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ABSTRACT

This research investigates how deep learning might be used to optimize beamforming in wireless communication
systems that are helped by Reconfigurable Intelligent Surfaces (RIS). Our goal is to increase the possible data rates by
dynamically forecasting the best phase shifts for RIS elements by utilizing Convolutional Neural Networks (CNN) and
hybrid CNN-Long Short-Term Memory (CNN-LSTM) models. We assess the performance of these deep learning models
against conventional genie-aided techniques by simulating real-world wireless settings using the DeepMIMO dataset. The
findings demonstrate that beamforming based on deep learning can reach near-optimal performance, greatly lowering
the overhead associated with channel estimation while improving communication efficiency. In order to support the
development of next-generation wireless networks like 5G and 6G, this study shows how deep learning approaches can
be used to increase the effectiveness of RIS-assisted systems.

Keywords: Reconfigurable intelligent surface (RIS), Beamforming, Deep learning, CNN, LSTM, DeepMIMO, Wireless
communication, 5G, 6G

1. Introduction

MULTIPLE Input Multiple Output (MIMO) system
has become a focal point of research due to its
potential to significantly improve wireless commu-
nication and support the rapidly growing Internet
of Things (IoT), where billions of devices are an-
ticipated to connect and communicate seamlessly
[1–10]. A key innovation driving these advancements
is the incorporation of Reconfigurable Intelligent Sur-
face (RIS) technology, which builds upon traditional
MIMO frameworks to enhance throughput, broaden
cell coverage, and reduce power consumption by
leveraging high-gain antenna arrays. RIS operates by
manipulating electromagnetic waves, al- lowing for
concentrated energy in three dimensions, which sup-
ports applications such as wireless power transfer,

high- precision sensing, and the transmission of large
data volumes [2–5].

A typical RIS system consists of a planar array of
numerous reflective elements, each functioning as a
phase shifter to control the direction of reflected elec-
tromagnetic signals. This mechanism not only alters
signal propagation but also enhances communication
quality [6, 7]. The RIS reflection matrix optimization
is key to improve the quality of communication and
increase the amount of data that can be sent. There
are two principal methods for this optimization: the
first approach leverages exhaustive training at the
transmitter/receiver to infer the RIS-assisted channel,
which is computation-intensive because of intricate
reflections among numbers of reflective elements [8,
9]. The second way of selecting the reflection matrix
is by using predetermined quantized codebooks for
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channel selection without explicit channel estimation
and can lead to increasing system complexity and
dedicated hardware implementations but at the cost
of possibly deteriorated system performance [10].

Based on the recent research, using an on-off
scheme for channel estimation can reduce training
overhead and a three-step cascaded channel esti-
mation process provides higher efficiency. Standard
methods however do not make the best use of prior
knowledge within shared channels, which parameters
could be investigated and optimized further [11].
Prior studies on Reconfigurable Intelligent Surface
(RIS) interactions have been predominantly dedi-
cated to solving problems of channel estimation and
beamforming design [12–16]. In this regard, the
techniques merged with deep learning (DL) have
been suggested in order to reduce training burden
of channel and beam [12]. Based on these, an RIS
configuration optimization approach was proposed in
[13] that has triggered a number of stems regarding
this method and its benefits [17]. Well, in terms of
channel estimation and beamforming issues coordi-
nated with RIS, supervised DL is proposed to learn
how to map pilot signals more efficiently [14], and
unsupervised DL are used for those applications im-
provements. Further, in [15], the minimum variance
unbiased estimator has also been proposed to im-
prove the channel estimation accuracy. Besides, deep
learning has been used to alternatively determine the
RIS reflection matrix so as to maximize the recog-
nition of reflection coefficients that improve system
performance [16, 18–27].

1.1. Contribution

This work enhances the research in Reconfigurable
Intelligent Surface (RIS) based communication sys-
tems with a focus on utilizing Deep Learning (DL) and
Long Short-Term Memory (LSTM) networks for op-
timizing beamforming efficiency. Below are the key
contributions of this code and methodology:

• CNN and CNN-LSTM Hybrid for Beamforming
Prediction: The integration of LSTM layers and
CNN-LSTM hybrid architecture enhances beam-
forming performance by modeling temporal and
spatial dependencies, leading to improved ac-
curacy and efficiency compared to traditional
methods.

• Efficient Achievable Rate and Reduced Channel
Estimation Overhead: The DL model approxi-
mates optimal beamforming performance, offer-
ing a computationally efficient alternative with
reduced training overhead, particularly in large-
scale applications like (RIS).

• Realistic Dataset Evaluation and Open-Source
Contribution: The use of the DeepMIMO dataset
ensures robust performance evaluation, and the
open-source licensing allows other researchers
to build on this work for RIS beamforming
optimization.

2. Liteature review

One of the key contributions was the creation of a
(DL) framework for channel state information (CSI)
in (RISs) by Elibir et al. [27]. Pilot signals were re-
ceived by the user equipment (UE), and the DL model
used in their methodology used these signals as in-
put. Artificial training data was generated by forming
input-output pairings across several channel realiza-
tions by turning RIS elements ON and OFF. The deep
neural network (DNN) produced vectorized channel
matrices as its output, while direct and cascaded
channels supplied the input data. It’s interesting to
note that the model did not require retraining when
the user’s location moved by four degrees. The DL
architecture was composed of two nine-layer (CNNs)
with an optimizer for stochastic gradient descent
(SGD) of 128 samples, dropout, and mini-batches.

A two-phase system was proposed by Taha et al.
in [28]. The learning phase, also known as Phase
1, involved RIS doing a thorough search for data in
order to train the DL model. Selecting the optimal
beamforming vector to optimize the achievable rate
was necessary. The concept is to produce pairs of the
output vector and the input channel vectors, which
the model must correctly map before the trajectory
is completed. The DL model entered the prediction
phase after estimating the beamforming vector from
the estimated channel. The architecture was trained
on the DeepMIMO dataset using a neural network
(NN) with many layers that was built using rectified
linear unit (ReLU) activation.

The authors of a different study [29] developed
DeepRIS, a DL-based detector that estimates the chan-
nel and phase angles at wireless receivers using the
received signal. This model was trained offline using
random bit sequences, phase alterations, and syn-
thetic channel realizations. Its output provided an
estimate of the transmitted symbol and CSI. The
architecture employed the Adam optimizer in con-
junction with an artificial neural network (ANN) that
had a tanh activation function and a customizable
number of fully connected layers in order to preserve
negative weights.

A deep-learning based denoise model for predicting
channel state information (CSI) was proposed in [30]
and it is named deep-denoising neural network
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Table 1. Related work summarization.

Reference Database Used ML Algorithm Architecture and Methods Available Source Code?

