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Abstract
In this paper, a numerical solution of fractional reaction-dispersion equation with

Riesz space fractional derivative has been presented. The algorithm for the numerical
solution for this equation is based on two finite difference methods. The consistency,
stability, and convergence of the fractional order numerical method are described.

The numerical methods have been applied to solve a practical numerical example
and comparing results with the exact solution. The results were presented in tables
using the MathCAD 12 software package when it is needed. The two finite difference
methods appeared to be effective and reliable in solving fractional reaction-dispersion
equation with Riesz space fractional derivative.

Keywords: Riesz fractional derivative, two finite difference methods, fractional
reaction- dispersion equation, stability, convergence.

gﬂﬂ‘})&h&é&@aﬁ)ﬂ\w\ JJ_MMAM“@JM\M\
bl
) slcad A8 G ae Ay 3ol Jadl) 5 ) i 55 Alalaad gaaal) Jall lead aanll 12 4
Gl iy yha bl (e Al c¥alaal) LB ganall Jall Ay )l & ol Lo g S
1)l 3 Al Gl il Al ]y i) e 5 i gl
A Dl Jall ae i) 45 jlia y Sl gare U Jal dpasall 3kl Gkt a%
Bl (g yhall () Jas o1 Aalal) 2ie ] 20l Eila el pladinly Jolaa IS5 o &Sl (i e
S8 5 eliad A aa By pul) Jadl) 5 ) it Aalae Ja 3 Adle 480 5 301 D dpgiid)

Introduction effective numerical methods and

arious fields of science and
engineering deals with the

dynamical systems that can be

described by fractional partial
differential equations, for example,
system of biology, chemistry and
biochemistry, applications due to
anomalous  diffusion  effects in
constrained environments. However,

numerical analysis for fractional partial
differential equations are still in their
infancy, [1, 2, 3, 4, 5, 6].

Liu F. et al. [7] considered the
fractional Fokker-Planck equation and
presented its numerical solution.
Recently, Liu F. et al. [8] also treated
the fractional advection-dispersion
equations and derived the complete
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solution of this equation with an initial

condition. Chen and Liu [9] considered
the space Riesz fractional reaction -
dispersion equation and gave error
analysis. Meerschaert M. et al. [10]
considered the finite difference

approximations for two-sided space-
fractional partial differential equations

and discussed their stability,

consistency and convergence of the
method.

In this paper implicit and explicit
numerical methods for solving the
fractional reaction-dispersion equation
with Riesz space fractional derivatives
are presented. Its stability and
convergence are analyzed.

Two Finite Difference Methods for
Solving the Fractional Reaction-
Dispersion Equation

In this section, we propose two finite
difference methods, i.e., an implicit
finite difference method and explicit
finite difference method for solving the
fractional reaction-dispersion equation
of the form:

ou(x,t) _
- . Q)

-u(x,t) + Dyu(x,t)

In this problem initial and boundary
conditions are considered which are:

u(x,0)=f(x),L<x<R ...(2)
u(Lt) =y, ), 0stsT .(3)
u(R,t) =yo(t) (1),0<t<T w(4)

where [L,R] is bounded space domain,
f is a known function of xjp; and ),
are known functions of t. the Riesz
space-fractional derivative of order .
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Df’, is the Riesz operator, which is
defined as:

D¢ = -C[D{, +
Where

DZ]
C= ;
999%0s(@ 77/ 2)

And D; are defined as the shifted

Grunwald estimate to thea-the

fractional derivative, [10]:

Fulxt) 1 & o
o kZOQkU(X (k=DAxt) +O()
. (5)

07u(xt) _ 1
o.x" (X7

3 g0+ (=DA%, t) + O(A)

k=0

Where

g =(-p- 2=V 'M(a_kﬂ) k=0,1,2,...

The finite difference method starts by
dividing the x-interval [L, R] into n
subintervals to get the grid points
Xi= L + iAX, where Ax=(R-L)/n and
i=0,1,...,n. Also, the t-interval [0, T] is
divided into m subintervals to get the
grid points t= jAt, j = 0,1,...,m, where
At =T/m.

First, we present the following
implicit finite difference method for the
initial-boundary value problem of the
fractional reaction-dispersion equation.
By Reisz fractional derivative of the
shifted Grunwald estimate to the -
the fractional derivative eq.(5) where
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M_=n-i+1 and M, =i+1 [10], one
can get:

l'!,j+1_l",j :_L‘. _ niﬂgq 4
N L (AX)a £ kA 4k, j+1

i+l

Z gkui—k+1j+1:| '
k=0

i=12...n-1 j=041..m-1
Wherey, ; = u(x,t;).

