b, c, d] assigns trapezoidal parameters based on its value, ensuring proper 

ordering. For survival times up to 20, the fuzzy set is classified as Low; between 20 and 100, it is 

Medium; and beyond 100, it is High.  Then, actual data was transformed into fuzzy data using the 

five defuzzification techniques as shown in table (3): 

Table 2: Computational defuzzification methods 

Raw data Centroid Bisector 
Mean of 

Maximum 

Smallest of 

Maximum 

Largest of 

Maximum 

5 10.02369 9.418812 5.475475 5.475475 5.950951 

10 12.79619 12.379537 9.992492 9.992492 10.70571 

11 13.44309 13.071121 10.94344 10.94344 11.65666 

11 13.44309 13.071121 10.94344 10.94344 11.65666 

12 14.0922 13.766896 11.89439 11.89439 12.60761 

. 

. 

350 268.4966 278.7166 349.9575 349.9575 352.5726 

359 274.5203 285.1057 358.9915 358.9915 361.6066 

367 279.9091 290.8214 367.0746 367.0746 369.6897 

432 323.3423 336.8896 431.977 431.977 434.8298 

480 353.3254 368.6921 478.5736 478.5736 480 

 

The table provides a comparative view of different defuzzification techniques, showing how each 

method produces different crisp values from the fuzzy set based on the given actual data. By 

comparing these values, one can assess the sensitivity of each defuzzification method and decide 

which one best represents the underlying fuzzy system or the specific requirements of the 

application. 
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 (3)  Comparing Defuzzification Methods Using Mean Squared Error (MSE) 

Since for the data of each method has been changed, so their distributions found by using (easy fit) 

program which are shown below: 

Table 3: Best-Fitting Distribution Models for Defuzzification Methods 

Methods Centroid Bisector 
Mean of 

Maximum 

Smallest of 

Maximum 

Largest of 

Maximum 

Best fit 

distribution 

3-Parameter 

Weibull 

3-Parameter 

Weibull 

2-Parameter 

Weibull 

2-Parameter 

Weibull 

2-Parameter 

Weibull 

 

The table is showing the relationship between different defuzzification methods and their respective 

best-fit distributions. It suggests that the Centroid and Bisector methods work better with the 3-

parameter Weibull distribution, while the Mean of Maximum, Smallest of Maximum, and 

Largest of Maximum methods align more with the 2-parameter Weibull distribution. 

(4)  Evaluating Defuzzification Techniques: A Comparison Based on MSE 

Determine which defuzzification technique produces the least error (lowest MSE) and is therefore 

the most reliable or effective method for a given application, dataset, or fuzzy system. This 

comparison helps in choosing the best-suited defuzzification method for real-world scenarios, based 

on objective performance metrics. 

Table 4: Evaluating Defuzzification Methods Through MSE 

 

 

 

 

 

Since from table (4), we see that the smallest mean square error of the methods is centroid method, 

therefore we later use the fuzzy numbers of the method to analyse the probability density function 

and survival function, hazard function. 

(5)  Assessing the Differences Between Raw and Fuzzy Data  

Since the fuzzy data fitted with 3- Parameter Weibull distribution and the classical data also fitted 

with 3-Parameters Weibull distribution. In this section we showed comparison based on f(t), s(t) 

and h(t), for this reason the parameters of both distributions was estimated. 

Table 5:  Maximum Likelihood Estimation for Parameter Estimation 

Parameters of Weibull distribution Raw data Fuzzy data 

𝝈 1.1396 1.2935 

𝜿 126.33 108.24 

𝜻 4.7852 9.1309 

 

Interpretation of the table: 

• Raw Data: The 3-Parameter Weibull distribution describes data where failures start at time zero, 

with a shape parameter of 1.1396 and a characteristic life (κ) of 126.33 and location parameter (ζ) 

of 4.7852. 

• Fuzzy Data: The 3-Parameter Weibull distribution introduces the additional factor of a location 

parameter (ζ = 9.1309), which suggests that failures only occur after a certain point in time. The 

scale parameter (κ = 108.24) is lower, meaning the characteristic life is shorter than in the raw data 

case, and the shape parameter (σ = 1.2935) suggests a slightly steeper increase in the failure rate. 

Methods Centroid Bisector 
Mean of 

Maximum 

Smallest of 

Maximum 

Largest of 

Maximum 

MSE 0.33410645 0.335393791 0.343493885 0.341725019 0.344167389 
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 (a)  Calculating Reliability Metrics: Probability Density𝐟(𝐭), Survival 𝐬(𝐭), and Hazard 𝐡(𝐭) 
Functions in Weibull Distribution for fuzzy data and raw data 

Calculating Reliability Metrics: Probability Density f(t), Survival s(t), and Hazard 

h(t)Functions in Weibull Distribution refers to the process of computing three key reliability 

functions used in survival analysis and reliability engineering. These functions—Probability 

Density Function (PDF), Survival Function, and Hazard Function—are essential in describing 

the behavior of systems or components over time in terms of their failure characteristics. 

1) Raw data 

Table 6: Calculation of 𝒇(𝒕), 𝒔(𝒕), and 𝒉(𝒕) for Raw Data Analysis 

T f(t) s(t) h(t) 

5 0.003701046 0.999302157 0.00370363 

10 0.006165764 0.973893086 0.006331048 

11 0.006211876 0.968208133 0.006415848 

11 0.006211876 0.968208133 0.006415848 

12 0.006250252 0.962427834 0.006494255 

13 0.006282012 0.956569789 0.006567229 

13 0.006282012 0.956569789 0.006567229 

15 0.006329061 0.944672529 0.00669974 

.. 