[27] Synthetic DL Two 9-layer CNNs, dropout, SGD optimizer,
minibatch training

Yes, MATLAB R2018b

[28] DeepMIMO DL Flexible-layer adaptive neural network with
ReLU activation function

Yes, MATLAB R2018b

[29] Synthetic DL Tanh activation, Adam optimizer, and adaptive
neural network with a changeable number of
layers

No

[30] Synthetic DL CNN with 64 filters (3 × 3 × 64), ReLU ac-
tivation, 15 convolutional layers, and Adam
optimizer

Yes, MATLAB R2018b and Python

[31] Synthetic DL CNN designs using EDSR and MDSR, and the
ReLU activation function

Yes, Python

[32] Synthetic DL Batch normalization, ReLU activation, 3 × 3 fil-
ters with conv2D layers, and FFDNet CNN

Yes, Python

[33] DeepMIMO DL CNN with 32 filters, ReLU activation Yes
[34] Synthetic DL NN architecture with ReLU activation, NMSE

loss function
Yes, Python

[35] Synthetic DL ANN with linear layers, sigmoid activation,
Adam optimizer

Yes, Python

(DDNN), which aims to act in millimeter wave
(mmWave) reconfigurable intelligent surface (RIS)
systems. The idea is to exploit the sparsity of cascaded
channels and compressive sensing (CS) as not all
the components were used in training, then end
up using orthogonal matching pursuit (OMP) for
reconstructing a full channel matrix from partial
data. When we proposed the OMP-DL framework,
we further employed an over complete dictionary
and more optimized multi-carrier pilot signals to
enhance system performance. The model architecture
consisted of a 15-layer CNN with ReLU activation
and Adam optimization, where each layer has 64
filters of size 3× 3 × 64.

Recently, [31] has introduced a deep learning
model with the use of CNNs to accelerate CSI
calculation in RIS-assisted networks. For single-ray
settings, an extended deep super-resolution neural
network (ESDR) model was proposed to accurately
estimate the CSI. In the multi-scale deep super-
resolution neural network (MSDR), parameters could
be adaptively adjusted for multiple scales and sparse,
low-resolution devices [11]. Both models use ReLU
activations for forecasting the channel matrix.

The Fast and Flexible Denoising Network (FFDNet),
a CNN-based approach, was released in [32]. In this
model, synthetic channel realizations with indepen-
dent real and imaginary components were assumed.
In the residual block, FFDNet fed noise variance infor-
mation using Adam optimization, 2D convolutional
layers, and ReLU activation functions.

The distributed machine learning (DML) system
was first presented in [33] and employed CNN to
manage downlink CSI estimation. This approach
enhanced the accuracy of estimation by obtaining

features from the channel under different conditions.
The system operated even when users moved between
cells because the base station (BS) generated a global
model that users shared and cooperatively trained us-
ing local datasets. Max-pooling, batch normalization,
ReLU activation, Adam optimization, and 32 filters
with a 3 × 3 kernel were all included in the design.
The model was trained using the outdoor scenario of
the DeepMIMO dataset.

He et al. [34] The techniques to arrive at a deep
unfolding solution exploited the cascaded channel
matrix as it is rank-deficient thereby minimizing
training overhead and improving inceive CSI esti-
mation. It was constructed with linear layers, had
synthetic channel realizations as input, used Adam
optimization and ReLU activation in all but the last
layer.

The performance of the RIS-reflective network was
first tuned using multi-user (MU) downlink precod-
ing, channel state information (CSI) estimation, fol-
lowed by sigmoid activation and Adam optimization
[35]. It appeared to be effective particularly when
there was a line of sight (LOS) between user devices
and the base station (BS). Therefore, the BS utilized
low pilot signals along with low feedback overhead
over a downlink network for acquiring the CSI.

3. Methodology

3.1. Model system

In the system under examination, a base station
(BS) interacts with many users via a wireless com-
munication network supported by a Reconfigurable
Intelligent Surface (RIS) [36]. Each of the many
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passive reflecting components that make up the RIS
has the ability to change the incident signal’s phase in
order to improve communication between the users
and the BS. This system model is based on a downlink
MU scenario in which the users are single-antenna de-
vices and the base station (BS) has multiple antennas.

The RIS is crucial to enhancing signal quality be-
cause the direct communication path between the
BS and the users might occasionally be impeded by
obstructions or distance [37]. The system may intel-
ligently guide messages towards users by modifying
the phase shifts of the RIS components, hence enhanc-
ing overall communication efficiency.

The received signal at the kth subcarrier can be
represented as the sum of the direct signal from the
BS and the reflected signal via the RIS. The received
signal yk at subcarrier k is expressed as [28]

yk = hTR,k9khT,ksk + hTR,ksk + nk, (1)

Where hTR,k denotes downlink channel matrix, 9k
implies interaction matrix of RIS and hT,k means the
uplink channel. Here the sk is refers to transmitted
signal vector and (nk) represents receive noise.

The main objective of the system is to maximize the
transmit signal power at the users by optimizing the
RIS phase shifts. This optimization seeks to maximize
the achievable rate of the system. The problem can
be formulated as follows [28]:

R? = max
ψ∈P

1
K

K∑
k=1

log2

(
1+ SNR

∣∣∣(hT ,k � hR,k)Tψ∣∣∣2)
(2)

In the system model, the key assumption is that
the RIS operates in a quasi-static environment, mean-
ing the channel coherence time is sufficiently long
for accurate estimation and adjustment of the RIS
phase shifts. Additionally, the model assumes perfect
channel state information (CSI) at the BS and the
RIS, which enables precise control over the RIS phase
shifts to maximize signal quality at the users [38].

3.2. Channel model

The wireless communication channel between the
users and the base station (BS), both directly and
through the Reconfigurable Intelligent Surface (RIS),
is taken into consideration in this system [39]. The
RIS introduces phase changes to align the reflected
signals with the direct signals, enhancing the received
signal along the many pathways that make up the
total channel [40]. The relationship between the sent

signal, the RIS, and the received signal at the user is
modeled in this section.

The communication model assumes a narrowband
multipath channel with L significant propagation
routes. Every path has a unique time delay, compli-
cated gain, and arrival and departure angles [41].
Let M be the number of RIS reflecting elements; let
T be the transmission time; and let ρ be the signal
power. The following equation describes the channel
between the transmitter and the kth the channel vec-
tor at subcarrier, known as hT,k [28]:

hT,k =

√
M
ρT

D−1∑
d=0

L∑
l

αl (θl, φl ) p
(
dTs − τl

)
e− j2πkd (3)

The complex gain linked to the lth path is denoted
by αl in this equation, and the array response vector
corresponding to the azimuth and elevation angles θl
and φl is represented by αl(θl, φl ). The pulse-shaping
function, p(dTs − τl ), takes into account the delay τl
that the lth route experiences, and e− jkd takes into
account the phase shift that the k-th subcarrier of the
total K subcarriers introduces.

The RIS works as a passive beamformer, optimizes
the phase of the incoming signal at each reflecting
element to increase power of the receiving signal. The
global signal perceived by the user originates from
the direct signal broadcasted from the base station
and that reflected by the RIS. This also opens up the
possibility to achieve higher data rates and improved
communication quality as the system can intelligently
combine signals of multiple paths while setting the
phase shifts at RIS [28].

For the analysis and optimization of RIS-assisted
communication systems, the channel model is very
important. Effective beamforming algorithm design
and non-ideal system capacity evaluation depend
heavily on its ability to represent various routes,
phase shifts, and signal delays. In Fig. 1, a commu-
nication system is constructed with a Reconfigurable
Intelligent Surface (RIS).

