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Abstract 
 
In this research, the large deflection of a cantilever tested steel beam of linear elastic material under the action of an external 
vertical concentrated force at the free end was numerically investigated. The definition of large deflection behavior indicates 
the inherent nonlinearity found in the response analysis in these beam systems. The analysis pertains to the domain of 
geometric nonlinearity, often expressing the equilibrium equation in a deformed structure. Numerous authors have 
implemented various numerical methodologies to address these issues. This paper investigates Rang-kuta numerical 
techniques for the numerical simulation of the problem. To achieve this purpose, a cantilever beam of length 1 meter and an 
isotropic thin steel plate with a rectangular cross-section were used. Assuming the beam material is isotropic, with a modulus 
of elasticity E = 200 GPa and a Poisson's ratio equal zero. The performance of the tested beam was assessed considering 
deflection and deflection angle. A parametric study is also included to investigate the effect of cross section dimensions 
(width x height) of steel plate on the bending and the deflection value of tested beams.  The assessments indicate that the 
proposed method can be widely applied to measure large deflections in thin steel plate materials under concentered load at 
the free end of cantilever beams. 
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1. Introduction 

A beam is an important structural element which carries stresses applied perpendicular to its longitudinal axis, primarily by 
providing resistance to bending. The static analysis of a beam includes the assessment of deflection, slope, curvature, stresses, 
moments, and other characteristics produced in the beam under specified loading conditions [1]. Cantilever bending is 
commonly used to investigate bending collapse characteristics under large deflections. According to the analysis results, one 
can determine whether the beam meets the criteria for providing sufficient resistance to prevent failure under the applied 
loading conditions. Usually, static analysis takes place using linear models to simplify the analysis [2]. However, linear 
models are not able to capture the actual behaviour of a structure, as nearly all structures present nonlinear behaviour before 
they reach their limit of resistance. Thus, numerical results determined by these linear theories are unsuitable for large 
deflection predictions, as they may result in severe errors. Recent developments in mathematical mechanics have allowed 
researchers to better describe systems by capturing the nonlinear response to these structures. The Euler-Bernoulli beam 
model is suitable for predicting the mechanical behavior of slender beams. 
Euler-Bernoulli beams have been the target of significant study about nonlinearity resulting from the geometry of the beam 
and the materials. Mathematical calculation of large deflections in Euler-Bernoulli beams has a long research history. For 
instance, Lewis and Monasa [3, 4] examined the large deflections of thin cantilever beams due to a concentrated force and 
an end moment at the free end, respectively. Bisshop and Druckerin [5] studied the large deflection of cantilever tested beams 
with variable cross section (rectangular and circular cross-sections). They primarily implemented the Runge-Kutta method 
and then used a predictor-corrector to gradually improve their results. Lee [6] studied the large deformation of cantilever 
beams constructed from Ludwick-type material under a combined loading comprising a uniformly distributed load and a 
vertical concentrated loading at the free end. That numerical solution was obtained through the application of Butcher's fifth-
order Runge-Kutta method and is presented in tabular format. Additionally, Brojan et al. [7] estimated the major deflections 
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of a non-prismatic slender cantilever beam that is subjected to a concentrated moment at its free end. The research developed 
an exact moment-curvature equation for materials that obey to the generalized Ludwick's law. This formula is suitable for 
analysing beams with variable loading and support conditions. The results of numerical examples obtained from our 
materially and geometrically nonlinear analysis clearly indicate complex nonlinear behaviour in the analysed cantilever 
beams. Kimiaeifar et al. [8] developed a homotopy semi-analytical solution for analyzing large deflections in a cantilever 
beam with free ends and uniformly distributed loads. For the purpose of comparison, deflections were estimated and 
compared with the results of the finite element method, which served as the reference. The results show that the proposed 
solution is very accurate, effective, and convenient for the addressed issue, as well as suitable for a wide range of practical 
problems. Similar findings were also observed in [9]. In another study by Borboni and De Santis [10] performed a 
comprehensive investigation of the large deflections of an asymmetric Ludwick cantilever beam subjected to a horizontal 
force, a vertical force, and a bending torque at the free end. The Euler-Bernoulli bending beam theory is used to study large 
deflections. This theory says that cross-sections stay flat and perpendicular to the neutral surface after deformation, and their 
shape and area don't change either. The mechanical model developed from previous hypotheses contains two types of non-
linearity: the first due to material properties, and the second resulting from large deformations. The suggested method worked 
well for solving the nonlinear algebraic system and the nonlinear second-order ordinary differential equation, which made 
the problem smaller. Yuan et al. [11] evaluated the effective width of steel-concrete composite beams based on a specific 
beam section. For this purpose, this paper first presents the development of two theoretical models for composite beams. 
Validation of the theoretical models is performed through comparison of the theoretical predictions with the results obtained 
from more complex finite element simulations. The results show that the width of the concrete slab, the span of the beam, 
and the thickness of the floor slab primarily influence the effective width. Simplified design formulas for computing the 
effective width are proposed. Comparisons between the results of the simplified formulas and the test results indicate the 
accuracy of the proposed formulas. Nguyen et al. [12] introduce an analytical model for thin-walled open-section beams that 
utilize functionally graded materials (FGMs). The proposed theory considers restrained warping applicable to the thin-walled 
FG beam based on Vlasov’s assumptions. Khosravi et al. [13] introduce a numerical method that simulates a cantilever beam, 
expressing it as a boundary value problem under mixed conditions. Two novel numerical techniques are investigated. The 
first is based on a spectral method utilising a modal Bernstein polynomial basis. Next, we implement the second-order 
convolution quadrature method to discretize the problem, incorporating a finite difference approximation for the Neumann 
boundary condition on the beam's free end. Comparison with the experimental data and the existing numerical and semi-
analytical methods demonstrate the accuracy and efficiency of the proposed methods. Pandit et al. [14] present a class of 
problems involving space-constrained loading on thin beams with large deflections. Analytical solutions to such problems 
when the material is elastoplastic are difficult to obtain. In this paper, an incremental method is employed to solve the 
governing differential equation. Local elastic unloading, which may occur in large deflection problems, is naturally 
incorporated in the formulation. A non-dimensional parameter depending on both material and geometry is obtained here via 
the process of normalisation of the bending moment in two different ways. This parameter is seen to govern the fixed end 
moment versus end displacement response in an elasto-plastic case.  Li et al. [15] propose a new steel-concrete composite 
cantilever beam. Six steel-concrete, double-sided composite cantilever beams were designed and experimentally tested and 
theoretically analysed to study their main mechanical properties. The results show that the bottom concrete slab of the double-
sided composite cantilever beam can effectively enhance the stability of the bottom flange of the steel girder, the ultimate 
bearing capacity of the composite beam, and stiffness. 
However, the previously mentioned research was limited to the static analysis of cantilever beams with variable cross-sections 
subjected to various loading conditions. The load conditions include distributed concentrated loads, moment loads, and 
combined loads at the free end. Generally, thin-walled beams built from anisotropic materials present complex and related 
structural behavior. Therefore, the design process must incorporate warping and other coupling effects, which may have 
practical significance. Additionally, commonly, just accuracy is evaluated, while calculation time and simplicity are neglected. 
On the other hand, further numerical research is needed in this area. The point of this study is to look into the spread of steel 
materials in thin-walled cantilever beams and come up with a complete analytical model based on variation formulation. This 
paper considers the rectangular sections that are subject to end point load at their free end. Additionally, derive and solve the 
governing equations to accurately determine the large deflection and twist angle. 