.. (6)

The resulting equation can be
implicitly solved for y;.; to give

n-i+l

Ui jia ﬁC|: Z OyUisigjer Tt
k=0

i+1

Z gkui—k+1,j+1} =14,
k=0

i=12..,n-1 j=01..m-1....(7)

Wheref3 = A :
@A+A0) (DAY
1
=0+ Ay

Secondly, we present the following
explicit finite difference method for
solving the fractional reaction-
dispersion equation eq.(1) with the
boundary conditions (3), (4), and the
initial condition (2), also use is made of
Reisz  fractional derivative of the
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shifted Grunwald estimate to the-th
fractional derivative given by eq.(5) to
reduce it as in the following form:

n-i+l

Z OxUisyg; T
k=0

|

i=12,...n-1 j=01..m-1

Ui jer = 17U — ﬂC|:

i+1

Z O Uisis
k=0

.. (8)

At

Where7 = (1- At),B = (Bx)°

Y =uixt).
After evaluating eq.(7) and eq.(8) at
i=1,...,n-1, j=1,....m-1 and s=0,...,M
one can get a system of algebraic
equations which can be solved.

Also form the initial condition and
boundary conditions one can get

uo = f(x), i=0,1,..., n

u;= qu(tj)’ j:O,l,..., m

R, = qJZ(tj)’ j:O,l,..., m

Consistency, and
Convergent

The methods implicit Euler and
explicit defined by eq.(7) and eq.(8)
are consistent with order
O(At) + O(AX[”]) , Where [a’] denotes
the largest integer that is less than or
equal tax. That consistency of two
finite difference methods together with
the results theories (3.1) and (3.2)
located at the bottom on
unconditionally stability of implicit
and conditionally stability of explicit
implies that the two finite difference

Stability
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methods are convergent.

Theorem 3.1: The implicit system
defined by the linear difference eq.(7)
for eq.(1) is unconditionally stable for

all 1<a<?2.
Proof:

The system of equations defined by
(7), together with the initial and

boundary condition can be written in
the implicit matrix form AUj = 'Bli
where
— T
lﬁ _[uo,jlul’jl--'!un'j] !and

A is the matrix of coefficients, and is
the sum of a lower triangular matrix
and a super diagonal matrix. Therefore

the resulting matrix entriesA ; for
i=12...,n-1 and j=12...,n-1 are
defined by:

1+pCg, +BCg, for j=i

_| BCg,+BCyg, for j=i-1
A=Y pca,+BCy, for j=i+l
lBi—lcgi—j+1 for j<i-1

To illustrate this matrix pattern, we list
the corresponding equations for the
rows i =1, 2 and n-1:

(ﬁngO + ﬁlCQZ)uO,j+1 + (1+ Iglcgl +
BCYU, 1., +(BCY, + BCGIU, g =1y

B,CaaU, .+ (B,CQ, + B,CY,)Uy .y +
@+ B,Cy, + B,Ca,)u, ., +(B,Cy, +
ﬂzcgo)us,jﬂ =Ny,

ﬁn—lcg nuo,j+1 .ot (ﬁn—ngo +
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IBZCg 2)un—2,j+1 + (1+ lgn—lcgl +
lgn—lcg 1)un—l,j+1 + (lgn—ng 2 +
:Bn—lcgo)un,jﬂ :”un—l,j

According to the Greshgorin theorem

[11], the eigenvalues of the matrixli
in the union of the circles centered at

A ; with radiusr, = A -
0

| =
121

Here we have

A; =1+ BCg, + BCg, =1-2BCa

and
n n-i+1 i+l
OITEVIS DICHIFED XA
1=0 1=0 Iz
1#i I#i I#i
<2BCa

With strict inequality holding true
when g is not an integer. This implies

that the eigenvalue of the mathare
all no less than 1 in magnitudes. Hence
the spectral radius of the matéxis
less than 1. Thus any errorlth! is not

magnified, and therefore the implicit
Euler method defined above is
unconditionally stable]

Theorem 3.2: The explicit finite

difference method (8) is stable if
At < 1+7 , for all 1<a < 2.

Ax? 4a

Proof:

The system of equations defined by
eq.(8), together with the initial and
boundary condition can be written in
the explicit matrix form
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U,.,, =BU, where
— T
Uj =[Ug .Uy jeiy ] ,and

B is the matrix of coefficients, and is

the sum of a lower triangular matrix
and a super diagonal matrix.