As seen in Fig. 1, RIS is made up of several reflect-
ing parts that function as the transmitter’s multiple
receivers’ means of communication (similar to the
passive or intelligent surfaces). Fig. 1 illustrates this,
showing how the RIS blocks the direct line path be-
tween the transmitter and receiver before making
up for it. In order to ensure that the signal can get
through obstructions like the tree, which is depicted
as a blockage, the RIS interacts with the broadcast sig-
nal and reflects it towards the receiver. Phase shifters,
which modify the incoming signal’s phase to enhance
signal alignment at the receiver, are a feature of the
RIS elements. It is believed that the RIS architecture
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Fig. 1. The system model of an RIS-assisted transceiver system.

includes these phase shifters. The interaction between
the RIS elements and the incident signal is modeled
using an interaction vector denoted as [ψm] = e jφm
where each element φm represents the phase shift
introduced by the corresponding RIS element.

A predetermined code-book of interaction vectors P
is used to choose the interaction vector. The codebook
provides different preset phase shift patterns that the
RIS can employ to adjust the signal’s reflection. As
mentioned in [12], the underlying premise is that a
small number of active reflecting elements are dis-
persed at random throughout the passive ones on the
RIS. While the passive elements reflect the signal with
a fixed phase shift, the active elements can alter their
phase shifts dynamically.

The channel between the RIS and the receiver,
represented as hR,k and the sampled channel vector
between the transmitter and the RIS active elements,
indicated as hT,k are represented as hT,k cM×1 and
hR,k cM×1 , respectively. The channel vectors can be
written as follows [28]:

hT,k = GRIShT,k (4)

hR,k = GRIShR,k (5)

where GRIS is an M selection matrix that selects the
active RIS elements from the total set of RIS ele-
ments. This selection matrix determines which RIS

elements participate in the reflection process and is
tuned based on the configuration of the RIS elements.

Therefore, the overall RIS channel vector, hs, can
be written as the product of the two channel vectors,
as follows:

Here, represents the element-wise product, com-
bining the channels between the transmitter and RIS
with the channels between the RIS and the receiver.
This model captures how the RIS reflects the signal
and how the active elements contribute to enhanc-
ing the communication link by compensating for the
blocked direct path [28].

3.3. Limitations and impact of the deepmimo dataset
on model generalizability

The DeepMIMO dataset, which plays a central role
in our simulations, targets realistic urban wireless
communication scenarios that are critical to the cre-
ation of modern technologies like massive MIMO and
Reconfigurable Intelligent Surfaces (RIS). The dataset
has been created employing high resolution settings
of Wireless InSite by Remcom and is corroborated
with real yield measures and consists of higher fre-
quencies such as 3.4 GHz, 3.5 GHz, and even higher
millimeter wave bands [42–44]. To have over one-
million potential users, it realistically mimics urban
areas regarding interactions such as path loss, shad-
owing, or multipath reflections.
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Fig. 2. The proposed RIS architecture with M¯ active channel sensors for channel estimation and phase shifting, alongside passive reflectors
that apply fixed phase shifts without baseband connection.

In general, DeepMIMO dataset appears to be quite
exhaustive, although some shortcoming can still be
observed because of its static design and mostly urban
scenes. This can however limit the generalizability of
the dataset to other types of environments, say those
in rural and suburban areas. Also, it lacks dynamic
changes like a moving obstacle in the field of view,
or changes in atmospheric conditions, which maybe
undesirable when it comes to the application of
the models trained on this dataset under real-world
variability.

For these reasons, and in an effort to reduce bias
and increase generalizability of the findings of this
study, efforts towards validation of the tool have
to be extended across more diverse and dynamic
settings. Ensuring more environmental conditions
are included in the datasets to make the models
from DeepMIMO a more comprehensive set, or
including real-time data, also has the potential to
drastically enhance the stability and transferability
of the models. Some of these steps would assist in
guaranteeing that the optimized solutions emanating
from such simulations operate optimally not with
simulated conditions, but in real implementation
contexts.

3.4. Reconfigurable intelligent surface (RIS)
architecture

The Reconfigurable Intelligent Surface (RIS)
architecture presented here in Fig. 2 features either
active or passive designs to enable efficient wireless
transmission. Let the RIS consist of total M reflecting
elements of which there is a subset of M active

channel sensors. These active sensors are placed
randomly over the RIS and play an important role
in both signal scattering and channel calibration.
They operate in two modes. In the channel sense
mode, these are connected to the baseband unit and
can coordinate for actively estimating the wireless
channel between both receiver and RIS and the
transmitter and RIS. This channel information is sent
to the RIS controller that then adjusts the position
of the RIS elements in order to improve the signal
reflection towards the receiver. In the second mode of
operation, the active sensors mimic passive reflectors,
adding a phase shift determined in relation to the
incident signals to the communication link without a
baseband unity connection [28].

The passive elements represented by the blue reflec-
tors cannot detect channel and supply only phase shift
to the incident signals. Although they cannot change
their phase shifts based on the channel dynamics,
the multiplicity of their numbers will create a col-
lective effort; a big reflecting surface that constantly
reshapes to ensure that all the signal is redirected to
the intended receiver.

The interaction matrix, 9, describes the overall
phase shifts provided by both being passive and active
phases of the RIS. The baseband controller controls
this matrix, which in turn linked with the current
active sensors to permit the RIS adjust its reflec-
tive channel. This type of architecture combines the
relative advantages of both active and passive com-
ponents guaranteeing a highly dynamic and effective
means of improving both the channel estimation and
signal reflection policy and still keep the cost con-
straint in mind [28].
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In conclusion, as illustrated in Fig. 2, active sen-
sors enable the RIS the offer fundamental features for
real time low latency channel estimation and signal
reflection. These sensors allow the system to adjust
the reflectivity of the surface on the fly, which will
improve the system’s performance in facing the un-
predictable wireless channels while at the same time
reduce the training time needed for the traditional
system. The application of active sensors designed
as both senders and receivers allows phase shifts
of reflected signals to be controlled directly, mak-
ing their coherent addition at the receiver possible
in general. Further, precise enhancements related to
the active elements’ characteristics allow the adap-
tation to the channel conditions without constant
receiver-side feedback, which enhances system effi-
ciency, decreases feedback latency, and enables it to
prevent feedback overheads, rendering this solution
suitable for dynamic and real-time wireless networks.

3.4.1. Dual functionality of active sensors in RIS
architecture

The active sensors within the RIS architecture pos-
sess dual functionality, operating in two distinct
modes: the sensing mode and the reflection mode.
These modes are important for controlling the behav-
ior of the RIS to response to changes in environment
conditions and, more importantly, communication
needs, which are evidently the key-performance-
indicator elements of a RIS in terms of latency and
system complexity.

Sensing Mode: In this mode, the active sensors are
interfaced to the baseband unit to facilitate instanta-
neous CSI collection. The sensors acquire information
on the communication channel between the RIS and
the transmitter as well as the receiver. This informa-
tion is very important when in the process of updating
the configuration of the RIS so that the signal reflec-
tion paths can be changed in a dynamic manner.

Reflection Mode: Once the values of the optimal
settings based on CSI obtained during the sensing
mode are calculated, active sensors enter the reflec-
tion mode. In this mode they work in a manner similar
to the passive elements which are used for pointing
the beam to the receiver in correct phase. However,
unlike the passive elements, these phase shifts can
then be adjusted in response to current conditions of
the channels.