2. Theoretical and numerical background 

A typical illustration of deflections is given in Figure 1 for a cantilever subjected to perpendicular force at the free end, where 
P is the concentrated load. The vertical displacement is denoted by y, and the deflection angle is represented by θ. Furthermore, 
the arc length is denoted by ds, the horizontal displacement between M1 and M2 is denoted by x, and the slope in point M1 
is θ, and the slope in point M2 is θ+dθ. The intersection of vertical lines with points (M1, M2) occurs through the center of 
curvature at point (o). This means that a deflected shape is part of a circle, with its center point (o) and radius (𝜌𝜌).  
ds = 𝜌𝜌 dθ    (by math) 
Distance on curve equal to radius multiplied by confined angle (or) internal angle, see Figure 1. 
∴  𝜌𝜌 =  𝑑𝑑𝑑𝑑

𝑑𝑑𝑑𝑑
                                                                                                                                                                                                   (1) 

Where 𝜌𝜌 is radius, ds is arch length, and dθ is internal angle. 
𝑇𝑇ℎ𝑒𝑒 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶     𝑘𝑘 = 1

𝜌𝜌
 � 1
𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅

�   

∴  1
𝜌𝜌

= 𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

= 𝑘𝑘                                                                                                                                                                           (2) 
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 Assume (θ) very smaller angle. 
∴ 𝑑𝑑𝑑𝑑 = 𝑑𝑑𝑑𝑑 , cos ⋍ 1, tan𝜃𝜃 ⋍ 𝜃𝜃 

tan𝜃𝜃 =
𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

        [𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑] 