. 

337 0.000510046 0.049303375 0.010345054 

346 0.00046642 0.044920685 0.010383187 

350 0.000448184 0.043095238 0.010399861 

359 0.000409592 0.039245026 0.010436787 

367 0.000377953 0.036102284 0.010468947 

432 0.000194454 0.018156288 0.010709993 

480 0.000117651 0.010824738 0.010868683 

2) Fuzzy data 

Table 7: Calculation of 𝒇(𝒕), 𝒔(𝒕), and 𝒉(𝒕) for Fuzzy Data Analysis 

T f(t) s(t) h(t) 

10.02369 0.003610138 0.975144072 0.003702158 

12.79619 0.004010127 0.964535484 0.004157573 

13.44309 0.004092875 0.961942357 0.004254802 

13.44309 0.004092875 0.961942357 0.004254802 

14.0922 0.004173805 0.959255521 0.004351088 

14.74415 0.004251779 0.956517051 0.004445063 

14.74415 0.004251779 0.956517051 0.004445063 

16.06099 0.004401668 0.950804573 0.004629415 

. 

259.9333 0.000816987 0.047185917 0.017314215 

265.9571 0.000743607 0.04248365 0.017503375 

268.4966 0.00071441 0.040632178 0.017582379 

274.5203 0.000649081 0.03653075 0.017768067 

279.9091 0.000594997 0.033179777 0.017932513 

323.3423 0.000284347 0.014809092 0.019200851 

353.3254 0.000164668 0.008223156 0.020024965 
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 Interpret the result: 

Both tables (6) and (7) provide an in-depth look at how the system’s reliability changes over time. 

The PDF f(t), Survival Function s(t), and Hazard Function h(t) together offer valuable insights into 

the failure dynamics of the system for both fuzzy and raw data: 

• Early Times: High survival probability, low failure rate, and low hazard rate. 

• Later Times: Decreasing survival probability, increasing failure rate, and increasing hazard rate 

as the system ages and becomes more likely to fail. 

At T=480 for (raw data) and T=353.3254 for (fuzzy data): 

• For raw data f(t) = 0.000117651  while for fuzzy data f(t) = 0.000164668: In both the 

probability density is very low, meaning failure is unlikely at this specific time. 

• For raw data  s(t) = 0.010824738while for fuzzy data s(t) = 0.008223156: The survival 

probability is extremely low (1.08% and 0.8%, respectively), indicating that the system will 

almost certainly fail before reaching this point in both. 

• h(t) = 0.010868683 (real data), h(t) = 0.020024965(fuzzy data): The hazard rate for both 

data sets is the highest in the tables (6,7), indicating the system’s failure rate is at its peak at this 

time. 

(b) Comparative Analysis of Crisp and Fuzzy Data in Statistical Modeling  

The fuzzy data's distribution was determined to be three parameters of the Weibull distribution after 

the fuzzy logic method was applied to the classical data. Based on the data's computed mean 

squares error, the fuzzy data's MSE is 0.332007034, which can be used to determine which data is 

accurate and appropriate to study.  

Table 8: Assessing the Accuracy of Crisp and Fuzzy Data with MSE 

Algorithm 
Parameters 

MSE 
𝝈 𝜿 𝜁 

Crisp data (3- Parameters Weibull distribution) 1.1396 126.33 4.7852 0.340958536 

Fuzzy data (3-Parameters Weibull distribution) 1.2935 108.24 9.1309 0.33410645 

 

The MSE for fuzzy data (0.33410645) is slightly smaller than the MSE for crisp data 

(0.340958536), this implies that a slightly better fit to the observed data is offered by the fuzzy data 

technique. The fuzzy model is more appropriate for situations when imprecision is present in the 

data since it can manage uncertainty and variability better than the crisp approach, which may 

account for its increased accuracy. The figure below shows the difference between the crisp data 

and the fuzzy data. 

 

 

Figure 4: Comparison between the crisp and fuzzy data 
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 6. Conclusions and Recommendations  

A. Conclusions 

Based on the analytical part of the study, we got a number of conclusions, as follows: 

1. This research presents a fuzzy logic method for changing survival time data for patients with 

heart illnesses. By using defuzzification techniques and MSE to evaluate survival and hazard rates 

with Weibull distribution parameters. 

2. MSE was used to determine the differences between real and fuzzy data, revealing that fuzzy 

data provided the best accurate findings for survival and hazard rate assessments. 

3. The study found an inverse association between failure times and survival function for heart 

disease patients, with predicted survival function values decreasing as failure times increased, this is 

existed to both actual and fuzzy data. 

B. Recommendations 

Based on the conclusions, we reached a set of recommendations, as follows: 

1. Healthcare workers can use fuzzy logic methodologies to investigate survival times and hazard 

rates since they are both interpretable and accurate. 

2. Patients with heart disease can benefit from individualized risk assessment and treatment 

planning when fuzzy survival models are included in healthcare systems. 

3. Future studies should examine the robustness of this method in other chronic conditions, such as 

diabetes or cancer, to demonstrate its effectiveness across multiple domains. 

4. Researchers might explore additional parametric models in different disciplines for further 

investigation. 
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Appendix  

The following code shows the process of Defuzzification methods in Python. 

     
                                            

 