Mode Switching Mechanism: a regulator that
compares the probable need for channel adaptation
in real time with the pursuit of the greatest reflection
efficacy controls the shift between sensing and reflec-
tion modes. This algorithm is special because it does
not cause switching delays, which contributes to the
systems low latency. The mode switching is initiated

by either high mobility of the receiver or variations
in the interference levels, which makes a new channel
estimation necessary.

In the RIS architecture, active sensors switch dy-
namically between sensing and reflection modes with
high speed, maximizing system latency with this fast
switch. But without the algorithms inside the RIS
controller properly managing these state changes,
there are delays associated with too frequent switch-
ing. Moreover, the implementation of dual-mode
functionality adds to the complexity of the system,
requiring advanced algorithms for autonomous mode
switching as well as hardware capable of rapid re-
configuration. These improvements help support the
paper’s claim of a novel implementation of active sen-
sors and their valuable contribution to the system’s
dynamic, efficient, and effective operations.

3.5. Convolution neural network

This subsection presents the implementation of a
Convolutional Neural Network (CNN) architecture
for beamforming optimization in a Reconfigurable
Intelligent Surface (RIS)-enabled wireless communi-
cation system.The CNN- based DL model is used to
predict achievable data rates for users by process-
ing channel state information (CSI) and determining
optimal phase shifts at the RIS elements. The sys-
tem model begins by gathering channel data from
a simulated wireless environment using the Deep-
MIMO dataset. This dataset provides detailed channel
matrices that describe the interaction between the
transmitter, RIS, and receiver, including the signal’s
direct and reflected paths.

The channel matrices are processed through the
CNN architecture, which begins with an input layer
that receives the reshaped input data. The input data
consists of real and imaginary parts of the chan-
nel response from the RIS to the users, organized
into an image-like format for efficient processing.
The CNN applies multiple convolutional layers to
the input data from which spatial features are ex-
tracted. The filters in the first layer scan the input
to extract elementary features; batch normalization
is only applied for improving training stability and
efficiency. A non-linearity introduced by the ReLU
activation function allows to learn more complex pat-
terns. After that, a max-pooling layer in order to zoom
in on distinctive features and reduce computational
complexity reduces spatial dimensions of the feature
maps. As the data passes through deeper layers of
the CNN, additional convolutional layers are used
to learn more abstract and high-level features, with
increasing filter sizes to capture finer details of the
channel characteristics. Batch normalization, ReLU
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Fig. 3. CNN architecture.

Table 2. CNN model parameters.

Parameter Value

Input Size [Size of XTrain, 1, 1]
Convolutional Layer 1 Filter Size 4 × 1
Convolutional Layer 1 Number of Filters 256
Pooling Layer 1 Size 4 × 1
Convolutional Layer 2 Filter Size 4 × 1
Convolutional Layer 2 Number of Filters 512
Pooling Layer 2 Size 4 × 1
Convolutional Layer 3 Filter Size 4 × 1
Convolutional Layer 3 Number of Filters 512
Pooling Layer 3 Size 4 × 1
Fully Connected Layer Size 1024
Dropout Rate 0.5
Final Output Layer Size [Size of YTrain, 3]
Optimizer RMSprop
Mini-Batch Size 500
Max Epochs 40
Initial Learning Rate 0.001
Learning Rate Drop Factor 0.5
Learning Rate Drop Period 10 Epochs
L2 Regularization 0.0001
Execution Environment GPU

activations, and max-pooling layers follow each con-
volutional layer, which progressively down sample
the feature maps while retaining key information. The
final set of features is flattened and passed to a fully
connected layer, which acts as a dense classifier to
output predictions related to the optimal beamform-
ing configuration.

The output of the fully connected layer is designed
to match the dimensionality of the target data, which
corresponds to the achievable data rates for each
user in the system. A regression layer is employed as
the final layer, which computes the loss between the
predicted and actual rates, and adjusts the model pa-
rameters accordingly through backpropagation. The
model is trained using the RMSprop optimizer, with a
mini-batch size to balance memory usage and training
speed. Training is performed over several epochs, and
the model’s performance is evaluated on a separate
validation set.

The CNN-based model is proposed for fast process-
ing of the high-dimensional channel data and better
throughput prediction in RIS-assisted communication
system with optimal beamforming configuration.

Using the spatial filtering capability of convolutional
layers, the model is able to learn certain signal prop-
agation patterns that provide it a good generalized
performance across different channel conditions.

3.6. Hybrid convolution neural network and long
short-term model

The CNN-LSTM model is an enhancement of both
the CNN and LSTM to enable efficient generation
of beamforming patterns in dynamic communication
systems. It characterizes this hybrid architecture as
especially suitable for situations where the charac-
teristics of the wireless channel are time-varying,
for example in mobile communication or variable
interference.

CNN Layers: As for the CNN component of the
model, the primary purpose is to identify spatial char-
acteristics derived from the CSI signal composed of
channel state information across the subcarriers and
antennas. These features help capture the spatial de-
pendence of the data required for the determination
of the beam forming vectors.
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Fig. 4. CNN-LSTM Architecture.

Table 3. CNN-LSTM model parameters.

Parameter Value

Input Size [Size of XTrain, 1, 1]
Convolutional Layer 1 Filter Size 4 × 1
Convolutional Layer 1 Number of Filters 256
Pooling Layer 1 Size 4 × 1
Convolutional Layer 2 Filter Size 4 × 1
Convolutional Layer 2 Number of Filters 512
Pooling Layer 2 Size 4 × 1
Convolutional Layer 3 Filter Size 4 × 1
Convolutional Layer 3 Number of Filters 256
Pooling Layer 3 Size 4 × 1
Flatten Layer Yes
LSTM Layer Size 1024 units
Fully Connected Layer Size [Size of YTrain, 2]
Dropout Rate 0.5
Optimizer RMSprop
Mini-Batch Size 500
Max Epochs 20
Initial Learning Rate 0.001
Learning Rate Drop Factor 0.5
Learning Rate Drop Period 10 Epochs
L2 Regularization 0.0001
Execution Environment GPU

LSTM Layer Integration: After that, the features
extracted by the CNN layers are taken to LSTM layers
for its processing as shown in Fig. 4 Some of the
features include the quality, signal strength, stillness,
file transfer data rate, and boot time To process these
features over time and to capture the temporal varia-
tions in the communication channel, the LSTM plays
the following role. This is crucial for anticipating the
trends in the channel state and hence giving the right
beamforming policy.

Role of LSTM Layers: LSTM layers operate as an effi-
cient means of remembering useful information about
state at long intervals to sustain state information
smoothness across time steps. Due to this capability,
the LSTM can correctly predict the future channel
states based on a number of past instances making it
easier for the model to adapt the beamforming vectors
with the varying channel conditions.

Integration with CNN Layers: That is, CNN layers
and LSTM layers are integrated by operating CNN
layers, followed by flattening the output and applying
it as a sequential input to the LSTM. Such forma-
tion guarantees that the received spatial features are

processed by LSTM to detect temporal dependences,
which are valuable for understanding all the spatial
and temporal relations occurring in the channel. The
LSTM outputs are utilized with the help of an algo-
rithm to decide the phase shift, which is favorable for
beam forming.

By explaining the CNN-LSTM model in detail, the
paper traces the individual contributions of the LSTM
layers in this communication setting, laying out
how the model amalgamates spatial and temporal
variation who works together to optimize the beam-
forming process.