∴ 𝜃𝜃 = 𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

                                                                                                                                                                                   (3)  
The basic equation is derived in the form of: 
∴ 𝑑𝑑𝑑𝑑

𝑑𝑑𝑑𝑑
= 𝑑𝑑2𝑦𝑦

𝑑𝑑𝑑𝑑2
                                                                                                                                                                                (4)  

From equation (2) we can obtain 
1
𝜌𝜌

= 𝑑𝑑2𝑦𝑦
𝑑𝑑𝑑𝑑2

                                                                                                                                                                                     (5) 
From flexural theory can be written as 
1
𝜌𝜌

= 𝑀𝑀
𝐸𝐸𝐸𝐸

                                                                                                                                                                                       (6)     

∴ 𝑀𝑀
𝐸𝐸𝐸𝐸

= 𝑑𝑑2𝑦𝑦
𝑑𝑑𝑑𝑑2

                                                                                                                                                                                 (7) 
(𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝)𝐸𝐸𝐸𝐸 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 
∴ 𝑀𝑀 = 𝑑𝑑2𝑦𝑦

𝑑𝑑𝑑𝑑2
 𝐸𝐸𝐸𝐸                                                                                                                                                                          (8) 

𝑜𝑜𝑜𝑜 𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤: 
𝐸𝐸𝐸𝐸 𝑦𝑦″ = 𝑀𝑀 (𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚)                                                                                                                                               (9) 
𝐼𝐼𝐼𝐼 𝑤𝑤𝑤𝑤 𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢 𝑡𝑡ℎ𝑒𝑒 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣 
𝑓𝑓𝑓𝑓𝑓𝑓 𝑡𝑡ℎ𝑒𝑒 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 �1

𝜌𝜌
� 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 𝑚𝑚𝑚𝑚𝑚𝑚ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏  

𝑇𝑇ℎ𝑒𝑒𝑒𝑒 𝑤𝑤𝑤𝑤 𝑔𝑔𝑔𝑔𝑔𝑔 𝑡𝑡𝑡𝑡 𝑡𝑡ℎ𝑖𝑖𝑖𝑖 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 
1
𝜌𝜌

=
𝑑𝑑2𝑦𝑦
𝑑𝑑𝑑𝑑2

�1+�𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑�
2
�
3
2�
                                                                                                                                                                      (10) 

∴ Deflection equation     
𝑀𝑀
𝐸𝐸𝐸𝐸

=
𝑑𝑑2𝑦𝑦
𝑑𝑑𝑑𝑑2

�1+�𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑�
2
�
3
2�
                                                                                                                                                                     (11) 

Or used: 
𝑀𝑀
𝐸𝐸𝐸𝐸

= 𝑑𝑑2𝑦𝑦
𝑑𝑑𝑑𝑑2

                                                                                                                                                                                  (12) 

𝑊𝑊𝑊𝑊 𝑐𝑐𝑐𝑐𝑐𝑐 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 �
𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑
�𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 𝑖𝑖𝑡𝑡′𝑠𝑠 𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣 

Deriving The maximum value to deflection by used engineering method. (exact). 
Solution: 
 𝐸𝐸𝐸𝐸 𝑦𝑦″ =  𝑑𝑑2𝑦𝑦

𝑑𝑑𝑑𝑑2
 𝐸𝐸𝐸𝐸 = 𝑀𝑀(𝑥𝑥)𝐴𝐴                                                                                                                                                   (13) 

∴ 𝑑𝑑2𝑦𝑦
𝑑𝑑𝑑𝑑2

 𝐸𝐸𝐸𝐸 = 𝑀𝑀(𝑥𝑥)𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚                                                                                                                                     (14) 
From the vertical equilibrium of the cantilever beam, the moment value M at each support is determined as follows: 
∑𝑓𝑓𝑓𝑓 = 0.0 (+)  ↑  
+𝐴𝐴𝐴𝐴 − 𝑃𝑃 = 0.0 ⟹ 𝐴𝐴𝐴𝐴 = 𝑃𝑃 ↑                                                                                                                                              (15) 
∑𝑀𝑀 𝑎𝑎𝑎𝑎 𝐴𝐴 = 0.0 (+)  
+𝑃𝑃 ×  𝛼𝛼 −𝑀𝑀𝑀𝑀 = 0.0 ⟹ 𝑐𝑐𝑐𝑐 𝑀𝑀𝑀𝑀 = 𝑃𝑃𝑃𝑃    𝑐𝑐. 𝑐𝑐.𝑤𝑤                                                                                                                 (16) 
∑𝑀𝑀 𝑎𝑎𝑎𝑎 𝑥𝑥 = 0.0 (+)   
+𝑃𝑃 × 𝑥𝑥 − 𝑃𝑃𝑃𝑃 −𝑀𝑀(𝑥𝑥) = 𝑐𝑐.𝑤𝑤 0.0   (see Figure 2)                                                                                                                (17) 
∴ 𝑀𝑀(𝑥𝑥) = 𝑃𝑃𝑃𝑃 − 𝑃𝑃𝑃𝑃                                                                                                                                                               (18) 
𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 𝑡𝑡𝑡𝑡 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏  
𝐸𝐸𝐸𝐸 𝑦𝑦″ = 𝑀𝑀(𝑥𝑥)                                                                                                                                                                       (19) 
∫𝐸𝐸𝐸𝐸 𝑦𝑦″ = ∫𝑃𝑃 (𝑥𝑥 − 𝐿𝐿)  
∫𝐸𝐸𝐸𝐸 𝑦𝑦′ = ∫𝑃𝑃 �𝑥𝑥

