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Abstract

In this paper, an algorithm based on Ants Colony Optimization (ACO) is
proposed for extraction of the Directions of Arrival (DOA) of several signals
impinging on uniform linear arrays. This algorithm is used to reduce the
computation time and complexity that occur in Estimation of Signal Parameters
via Rotational Invariance Technique (ESPRIT). In order to illustrate the accuracy
and flexibility of the proposed algorithm, several simulation cases introduce of
ESPRIT-DOA estimation by using ACO algorithm in environment of Matlab 7.8
program. Results are statistically analyzed in order to conclude fromit the
algorithm's accuracy and reliability.

Keywords. Direction of Arrival (DOA); Estimation of Signal Parameters via
Rotational Invariance Technique (ESPRIT); Ants Colony
Optimization (ACO) algorithm.
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1. Introduction antenna-array receivers is a very

useful tool for spatially separating

irection-of-arrival  (DOA)

estimation of narrow-band

signals is a fundamental
problem inmany sensor array
systems such as radar, sonar, mobile
communications, radio astronomy,
and etc. Estimating the direction-of-
arrival of impinging waves for

sources in multiuser communication
systems. Some DOA standard
techniques, such as estimation of
signal parameters via rotational
invariance  technique (ESPRIT)
[1,2]. The ESPRIT achieves accurate
DOA estimates without full
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knowledge of antenna array response
(no measurement or storage of
calibration data is necessary), and
because ESPRIT has a very modular
implementation  involving  only
repeated low-order eigen-
decomposition, the algorithm is
especially well-suited to real-time
scenarios. Though ESPRIT works
well in most cases, ESPRIT has two
major problems related to its
implementation and performance.
First, the method requires a
procedure to map the subband spatial
frequency back to the full band. This
manipulation is necessary because of
the widening of the spatial frequency
spacing. Second, the reduction of
computational load in the singular
value decomposition (SVD) is
achieved at the expense of
compromising the output SNR [3].

It is well known that the classical
optimization techniques are likely to
be stuck in local minima if the initial
guesses are not reasonably close to
the final solution. The most of the
classical optimization techniques and
analytical approaches also suffer
from the lack of producing flexible
solutions for a given
antenna pattern synthesis problem.
The disadvantages of the classical
and analytical techniques and rapid
envelopment of computer
technologies in recent years have
encouraged the researcher to use the
evolutionary optimization algorithms
based on computational intelligence
methodologies. It was shown that the
evolutionary optimization techniques
such as the Ant Colony Optimization
(ACO) [4] Genetic Algorithm (GA)
[5] and Differential Evolution
Algorithm (DEA) [6] are capable of
performing the better and more
flexible solutions than the classical
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optimization techniques and the
conventional analytical approaches.

The ACO is a paradigm for
designing metaheuristic algorithms
for combinatorial  optimization
problems. The first algorithm which
can be classified within this
framework was presented in 1991 [7,
8] and, since then, many diverse
variants of the basic principle have
been reported in the literature. The
essential trait of ACO algorithms is
the combination of a priori
information about the structure of a
promising solution with a posteriori
information about the structure of
previously obtained good solutions.
The ACO has some distinguished
features. It operates on a population
of points in search space
simultaneously, not on just one
point, does not use the derivatives or
any other information, and employs
probabilistic transition rules instead
of deterministic ones. It also has the
ability of getting out local minima.
As a relatively novel optimization
algorithm, the ACO has been
successfully applied to solve various
engineering problems [9-12].

2. System Model And Problem

Formulation

Let uniform linear array be
composed of M identical elements,
which receive the impinging from
directionsg,, &,,.., &, narrow-band
signals emitted by Vv far-field
sources as shown in Fig. (1).

From the measured output of
array the objective is to estimate the
sources DOAs. TheM x 1 array
output vector can be expressed as
x(£) = A(F)s(t) +n(r) (1)
where A(&) = [al8y, ..., a(6y)] is
the M x V matrix of the source
steering  vectorg(f) is the
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M x 1steering vectors(t) is the
¥ x 1 vector of source complex
envelopesn(t) is the M x 1 vector
of sensor noise. The number of
sourcesl’ is assumed to be known.
Also is assumed, that source signals
are zero-mean, complex Gaussian,
temporally white processes with the
covariance matrif = E[s(#)s# ()],
where E[] and (.)® stand for
expectation operator and hermitian
transpose, respectively. The sensor
noisen(t) is also the zero-mean
complex Gaussian process and is
assumed to be both temporally and
spatially white with the varianca=.
Let F denote the covariance matrix
of x(t). In accordance with the made
assumptionsg is given by
R =E[x(H)x(t)] = A(8)SAH(8) + 521
(2)
wherel is theM = M identity matrix.
The sample covariance matrix
obtained fromiv  snapshots is
determined as

R = %L, x(0x"(2)
@
The eigen-decomposition @&
has the following form

P ~ ~ -~ H

~ H ~
R =E; AE; + E,A,E,
(4)

wherel x Vand

(M—7V)x (M—V)diagonal
matricesA, and A, containi
andM — ¥ signal and noise sub-
space eigen-values, whereas
M x V matrix Eg = [é,,.... é5] and

M x (M — V) matrix E,, = [£5s1,....
€7724] contain the corresponding
eigenvectors, i.e. signal - and noise -
subspace eigenvectors.