After passing through the CNN layers, the feature
maps are flattened into a vector format to prepare
them for input into the LSTM component. The LSTM
layer is included to model the sequential nature of
the channel data, particularly the temporal variations
in the communication environment. The LSTM layer
processes the temporal sequences of the flattened
feature maps, learning the long-term dependencies
and correlations between different channel condi-
tions. This is crucial for beamforming in RIS systems,
where the signal quality at the receiver depends
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on the coordinated interaction of multiple signals
over time.

Following the LSTM layer, a fully connected layer
is ap- plied to the output, which combines the

learned features and produces a set of predictions.
The fully connected layer helps integrate the spatial
and temporal features learned by the CNN and
LSTM, resulting in a final output that corresponds

Algorithm 1: Deep Learning-Based Beamforming Optimization in RIS-Assisted
Communication Systems

Input:
– ‘L’: Number of paths
– ‘My, Mz’: Dimensions of the reflecting surface in y and z axes
– ‘Mbar ’: Number of selected RIS reflecting elements
– ‘K_DL’: Number of OFDM subcarriers
– ‘Pt’: Transmit power
– ‘kbeams’: Number of top predicted beams
– ‘Training_Size’: Number of training samples

1. System Parameters Setup:
– Define DeepMIMO dataset scenario and bandwidth (‘BW’), number of subcarriers (‘K’), noise figure

(‘NF’), and other parameters.
– Calculate noise power ‘noise_power_dB’ using the equation:

noise power dB = −204+ 10log10( BWK )+ NF − Process Gain
– Compute Signal-to-Noise Ratio (SNR) using:

SNR = (100.1x(−noise power dB))(100.1(Gt+Gr+Pt ))2

2. Beamforming Codebook Generation:
– Generate beamforming codebook (‘BF_codebook’) based on UPA dimensions and oversampling factors.

3. Dataset Generation using DeepMIMO:
– Generate channels for users ‘Ut’ and ‘Ur’ using DeepMIMO.
– Normalize the channel by calculating the maximum value ‘Delta_H_max’ from the product of ‘Ht’ and

‘Hr’ (user channel matrices).
4. Deep Learning Input Construction:
– For each user, compute the channel matrix ‘H_bar’ by adding Gaussian noise to the RIS elements.
– Normalize input ‘DL_input’ as:

DL input = DL input
1Hbar max

5. DL Beamforming Training:
– For each training size (‘Training_Size’):

– Split the dataset into ‘Training_Ind’ (training set) and ‘Validation_Ind’ (validation set).
– Construct inputs ‘XTrain’, ‘YTrain’, ‘XValidation’, and ‘YValidation’.
– Build the CNN-LSTM architecture with convolutional, batch normalization, and max-pooling layers.
– Define training options, such as learning rate and batch size.

6. Network Training:
– Train the network using the ‘trainNetwork()’ function with the constructed layers and options.
– Predict achievable rates for both ‘DL-based’ and ‘OPT-based’ beamforming:
– Compute rate using:

Rate log2(1+ SNR(SNR sqrt var)2)
7. Achievable Rate Calculation:

– For each validation sample:
– Identify the top ‘kbeams’ from the predicted beams (‘Indmax_DL’).
– Compute the rate for each beam and calculate the average rate for ‘DL’ and ‘OPT’ beamforming

strategies.
– Store the mean rates in ‘Rate_DL’ and ‘Rate_OPT’.

8. Output:
– Return ‘Rate_DL’: Average data rate achieved using DL-based beamforming.
– Return ‘Rate_OPT’: Optimal achievable rate using conventional beamforming methods.
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to the achievable data rates for each user in the
system. A regression layer is used to compute the
loss between the predicted data rates and the actual
values, allowing the model to optimize itself through
backpropagation.

Training the CNN-LSTM model involves the use of
the RMSprop optimizer, with a set of hyperparam-
eters including a defined learning rate, mini-batch
size, and a regularization term to prevent overfit-
ting. The model is trained for a specific number of
epochs, during which the validation performance is
monitored to ensure that the model generalizes well
to un- seen data. By combining the strengths of CNN
and LSTM architectures, the hybrid model effectively
captures both spatial and temporal characteristics
of the wireless channel, enabling accurate predic-
tions of optimal beamforming configurations in the
RIS-assisted system. This results in enhanced com-
munication performance, improving data throughput
and signal quality for users.

4. Comparative analysis of DL-based
beamforming with traditional beamforming
methods

To provide further insights, DL-based beamform-
ing is not only compared to genie-aided schemes but
also other state of the art conventional techniques
based on optimization theory and heuristic methods.
Optimization algorithms such as SDR and gradient
descent optimization is precise but complex and non-
scalable. Greedy, tabu search are other examples of
near optimal solutions in that they are fast, scalable
but tends to be sub-optimal and less versatile. On the
other side, due to its data centered framework, DL
based beamforming is highly flexible to environment
changes and achieves near optimal performance. Sim-
ilarly, as detailed in the results section of this research

analysis, the strengths and limitations of each of the
methods discussed were balanced such as to provide
a holistic metric of the scalability and suitability for
various wireless communication applications of each
solution.

5. Results and discussion

5.1. Parameter simulation

The simulation setup utilizes the DeepMIMO
dataset for channel modeling. The scenario selected
for the experiments is “O1_28” from the DeepMIMO
dataset, with three active BS configured to transmit.
The antenna spacing is set at half the wavelength,
with a total bandwidth of 100 MHz. The user data
is based on row 850, with the user position identified
as element 90 in the dataset. The receiver is defined
across rows 1000 to 1200. In this study, MATLAB
2023a was utilized as the primary software plat-
form for the implementation and evaluation of the
proposed DL models. MATLAB’s robust environment
allowed for seamless integration of DL toolboxes,
which facilitated the development of both Convolu-
tional Neural Network (CNN) and hybrid CNN-Long
Short-Term Memory (CNN- LSTM) architectures. The
2023a version provided advanced computational ca-
pabilities and optimization tools, enabling efficient
handling of large datasets and complex simulations,
including the processing of channel state information
(CSI) from the DeepMIMO dataset and the optimiza-
tion of beam- forming parameters for RIS-assisted
communication systems. For validation purposes, the
dataset size is set to 6200 samples.

The system supports 512 subcarriers, and the mini-
batch size for processing is fixed at 500. The number
of Reconfigurable Intelligent Surface (RIS) reflecting
elements is represented by the product of the di-
mensions Mx, My, and Mz. This setup is designed to

Table 4. Comparative analysis of beamforming methods.

Aspect Optimization-based
Beamforming

Heuristic Beamforming
Approaches

DL-based Beamforming

Focus Maximizes SINR or
minimizes transmit
power

Provides practical,
faster solutions

Learns from data to
adapt dynamically

Precision High precision with
theoretical guarantees

Suboptimal compared
to optimization

Near-optimal with
sufficient training

Computational
Complexity

High, often not scalable Lower, more scalable Moderate, depends on
training overhead

Scalability Limited with increasing
users or antennas

Better scalability Scalable with trained
models

Adaptability Limited adaptability to
dynamic environments

Limited adaptability High adaptability to
changing conditions

Performance in
Dynamic Environments

Moderate, requires
frequent recalibration

Moderate, lacks
dynamic adjustment

High, adjusts in
real-time
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Table 5. Simulation parameters and values [28].