To illustrate the matrix B pattern, we
list the corresponding equations for
i=1,2andn-1:

Uy = ~(BiCYo + BiCYL)U,, +
('7 - ﬂngl - ﬂngl)ul,j -
(lglch +131Cgo)u2,i

u =-5,Cg sUo,j ~ (B,Cg, +
B.Cg,)uy; + (7 - B,Ca, -
IBZCg 1)u2,j - (ﬂzcg 2t

,Bzcgo)us,j
= -4,.,Cg nUo o ~

(B14Co *+ B,1C,)U, 5 ) +
(7-5,4Cq = B,.CAU,4; —
B,CU, |

2,j+1

un—l,j+1

Therefore the resulting matrix
entriesB, ; fori =12,...,n-1and

j =212,...,n—1 are defined by:

n-BCg-BCg for j=i

_|-(BCg+BCq,) for j=i-1
" 7)-(BCg+BCy) for =i+l
_ﬂi_lcg_jﬂ fOI’ J <i -1

According to the Greshgorin theorem

[11], the eigenvalues of the matrixIig

in the union of the circles centered at

713

B, with radiusr, = z B

=0
£i

il
|
|

Here we have

B, =n+BCq +BCq =n-26Ca

and
n n—i+l i+1
= Z Bl,l = IBiC Z Qo+ +Z Qo141
I I I
<2BCa

and therefor®,; + r, < 1. We also

have
B, -r2n-28a-2Ba=n-4Ba

At
-4 a
7 {AX”}

Therefore for the spectral radius of the
matrix A to be at most one, it suffices to

have
At }az—la [ At }as
X AX° 4

2l [ a b
4

,7_

AX° T4
At < 1+n
AX“ 4a

wheres7 = (L-At).
Therefore the explicit Euler method
defined above is conditionally stable.
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Numerical Examples Table 2 show the numerical solution
In this section, two numerical using the explicit finite difference
examples are presented, showing the approximation. From table 2, it can be
fractional reaction-dispersion equation seen that that good agreement between
with Riesz space fractional derivative the numerical solution and exact

behaviorsof the solution with the two solution.
finite difference methods. Conclusions
Example 1: Consider the fractional In this paper

reaction-dispersion equation: 1-Numerical methods for solvinghe

fractional reaction-dispersion equation
with Riesz space fractional derivative
hasbeen described and demonstrated.

2-The two finite difference methods are

ou(x,t) _ 9 °u(x,t) — x5t
0'[ axl.S

subject to the initial condition
u(x,0)=%% 0<x<0.2
and the boundary conditions
u(,t) =0, @t<0.025
u (0.2,t) =0.44721"¢0 < t <
0.025
This reaction-dispersion equation
together with the above initial and
boundary condition is constructed such
that the exact solution is u(x,t)2%e".
Tablel show the numerical solution
using the implicit finite difference
approximation. From table 1, it can be
seen that that good agreement between
the numerical solution and exact
solution.
Example 2: Consider the fractional
reaction-dispersion equation:

(2]

[3]

[4]

du(x,t) _ a™u(x,t) _
ot ox*®

X O.Se—l

subject to the initial condition
u (x,0)= %% 0<x<0.5
and the boundary conditions
u(,t)=0, &t<0.02
u (0.5,t) =0.70711'e0< t< 0.02
This reaction-dispersion equation
together with the above initial and
boundary condition is constructed such
that the exact solution is u(x,t)23e".

[5]

[6]
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proved to be stable and converge.
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Table 1: The numerical solution of example by usinghe implicit finite
difference  method for®X = 005andAt = 0.0125

X t Numerical Solutior Exact Soluion Error

0.05 0.0125 0.22100 0.22083 -0.17083 E-
0.10 0.0125 0.31200 0.31230 0.29952 E-3
0.15 0.0125 0.38300 0.38249 -0.51276 E-3
0.05 0.0250 0.21800 0.21809 0.85926 E-4
0.10 0.0250 0.30900 0.30842 0.57993 E-3
0.15 0.0250 0.37800 0.37774 -0.26410 E-3

Table 2: The numerical solution of example by usinghe explicit Finite difference

method forAx = 0.125 and At = 001

X t Numerical Solution Exact Solution Error

0.125 0.01 0.35000 0.35004 0.a08-4
0.250 0.01 0.49500 0.49502 0.208-4
0.375 0.01 0.60600 0.60628 0.268-3
0.125 0.02 0.34700 0.34655 -0.48@0-3
0.250 0.02 0.49000 0.49009 0.008-3
0.375 0.02 0.60000 0.60025 0.068-3
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