2

2
− 𝐿𝐿𝐿𝐿 + 𝐶𝐶1�             (𝜃𝜃) 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟                                                                                                                       (20) 

𝐸𝐸𝐸𝐸 𝑦𝑦 = 𝑃𝑃 �𝑥𝑥
3

6
− 𝐿𝐿𝐿𝐿2

2
+ 𝐶𝐶1𝑥𝑥 + 𝐶𝐶2�        (𝛿𝛿) 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑                                                                                                           (21) 

𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈 𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 𝑡𝑡𝑡𝑡 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠  
𝑎𝑎𝑎𝑎    𝑥𝑥 = 0.0     ,    𝜃𝜃 = 0.0                      𝑠𝑠𝑠𝑠𝑠𝑠 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 (20)  
𝐸𝐸𝐸𝐸 (0) = 𝑃𝑃 �(0)2

2
− 𝐿𝐿(0) + 𝐶𝐶1�  

∴ 𝐶𝐶1 = 0.0                                                      sub 𝑖𝑖𝑖𝑖 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 (21)  
𝐸𝐸𝐸𝐸 𝑦𝑦 = 𝑃𝑃 �𝑥𝑥

3

6
− 𝐿𝐿𝐿𝐿2

2
+ 𝐶𝐶2�  

𝐼𝐼𝐼𝐼 𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠   𝑎𝑎𝑎𝑎   𝑥𝑥 = 0.0       ,     𝑦𝑦 = 0.0  
𝐸𝐸𝐸𝐸 (0.0) = 𝑃𝑃 �(0.0)3

6
− 𝐿𝐿(0.0)2

2
+ 𝐶𝐶2�  

∴ 𝐶𝐶2 = 0.0  
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∴ 𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑  
𝐸𝐸𝐸𝐸 𝑦𝑦 = 𝑃𝑃 �𝑥𝑥

3

6
− 𝐿𝐿𝐿𝐿2

2
�                                                                                                                                                                 (22) 

𝑀𝑀𝑀𝑀𝑀𝑀 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 𝑖𝑖𝑖𝑖 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 𝑒𝑒𝑒𝑒𝑒𝑒 𝑤𝑤ℎ𝑒𝑒𝑒𝑒   𝑥𝑥 = 𝛼𝛼  
𝐸𝐸𝐸𝐸 𝑦𝑦 = 𝑃𝑃 �𝐿𝐿

3

6
− 𝐿𝐿3

2
�                                                                                                                                                                      (23) 

𝐸𝐸𝐸𝐸 𝑦𝑦 = 𝑃𝑃 �𝐿𝐿
3−3𝐿𝐿3

6
�  

𝐸𝐸𝐸𝐸 𝑦𝑦 = 𝑃𝑃 �−2𝐿𝐿
3

6
�  

𝐸𝐸𝐸𝐸 𝑦𝑦 = 𝑃𝑃 �−1𝐿𝐿
3

3
�                                                                                                                                                                    (24) 

∴ 𝑦𝑦 = 1
𝐸𝐸𝐸𝐸
�−𝑃𝑃𝐿𝐿

3

3
�                                                                                                                                                                          (25) 

∴  𝛿𝛿 = �−𝑃𝑃𝑃𝑃
3

3𝐸𝐸𝐸𝐸
� ↓                                                                                                                                                                          (26) 

𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑖𝑖𝑖𝑖 𝑤𝑤𝑤𝑤𝑤𝑤ℎ 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠.  
 
 

 

 

 
 

Fig. 1: Cantilever tested beam subjected to an external vertically concentrated force at the free end 
 
 

 
 

 

Fig. 2: Equilibrium of the deformed cantilever beam. 
 