Parameter Value

Scenario O1_28 (DeepMIMO)
Active Base Stations 3
Antenna Spacing 0.5 (relative to wavelength)
Bandwidth (BW) 100 MHz
User Row (Transmitter) 850
User Position (Transmitter Element) 90
Receiver Rows (Ur) 1000 to 1200
Validation Dataset Size 6200
Number of Subcarriers (K) 512
Mini-Batch Size 500
Number of RIS Reflecting Elements (M) Mx * My * Mz
Antenna Gains (Gt, Gr) 3 dBi
Noise Figure (NF) 5 dB
Process Gain 10 dB
Noise Power (BW) Calculated based on system parameters
Number of User Pairs (Ur_rows(2) - Ur_rows(1)) * 181
Over-Sampling Factors (x, y, z) 1
Number of Paths (L) Between 1 and 25

simulate multi-path signal propagation with a set of
parameters that maximize the efficiency of the model.

The signal-to-noise ratio (SNR) is derived based on
various parameters, including the antenna gains Gt
and Gr, which are both set to 3 dBi, and a noise figure
of 5 dB at the user equipment. The process gain during
channel estimation is set to 10 dB. The noise power
in the system is calculated using the total bandwidth,
number of subcarriers, noise figure, and processing
gain, leading to an SNR computation. Furthermore,
noise power per subcarrier is considered to model
noisy channel conditions effectively.

The user pairings are generated randomly, with
the total number of pairs being based on the range
between the user rows and the spatial configuration.
To accommodate the dynamic nature of the simu-
lation, a random permutation of these user pairs is
generated. Various over-sampling factors are set for
beamforming in the x, y, and z directions to ensure
precise control over the signal propagation.

The input data for the system is structured based
on the DeepMIMO dataset parameters, including the
number of antennas on the x, y, and z axes, with an
antenna spacing of half the wavelength. The dataset
supports OFDM with a specific number of subcarri-
ers, bandwidth in GHz, and a maximum number of
paths considered for each signal. The system adjusts
dynamically based on these input parameters to gen-
erate realistic channel data, which is then used for
performance evaluation.

5.2. Dataset

The outdoor scenario depicted in the dataset in-
volves two streets intersecting at one point. It features
18 BS, distributed across the main street and the

second street. Each BS is positioned at a height of 6
meters, and they utilize isotropic antenna arrays. The
BS along the main street are positioned in two rows,
one on each side of the street, with 12 BS in total.
The separation between BS on one side of the street
and the other is approximately 52 meters, ensuring
that the network provides wide coverage. Some BS
are separated by 100 meters or 62 meters, depending
on their locations along the street. The second street,
which intersects with the main street, is covered by
six BS, three on each side. These BS have a separation
of 150 meters, ensuring extensive coverage along the
second street as well.

The user distribution is divided into three grids,
each positioned across different sections of the
streets. The first user grid is distributed along the
main street and covers a length of 550 meters with
a width of 35 meters. This user grid consists of nearly
half a million users, with a uniform arrangement,
having users spaced 20 centimeters apart along rows.
The second user grid is positioned along the southern
side of the cross street, with a similar arrangement of
rows and spacing, covering over 199,000 users. The
third user grid is placed along the second cross street,
containing more than 487,000 users, but with a closer
user arrangement, having a spacing of 10 centimeters
between users. Each user in the dataset is equipped
with an isotropic antenna at a height of 2 meters,
ensuring uniform communication conditions.

The site plan includes a detailed representation of
the dimensions of the streets and buildings. The main
street is 600 meters long and 40 meters wide, while
the cross streets have similar widths but shorter
lengths. Buildings are placed along both sides of the
streets, with consistent dimensions for their bases.
Each building’s height varies, providing diverse
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Fig. 5. The assumed RIS ray tracing operation [12].

propagation conditions for the wireless signals. The
propagation model used in this scenario assumes that
signals can reflect up to four times before reaching
the receiver, making it a complex environment for
signal processing and analysis. In Fig. 5, the layout of
the receiver grid is depicted, showing the distribution
of users along the streets and the positioning of BS
and the transmitter. The receiver grid is highlighted
between rows 1000 and 1300, and signals from
the transmitter are reflected off the Reconfigurable
Intelligent Surface (RIS) to reach the grid. This
setup represents how signals interact with urban
environments, facing obstructions like buildings,
before reaching the receiver.

The DeepMIMO dataset is designed to support the
simulation of realistic wireless communication envi-
ronments, especially for the study and development
of emerging technologies such as massive MIMO and
(RIS). The dataset offers a highly detailed and config-
urable environment, allowing researchers to simulate
various scenarios across different operating frequen-
cies, including 3.4 GHz, 3.5 GHz, 28 GHz, and 60
GHz. One of the most significant features of Deep-
MIMO is its large- scale user grid, which includes
over a million candidate users distributed uniformly
across urban environments, such as streets and in-
tersections. This comprehensive setup enables the

simulation of real-world conditions, with factors such
as path loss, shadowing, and multipath reflections in-
corporated into the channel models. DeepMIMO also
provides flexibility in defining the configuration of
the system, such as the number of BS, their positions,
antenna array designs, and user distribution, mak-
ing it a powerful tool for evaluating next-generation
wireless networks. Through the integration of Deep-
MIMO, complex environments can be modeled with
high fidelity, facilitating advanced research in beam-
forming, channel estimation, and the design of RIS-
enabled communication systems.

6. Experiments results

6.1. CNN experiment results

The experiment results depicted in Figs. 6 to 10
provide an in-depth analysis of the achievable rate
for different dataset sizes and system configurations,
including varying numbers of active elements, power
levels, and system parameters.

In Fig. 6, As the number of active elements
increases, the achievable rate improves signifi-
cantly, with the highest rate achieved when Mbar =

8. Achievable rate for varying numbers of active
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Fig. 6. Achievable rate for different dataset sizes using only 8 active elements, with power transmission values of Pt = −5, 0, and 5. The DL
reflection beamforming approaches the performance of genie-aided beamforming, with the highest rate achieved at Pt = 5.

Fig. 7. Achievable rate for varying numbers of active elements (Mbar = 2, 4, and 8) over different dataset sizes.

elements (Mbar = 2, 4, and 8) over different dataset
sizes. As the number of active elements increases, the
achievable rate improves significantly, with the high-
est rate achieved when Mbar = 8 using only 8 active
elements and different transmission powers, with val-
ues of Pt= −5, 0, and 5. The green curve, correspond-
ing to Pt = 5, demonstrates the highest achievable
rate, stabilizing at around 5 bps/Hz as the dataset

size increases beyond 10,000 samples. The DL-based
reflection beamforming approach closely follows the
genie-aided re- flection performance. For Pt = 0, the
performance stabilizes around 1.05 bps/Hz, and for
Pt = −5, the rate reaches around 0.43 bps/Hz.