                           

3. Mathematical formulation 

The aim of nonlinear analysis is to explain different nonlinearities and the structure of basic numerical equations utilised to 
assess the nonlinear response of a structural system. To achieve this, we must establish the body of interest's equilibrium in 
its current configuration. The aim is to establish an approximate solution for large deflections of the cantilever beam using 
the general equations for bending stress beams. In cases with large deflections, the angle ϕ remains minimal for every location 
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along the cantilever beam. The stresses generated on the section due to the force applied on the longitudinal axis of the beam 
are referred to as bending stress, and the beam itself is referred to as a flexural member. 
𝑓𝑓 = 𝑀𝑀∗𝑦𝑦

𝐼𝐼𝑠𝑠𝑠𝑠𝑠𝑠
                                                                                                                                                                                   (27) 

where 𝑓𝑓 is bending stress, M is bending moments, y is the height top compression section, and I refer to the moment of inertia 
of the beam cross section about the neutral axis. For this study, the section most exposed to stress should take the maximum 
bending moment (see Figure 3), as indicated in the equation below. 
𝑓𝑓𝑚𝑚𝑚𝑚𝑚𝑚 = 𝑀𝑀𝑀𝑀

𝐼𝐼𝑠𝑠𝑠𝑠𝑠𝑠
                                                                                                                                                                               (28) 

where c is the highest distance for bending stress. Consequently, we can write the flexural formula below. 
𝑓𝑓𝑚𝑚𝑚𝑚𝑚𝑚 = 𝑀𝑀𝑦𝑦𝐶𝐶𝑥𝑥

𝐼𝐼𝑥𝑥 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠
                                                                                                                                                                              (29) 

The basic formula is presented from Equations 2 and 3 as follows: 
𝑓𝑓𝑚𝑚𝑚𝑚𝑚𝑚 = 𝑀𝑀𝑀𝑀

𝑆𝑆𝑥𝑥
                                                                                                                                                                                           (30) 

𝑆𝑆𝑥𝑥 stands for the elastic section modulus. In this study, we examine the elastic zone of steel beams, as depicted in Figure 4. 
The calculator displays the steel section's bending moment, which contributes to the deflection calculation in Figure 5. Figure 
5 makes it easy to calculate the compression force by vertical equilibrium. 
𝐹𝐹𝑡𝑡𝑡𝑡𝑡𝑡 = 1

2
𝜎𝜎𝑦𝑦 × 𝑑𝑑

2
× 𝑏𝑏 ⟹ 𝜎𝜎𝑦𝑦𝑏𝑏𝑏𝑏

4
                                                                                                                                                       (31) 

Figure 5 makes it easy to calculate the tension force by vertical equilibrium. 
𝐹𝐹𝑇𝑇 = 1

2
𝜎𝜎𝑦𝑦 × 𝑑𝑑

2
× 𝑏𝑏 ⟹ 𝜎𝜎𝑦𝑦𝑏𝑏𝑏𝑏

4
                                                                                                                                                             (32) 

where the arm compression forces a form the top fibre compression is given by the equation (Figure 5). 
𝑎𝑎 = �𝑑𝑑 − 2 × �𝑑𝑑

6
�� ⟹ 𝑑𝑑

1
− 𝑑𝑑

3
= 2𝑑𝑑

3
                                                                                                                                                  (33) 

∴ 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 𝑎𝑎𝑎𝑎 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 = 𝜎𝜎𝑦𝑦𝑏𝑏𝑏𝑏
4

+ 2𝑑𝑑
3

= 𝜎𝜎𝑦𝑦𝑏𝑏𝑏𝑏2

6
                                                                                                                               (34) 

∴ 𝑀𝑀𝑦𝑦 = 𝜎𝜎𝑦𝑦 × 𝑏𝑏𝑏𝑏2

6
                                                                                                                                                                                (35) 

The large deflection effects on the cantilever beam are investigated by numerical methods in the calculation. As a result, the 
Rang-kuta method is one of the most accurate numerical calculation methods. 

 

 
 

Fig. 3: Representation of cantilever beam and the corresponding maximum bending moment's behavior under axial 
loading. 

 

 
Fig. 4: Stress-strain diagram for cantilever beams [16]. 
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Fig. 5: Diagram for steel beam in elastic zone condition. 

3.1 Analysis using rang-kuta method 

A cantilever beam is considered where thin steel material properties and geometries are taken for large deflection. In the 
Rang-kuta method, the displacement fields follow the higher-order fourth-degree (4ed) deformation cantilever beam theories. 
The application of this method is seen below. The rectangular Cartesian coordinate system x, y, and z is aligned with the 
length, width, and height of the beam, respectively, as seen in the Figure 6. We take a cantilever beam as an example, 
measuring 1.0 m in length, 0.01 m in height, and 0.01 m in width. We assume that the beam material is isotropic with E = 
200 GPa and that Poisson's ratio is zero. The stress placed on the cantilever beam (σ = 400 MPa), step size (h = 0.1), and 
section dimension (100 mm × 100 mm) are shown. Therefore, to calculate the deflection of any point along length beams 
using equation (35). 
𝑀𝑀𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦 = 𝜎𝜎𝑦𝑦 × 𝑏𝑏𝑏𝑏2

6
                                                                                                                                                                         (35) 

where My is the cantilever beam's bending moment support, equal to the distance between the concentrated load and the load 
value, and b and d are the beam's width and height. 
𝑃𝑃𝑦𝑦 × 1𝑀𝑀 = 4 × 105 𝐾𝐾𝐾𝐾

𝑀𝑀2 × (0.1)(0.1)2𝑀𝑀3

6
                                                                                                                                               (36) 

∴ 𝑃𝑃𝑦𝑦 = 66.66𝐾𝐾𝐾𝐾 
    

Thus, to stay in elastic Zone used 𝑃𝑃 < 𝑃𝑃𝑦𝑦    ,    𝑝𝑝 = 65𝐾𝐾𝐾𝐾  applied force to beam using equilibrium equations ,𝐴𝐴𝑦𝑦 =
65𝑘𝑘𝑘𝑘 (𝑢𝑢𝑢𝑢),𝑎𝑎𝑎𝑎𝑎𝑎     𝑀𝑀𝐴𝐴 = 65   𝑘𝑘𝑘𝑘.𝑚𝑚 (C.C.W). 
To determine the deflection of the equation, we must determine the internal moment at the given distance (x) (see Figure 7). 
∴ 𝑀𝑀(𝑥𝑥) = 65(𝑥𝑥 − 1)  
Substituting equations deflection (12) for E is the modulus of elasticity for steel beam equal to 200000 MPa, and I is the 
second moment of inertia of the cross section of the beam with respect to axis y equal to  𝑏𝑏ℎ

3

12
 we get.  

𝐸𝐸𝐸𝐸 𝑑𝑑
2𝑦𝑦

𝑑𝑑𝑑𝑑2
= 𝑀𝑀(𝑥𝑥)                                                                                                                                                                                     (12) 

200000 × 103 × (0.1)(0.1)3

12
× 𝑑𝑑2𝑦𝑦

𝑑𝑑𝑑𝑑2
= 65(𝑥𝑥 − 1)  

∴ 𝑑𝑑2𝑦𝑦
𝑑𝑑𝑑𝑑2

= 1
25.641

(𝑥𝑥 − 1)                                                                                                                                                                       (37)         
Used the numerical method to solve all details and assume:  
𝑍𝑍 = 𝑦𝑦′     ,      𝑧𝑧′ = 𝑦𝑦″  
This is a proposed non-linear deflection equation for cantilever steel beams subjected to concentrated load at the free end. 
𝑦𝑦𝑛𝑛+1 = 1

6
[𝐾𝐾1 + 2(𝐾𝐾2 + 𝐾𝐾3) + 𝐾𝐾4]                                                                                                                                                (38) 

Also, the proposed non-linear rottain equation for cantilever steel beams subjected to concentrated load at the free end. 
𝑍𝑍𝑛𝑛+1 = 1

6
�𝜎𝜎1 + 2(𝜎𝜎2 + 𝜎𝜎3) − +𝜎𝜎4

17 −�                                                                                                                                              (39) 
In Table 1, the numerical results obtained by the Rang-kuta method are reported to obtain the real value for deflection 
cantilever beams, so we have. 
∴ 𝑦𝑦𝑚𝑚𝑚𝑚𝑚𝑚 = 0.0128𝑀𝑀            𝑜𝑜𝑜𝑜 ≃ −13𝑚𝑚𝑚𝑚 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑  
The validity of the results obtained from the Rang-kuta method is established by comparing them with the basic general 
equation for deflection cantilever beams.  
∆= 𝑃𝑃𝑃𝑃3

3𝐸𝐸𝐸𝐸
= 13 𝑚𝑚𝑚𝑚    ∴ 0. 𝑘𝑘  

𝑎𝑎𝑎𝑎𝑎𝑎 𝜃𝜃 = 0.0196    𝑐𝑐. 𝑐𝑐.𝑤𝑤  
For more accuracy, this type of cantilever beam, shown below the relationship: 
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 𝑀𝑀
𝐸𝐸𝐸𝐸

=
�𝑑𝑑

2𝑦𝑦
𝑑𝑑𝑑𝑑2

�

�1+�𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑�
2
�
3
2�
                                                                                                                                                                                   (40) 

By repeating the same previous accounts, the results are tabulated in Table 2. It is seen that this equation (12) method gives 
better accuracy. 
 