In Fig. 7, the impact of different numbers of active
elements, specifically Mbar = 2, 4, and 8, is studied.
The green line, corresponding to 8 active elements,
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Fig. 8. Achievable rate for different dataset sizes using 8 active elements, comparing different RIS configurations with M = 32 × 32 and M
= 64 × 64. Larger RIS sizes provide significant gains in the achievable rate, with DL beamforming approaching genie-aided perf.

achieves the highest rate of about 4.8 bps/Hz, demon-
strating the significant gain achieved by increasing
the number of active elements. The red and blue lines,
representing Mbar = 4 and Mbar = 2, respectively,
show progressively lower performance, with the rate
reaching approximately 4.78 bps/Hz and 2.8 bps/Hz
for 4 and 2 active elements, respectively.

Fig. 8 examines the effect of different total numbers
of RIS reflecting elements, with configurations of M
= 32 × 32 and M = 64 × 64. As the figure illustrates,
increasing the size of the RIS substantially improves
the achievable rate.

The DL reflection beamforming achieves approx-
imately 5 bps/Hz when M = 64 × 64, while for
M = 32 × 32, the achievable rate reaches around
1.8 bps/Hz. This emphasizes the advantage of larger
RIS configurations in terms of performance.

Fig. 9 focuses on the variation in kbeams, where
values of 1, 2, and 3 are considered. With 3 beams,
the system attains a high rate of 4.7 bps/Hz. With
fewer beams (kbeams = 2 and 1), the performance
slightly decreases, reaching around 4.8 bps/Hz and
4.76 bps/Hz, respectively. This confirms that in-
creasing the number of beams enhances the system’s
ability to achieve higher rates.

Finally, Fig. 10 highlights the effect of varying the
number of paths, L, with values of L = 1, L = 2, and
L = 5. For L = 5, the system achieves a maximum
rate of 4.8 bps/Hz, while for L = 2, the rate stabilizes
at around 2.7 bps/Hz. The single-path scenario, L =
1, shows the lowest performance, with a rate of about

1.2 bps/Hz. The genie-aided reflection beamforming
closely follows the DL beamforming performance in
all cases.

The results indicate unambiguously that the larger
number of active elements, beams and paths lead
to substantially higher achievable rate. Significant
performance gains are available thanks to RIS con-
figurations with more memory, additional power and
paths. This result demonstrates that DL-based beam-
forming can efficiently reproduce the genie-assisted
system performance in diverse environments.

6.2. CNN-LSTM results

In the CNN-LSTM experiment results, we observe
how different parameters influence the achievable
rate in the system, with a focus on DL dataset sizes
and the number of active elements.

In Fig. 11 shows the achievable rate for different
dataset sizes using only 8 active elements and varying
power transmission values (Pt = −5, 0, and 5). As
expected, the achievable rate is higher for Pt = 5,
reaching nearly 5 bps/Hz, while for Pt = −5, the
rate re- mains lower, barely reaching 0.5 bps/Hz. The
DL reflection beamforming closely follows the perfor-
mance of genie-aided reflection beamforming, partic-
ularly when the dataset size exceeds 15,000 samples,
showing convergence at higher data volumes.

In Fig. 12, the achievable rate is analyzed for dif-
ferent numbers of paths (L = 1, 2, and 5) using
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Fig. 9. Achievable rate for varying numbers of beams (kbeams = 1, 2, and 3) using 4 active elements. Higher numbers of beams improve the
achievable rate, with the maximum rate observed when kbeams = 3.

Fig. 10. Achievable rate for different dataset sizes with variations in the number of paths (L = 1, 2, and 5), using 4 active elements. As the
number of paths increases, the achievable rate improves, with the best performance achieved for L = 5.

only 4 active elements. The results indicate that in-
creasing the number of paths significantly improves
the achievable rate. With L = 1, the achievable
rate almost reaches 5 bps/Hz, while for L = 5,
the rate plateaus just above 4.5 bps/Hz. The DL

reflection beamforming once again approaches the
performance of the genie-aided beamforming partic-
ularly for larger dataset sizes.

Fig. 13 illustrates the impact of different RIS sizes
(M = 32 × 32 and M = 64 × 64) on the achievable
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Fig. 11. Achievable rate for different dataset sizes using 8 active elements.

Fig. 12. Achievable rate for different numbers of paths (L = 1, 2, 5) using 4 active elements. Increasing the number of paths leads to higher
achievable rates, with the deep learning reflection beamforming converging to the genie-aided beamforming as the dataset.

rate with 8 active elements. For the larger RIS
(M = 64 × 64), the achievable rate improves signif-
icantly, reaching nearly 5 bps/Hz with a dataset size
of 30,000 samples. On the other hand, the smaller

RIS (M = 32 × 32) achieves a lower rate of around
1.8 bps/Hz. This shows the benefit of scaling up the
RIS size for better performance in wireless communi-
cation systems.
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Fig. 13. Achievable rate for different RIS sizes (M = 32 × 32 and M = 64 × 64) using 8 active elements. A larger RIS significantly improves
the achievable rate, particularly as the deep learning dataset size increases.

Fig. 14, we analyze the achievable rate for different
numbers of active elements (Mbar = 2, 4, and 8) as the
dataset size increases.

The figures show that the increased number of ac-
tive elements also increases the rate, with Mbar = 8
nearly reaching 5 bps/Hz, and the achievable rate
achieving around 2.3 bps/Hz for Mbar = 2. This em-
phasizes the necessity to employ a higher fraction of
active elements in achieving higher rates, especially
when DL tools are available for beamforming opti-
mization. Meanwhile,

Fig. 15 shows the achievable rate versus number of
beams (kbeams = 1, 2 and 3) using 4 actives elements
in total for reference. The rate improves, as we would
expect, by increasing the number of beams. The sys-
tem converges around 5 bps/Hz for kbeams = 3 and the
plateaus at 4.8 bps/Hz for kbeams = 1. Hence, more
beams for beamforming can provide improved per-
formance in such challenging wireless environment
as illustrated by these results.

To summarize, a larger dataset size with more
active elements and optimized parameters of
the number of beams and paths combined with
CNN-LSTM model can improve achievable rate in
the system. Experimental outcomes demonstrate
all figures that the beamforming methods based on
DL perform in synergy with genie-aided techniques
especially as data dimension grows, validating thus

the effectiveness of this methodology for wireless
communication systems.

6.3. Trade-offs in enhancing ris-assisted
communication systems

The analysis of the extension of the RIS-assisted
communication systems reveals that more active
elements are favorable for the manipulation of elec-
tromagnetic waves and system performance while
the system complexity and energy consumption also
increase accordingly. Every additional peak power
element required increases the need for the control
circuit, thus increasing the power consumption and
overall cost of operation. One might say that with
more active elements to be managed at any time,
the system may need more sophisticated signal
processing algorithms that can complicate the task
even further in terms of the required computations.

More size of RISs and using more beams allow
more possibilities to control the signal and serve
more clients, but it is not without its problems.
Increasing the number of elements in the RIS array
can cause problems with the installation and the costs
associated with manufacturing and deployment of the
RISs also rise with an increasing number of beams,
they can interferences with each other, thus,advanced
beamforming strategies are needed. Finally, enabling
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Fig. 14. Achievable rate for different numbers of active elements (Mbar = 2, 4, 8) with varying dataset sizes. Increasing the number of active
elements results in higher achievable rates, showing the benefits of more active components in the system.

Fig. 15. Achievable rate for different numbers of beams (kbeams = 1, 2, 3) using 4 active elements. More beams lead to higher rates, with the
deep learning beamforming closely matching the genie-aided approach as the dataset size grows.
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multiple beam form operation also has an adverse
effect on the overall energy consumption of a system.