 
                      (a)                                                                                     (b) 

Fig. 6: (a) Schematic illustrating the geometry of a cantilever beam and (b) the rectangular cross-section of the beam. 
 

 
Fig. 7: Internal forces for cantilever beams at distance x. 

 
 

Table 1: Numerical results for the rang-kuta method. 
h Deflection Rotation Angle 

0.1 -0.00019 -0.00371 
0.2 -0.00073 -0.00703 
0.3 -0.00158 -0.0103 
0.4 -0.0027 -0.0128 
0.5 -0.0040 -0.0150 
0.6 -0.0055 -0.0168 
0.7 -0.0073 -0.0181 
0.8 -0.009 -0.0190 
0.9 -0.011 -0.0195 
1 -0.0128 -0.0196 

 
Table 2: Numerical results obtained by equation deflection no. (12). 

h 𝑦𝑦𝑚𝑚 Rotation Angle θ 

0.1 -0.00019 -0.00371 
0.2 -0.0073 -0.00703 
0.3 -0.001583 -0.009955 
0.4 -0.002689 -0.01249 
0.5 -0.004049 -0.014636 
0.6 -0.005604 -0.017392 
0.7 -0.007315 -0.017758 
0.8 -0.009143 -0.018733 
0.9 -0.011049 -0.019318 
1 -0.012994 -0.019513 

 

4. Numerical results 

This section presents many numerical examples to compare the differences in large deflections of a non-linear cantilever 
steel beam. Additionally, an optimal design for a cantilever steel beam, based on a specified work hardening law, is shown. 
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It was studied in the case that the placed load less than loading that cause failure, that means staying in the elastic zone. To 
demonstrate the use of the beam theory, the Excel sheet is used to analyse three example cases. 

4.1 Case 1 

In the following numerical math calculations, we consider a cantilever beam with a length of L1 m and a rectangular cross-
section of b by h, where b is 0.1 m and h is 0.01 m (see Figure 8). Therefore, numerical results are presented only for a 
cantilever steel beam with and without neglecting the rotation angle. Table 3 shows the results for numerical cantilever beams 
under static loads. 

 
 
∴ 400 = (𝑃𝑃∗1)106∗∅

100∗103
12

   

∴ 𝑃𝑃 = 0.66𝑁𝑁. (𝐾𝐾𝐾𝐾)   
Used PYielding=0.6∅ N.(KN) 
The most significant fact that is seen from the numerical results (see Table 3) is that the yin length is 1 meter with angle 
rotation (θ) greater than Y in neglect angle rotation (θ).  
 

 
Fig. 8: Geometries of cantilever beams with section plate dimension 0.1x0.01 m. 

 
 

Table 3: Comparison effect rotation angle for large deflection of homogenous cantilever beam (1x0.1x0.01m). 

 

4.2 Case 2 

A 1 m long cantilever beam is loaded at its tip by a concentrated force. The thin steel beam, with rectangular cross-section 
dimensions’ width and height, 0.1 m width and 0.05 m height, as shown in Figure 9. The table 5 shows the results for 
numerical cantilever beams under static loads. 
  400 = 𝑀𝑀𝑀𝑀

𝐼𝐼
400 = (𝑃𝑃∗1)106∗2−5

100∗53
12

  

∴ 𝑃𝑃𝑦𝑦 = 0.166 𝑘𝑘𝑘𝑘  
𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢 𝑝𝑝 = 0.166 𝑘𝑘𝑘𝑘  
𝑝𝑝 < 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃  
In Elastic zone. 
The most significant fact that is seen from the numerical results (see Table 4) is that the load less than yielding load. Also, 
the result shows better accuracy with exact values for deflection values.  
In Exact ∆= 𝑝𝑝𝑝𝑝3

3𝐸𝐸𝐸𝐸
= 264𝑚𝑚𝑚𝑚 

 

Stress = 𝑀𝑀𝑀𝑀
𝐼𝐼

  

x Without angle ( 𝜃𝜃) With angle ( 𝜃𝜃) 
Y Z Y Z 

0 0 0 0 0 
0.1 -0.00018880 -0.0370800 -0.00018886 -0.037077 
0.2 -0.0072700 -0.0702000 -0.0072790 -0.070377 
0.3 -0.0157950 -0.0994500 -0.015837 -0.099950 
0.4 -0.0270400 -0.01248000 -0.027155 -0.0125789 
0.5 -0.0406250 -0.01462800 -0.040869 -0.0147846 
0.6 -0.0561600 -0.01638000 -0.056596 -0.0166050 
0.7 -0.0732550 -0.01774500 -0.073948 -0.0180320 
0.8 -0.0915200 -0.01872000 -0.092527 -0.0190578 
0.9 -0. 1105650 -0.01930500 -0. 111928 0.0196760 
1 -0. 1300000 -0.01950000 0.131742 -0.0198826 
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Fig. 9: Geometries of cantilever beams with section plate dimension 0.1x0.05 m. 