6.4. Discussion

The experimental results provided in the previ-
ous sections demonstrate the effectiveness of both
CNN and CNN-LSTM architectures for enhancing the
achievable rate in wireless communication systems
using DL based beam- forming. The experiments
analyzed various configurations, including different
numbers of active elements, paths, beams, and power
transmission levels. These analyses revealed several
key insights and observations that help in understand-
ing the performance of these models.

One of the most significant findings is the impact
of dataset size on the performance of DL based beam-
forming. As demonstrated across multiple figures,
larger datasets enable the models to closely approach
the performance of genie-aided reflection beamform-
ing, particularly when optimizing for parameters like
the number of active elements, beams, and paths.
For example, in both the CNN and CNN- LSTM ex-
periments, the models with larger datasets were able
to achieve higher rates, especially with more active
elements and higher transmission power (Pt). This
is clearly reflected in Fig. 4 and Fig. 9, where the
achievable rate improves significantly with increased
training samples, especially for larger values of Pt.

Another important observation is the influence of
system parameters, such as the number of active
elements (Mbar), the total number of RIS reflecting
elements (M), and the number of beams (kbeams). Fig. 7
and Fig. 14 illustrate that increasing the number of
active elements leads to a substantial improvement
in the achievable rate, with systems configured with
Mbar = 8 achieving close to 5 bps/Hz. Similarly, Fig. 8
and Fig. 13 show that larger RIS configurations (M
= 64 × 64) outperform smaller configurations (M =
32 × 32), emphasizing the benefits of scaling up the
size of the intelligent surface for more efficient signal
processing and reflection.

Moreover, the number of paths (L) and beams
(kbeams) also have a large say on how well the sys-
tem performs. Fig. 9, Fig. 10, Fig. 14 and Fig. 15
all exhibit this consistent fact that higher number
of beams and paths cause increase in the achievable
rate which indicates a straight forward trend towards
more performance with larger values of these param-
eters. More importantly, Fig. 8 and Fig. 13 show that
the near-genie-aided performance of DL reflection
beamforming is approached by increasing the num-
ber of beams and paths, highlighting the necessity of
optimal parameter configuration in practice.

In terms of power transmission (Pt), as indicated
in Fig. 6 and Fig. 11, larger Pt values come along
with a significantly higher rate able to be reached.
For instance, Pt = 5 gives uniformly highest rates
across the various experiments, always approaching
∼5 bps/Hz, and has a stable performance in more
moderate values (Pt = −5 with significantly worse
results compared to optimal cases. This demonstrates
the necessity of transmitting power optimization in
combination with DL models for achieving optimal
system performance.

In comparison of CNN and CNN-LSTM results
highlight the ability to not only generalize the DL
approach but its resilience as well for beamforming
applications. The CNN-LSTM architecture performs
slightly better in some setups, especially for larger
RIS sizes and multiple paths because it can model
temporal dependencies better and learn patterns from
the dataset.

However, both architectures exhibit strong poten-
tial in approaching genie- aided performance under
various conditions, especially as the dataset size in-
creases and system parameters are optimized.

In conclusion, the experiments provide a compre-
hensive analysis of how different system configu-
rations, dataset sizes, and DL architectures can be
used to optimize beamforming in wireless communi-
cation systems. The results clearly demonstrate that
DL based beamforming is a viable and effective alter-
native to traditional methods, capable of approaching
near-optimal performance with appropriate param-
eter tuning and dataset size. These findings have
significant implications for future wireless networks,
where intelligent surfaces and machine learning.

6.5. Challenges and feasibility of real-world
deployment

The simulation results show that the proposed DL-
based beamforming system is indeed effective as
the numerical results reveal but adapting DL for
real-world deployment is difficult because most prac-
tical networks have their own constraints in terms
of physical hardware, environment, latency and in-
teraction with existing networks. When deploying
Reconfigurable Intelligent Surfaces (RIS) with active
and passive components, issues regarding power con-
sumption, heat dissipation and physical size come
into consideration. Also the practical constraints like
weather conditions, mobility of the user and inter-
ference require high reliability adaptive algorithms.
Making beamforming as low-latency as possible may
need great hardware investment or edge comput-
ing executives or accelerators and must conform
to existing wireless standards such as 5G and 6G.
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For the purpose of establishing practical usability,
more future research should be devoted to cross-
environmental experimentations that would involve
constructing prototypes of RIS setups in cooperation
with industry players.

7. Conclusion

This work has aimed at presenting a review on
the deep learning paradigm with emphasis on CNN
and the CNN-LSTM framework for the design of
beamforming configuration in RIS-based wireless
communication system. These advanced architec-
tures of DL have shown a considerable enhancement
in achieved rates and overall communication reliabil-
ity and efficiency under different arrangements. All
these results demonstrate that the parameter of larger
databases and optimized parameters such as active
elements, the size of the RIS, the number of bean, and
the number of paths help to increase the effectiveness
of this reflection.

In particular, for the CNN and CNN-LSTM mod-
els, the results are close to genie-aided beamforming
and the CNN-LSTM model is better for dynamic and
time-variant scenarios due to the possibility of tak-
ing into account temporal dependencies. It can be
concluded that the simulation results show that the
achievable rates can be improved by increasing the
power transmission (Pt), the active elements (N) and
the size of RIS (M) in complex environmental areas
such as urban areas with multi-path fading. In such
cases, the proposed DL models proved their ability to
effectively update big data sets and generate accurate
predictions for beamforming control.

The proposed DL-based beamforming system is
flexible, computationally efficient and scalable and
directly applicable to real time large scale wireless
networks necessary for future 5G and potentially fu-
ture 6G systems. The merit of these models is that
they relieve the channel estimation burden and the
tuning of the RIS reflection matrix, offering a vi-
able way to enhance communication in environments
where existing conventional methods fail. However,
current early scalability for ultra-large-scale 6G net-
works is still an open problem owing to highly
computational and high memory requirements. Solv-
ing these problems will necessitate some strategies
like model compression, shared learning via edge
and cloud computing, and techniques hybridizing DL
with traditional optimization techniques in order to
improve competences and minimize cost.

Moreover, the analysis of the theoretically pro-
posed DL-based beamforming method demonstrates
its advantage over conventional approaches in terms

of adaptability, computational complexity, and scal-
ability. Using the statistical information and updates
as to covariance matrices, thereby providing a way
to dynamically update certain parameters in high
mobility situations but with considerably lower com-
putational cost. The CNN and CNN-LSTM structures
improve scalability and generalization; our method
is close to genie-aided while using less computation
to train. Proofing of similar effectiveness and benefits
with other data sets in future and real-world testing
may reinforce those perspectives.

In conclusion, this study brings a mark toward
implementing DL for the RIS-aided wireless com-
munication in line with demonstrating how the
deployment of machine learning can revolutionise
beamforming and channel estimation. As for future
work, there remains much opportunity for subsequent
improvements towards the fine-tuning of these mod-
els in real-time using reinforcement learning with
real-word scenarios, which have been proven more
challenging in terms of mobility and interference
management. Finally, the merging of intelligent sur-
faces with DL models will help achieve the necessary
transformation for next generation wireless networks.
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