 
Table 4: Comparison effect rotation angle for large deflection of homogenous cantilever beam (1x0.1x0.05m). 

4.3 Case 3 

A 1 m long cantilever beam is loaded at its tip by a concentrated force. The thin steel beam, with rectangular cross-section 
dimensions’ width and height, 0.1 m width and 0.02 m height, as shown in Figure 10. Table 5 shows the results for numerical 
cantilever beams under static loads. 
Stress = 𝑀𝑀𝑀𝑀

𝐼𝐼
  

400 = (𝑃𝑃∗1)106∗1
100∗23
12

  

∴ 𝑃𝑃 = 0.666𝑁𝑁  
𝑂𝑂𝑂𝑂 𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈          𝑝𝑝 = 25𝑛𝑛 0.6 𝑁𝑁 < 𝑝𝑝𝑝𝑝 = 26.6𝑁𝑁  
In Elastic zone. 
 

 
Figure 10: Geometries of cantilever beams with section plate dimension 0.1x0.02 m. 

 
 

Table 5: Comparison effect rotation angle for large deflection of homogenous cantilever beam (1x0.1x0.05m). 

 

x Without angle ( 𝜃𝜃) With angle ( 𝜃𝜃) 
Y Z Y Z 

0 0 0 0 0 
0.1 -0.003830 -0.0375277 -0.003836 -0.075492 
0.2 -0.014791 -0.142630 -0.014870 -0.144105 
0.3 -0.032092 -0.20259 -0.032444 -0.206317 
0.4 -0.054939 -0.253565 -0.055921 -0.262134 
0.5 -0.082541 -0.297147 -0.084646 -0.311205 
0.6 -0.0114105 -0.332805 -0.0117917 -0.352924 
0.7 -0.148838 -0.360539 -0.15961 -0.386536 
0.8 -0.188948 -0.380349 -0.194928 -0.411258 
0.9 -0. 224643 -0.392235 -0. 236893 -0.426405 
1 -0.264131 -0.396197 -0.279874 -0.431509 

x Without angle ( 𝜃𝜃) With angle ( 𝜃𝜃) 
Y Z Y Z 

0 0 0 0 0 
0.1 -0.009068 -0.178236 -0.009144 -0.181136 
0.2 -0.035022 -0.337711 -0.036116 -0.358789 
0.3 -0.075985 -0.478424 -0.081183 -0.544821 
0.4 -0.130081 -0.600375 -0.145742 -0.750732 
0.5 -0.195434 -0.703564 -0.232435 -0.990051 
0.6 -0.270168 -0.787992 -0.345422 -1.279839 
0.7 -0.352407 -0.85365 -0.490706 -1.638935 
0.8 -0.440274 -0.90056 -0.67506 -2.071312 
0.9 -0. 531894 -0.92870 -0. 904541 -2.504016 
1 -0. 6253 -0.9380 -1. 16819 -2.770766 
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5. Conclusions 

This study presented a numerical investigation on thin steel cantilever beams subject to concentrated loads at the free end. 
The investigation's key findings allow us to draw the following conclusions: 
1. Most theoretical studies rely on numerical solutions because the governing equations are highly nonlinear. 
2. The new technique relies on the concept of large nonlinear deformations. 
3. The methods may be used to design cantilever beams made of steel materials with a variety of cross sections. 
4. The result demonstrated that, despite dealing with a basic physical system, it was defined by a differential equation 

containing a non-linear element. 
5.  The material non-linearity is predominant in the deflections of a steel cantilever beam. 
6. The most significant fact that is seen from the numerical results, is that the yin length is 1 meter with angle rotation (θ) 

greater than Y in neglect angle rotation (θ). 
7. It is demonstrated that when rotation decreases, the deflection based on the large deformation theory has a better 

accuracy with exact values for deflection values. 
8. It is shown that the gradient distribution of the Young’s modulus has an important influence on the deflections of a 

cantliever steel beam. 
9. While elliptic functions can define the solutions to elastic equations, numerical integration, as illustrated in this paper, 

is significantly more practical in application. 
10. A thin steel plate with various cross-section dimensions was tested. The numerical results confirm that the new method 

is suitable for measuring large deflection and rotation angles for cantilever beams. 
11. Based on the assessments, the proposed method is widely applicable to large deflection measurement in thin steel plate 

materials under concentered loads at the free end for cantilever beams. 
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