When realizing the ESPRIT
algorithm the selection matrices
fi= [Imx:m I::]:vm-ccl]
and J; = [0y 1 I | @re formed,
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where(,, .. iS the zero matrix of
sizem=x1 , m is the number of
elements at each subarray and in the
maximum overlapping
casen = M — 1. In [13] more fully
exploits the ULA structure by reason
of using more than one subarray
pairs (but subarray is of smaller size)
is proposed. This is accomplished by
means of corresponding selection

matrices Jis = Ugxm Ogxi]
and.f:s = [ﬂqxl .-irqxrn ]1 where
g=m.(M—-m,) is the total

number of elements in each subarray
for this case,

JF: UTj_JFgJ-""vFM—mﬁ]-

i = [ﬂm}cfi—l} ‘mem ﬂm;:-c'im—l—mg}]
and (.)T denote transpose. Here
m_.is the number of elements in a
subarray of smaller sizem{; < m).

In this casem, x m, matrix J; picks
m. contiguous rows of the matrix
E:ii+1,..0i+m,—1 This
overlapping is named in [6] as
generalized and obviously that a
choice ofm_. =1 leads back to the
initial overlapping structure.

In the ESPRIT algorithm with
generalized overlapping  under
estimation of DOAs the eigen-
decomposition of the following
matrix multiplication is calculated
VisEef2s]7 15 Esf2sEel =
Ul ES.IE ES]HEUI Es.f! Es']

] 5)
where  I=]7] is the
M—1)x(M-1) weighting
matrix. At this point instead of both
immediate using of matricejs., f-.
and work with the left side of (5) itis
appropriate to use the right side of
(5). The matrixtx is the
diagonal,
r= d:’n.g[l 2 W W a2 1w =
min (mg M —m;)
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. As for parametem,, it under
maximum overlapping of subarrays
in [13] is recommendedn ~ (‘;}.
The elements of the matrx
indicate how many times each row
of matrix 4 is used (in other words,
how many times the every element
of first subarray of sizeM —1in a
subarray pairs is used).

The useful property of array
with symmetrical arrangement of
identical in pairs sensors consists in
that if to take the array center as
phase reference, then the source
steering vector will of the conjugate-
centrosymmetric form [14]:

20 = texp(1(52)e) o (-(576)) -

M-1

o (1(20)) o (1 ()
(6)

Wherem = Zmsinf/A is a so called
spatial frequency, 4 is the
interelement spacing, is the wave
length. Under using of the unitary
transformation method the complex-
valued vecto&(w) is transformed
into real-valued vector
d{w) = U¥alw) of the same size by
the matrix

) I iy
Vg1 = (F) 0T V2 o7
L 0 —jl

(7)
if M=2K+1(.e. the number of
sensors is odd), where mat’rigg is
an(M —1)/2x (M —1)/2
exchange matrix (with ones on its
antidiagonal and zeros elsewhere)
and by matrix U,z , which is
obtained from (7) by dropping its
center row and center column, for
the case oM = 2K.
The source steering vector satisfies
the shift invariance property [15],

739

that for the generalized overlapping
is expressed as
exp(j @) J1: alea) =f235(m3£ )
8
Since M x M matrix [Jis unitary,
this leadsU#U =1, then (8) may
be presented as
exp(j @) J.Ud(w) = IzsUd(gc;l}
Premultiplying both sides of the
above mentioned expression by
g X g matrix U¥_, we obtain the
following formula
EXP(} mjﬂﬂqjhﬂd(m} = UHQJFESUd(m}
(10)
Note, that matrix U; is formed
analogously to the matriy by (7),
and matrices/;, and/,, satisfy the
equality [of2: I = J4-, where I, and
I are exchange matrices of sizes
g xgand M x M , respectively. As
a result, we have
UR L U=U"_[I]J,1IU=UT_J. U=
(U7 h)*
(11)

Mark the real and imaginary
parts of matrix multiplication
U%, .U as Kj.and K,. (they are
g x M real-valued matrices):

Ko = Re(U¥ oJ5U) Ky = Iam(U™ ;[2)

(12)
According to this definition, (10)
may be presented as

exp(f ©)( Ky, -jK;: Jdlo) = exp(—j w/2) (K +

jKzz )il

(13)
After simple manipulations the
following expression can be obtained
tg {E) Ky d(o) = K, d(@)

(14)

Let us define the transformed
steering matrix ash = U¥A4. Then
for all ¥ sources the real-valued
relation (14) may be expressed as
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K,.DQ_ =K, D
(15)
whereQ, = diag[tan (ﬂ) ¥, cont
ains the desired information about
DOAs, D = [d{ey), ..., d{oi)].
It should be noted, that analogously
to ESPRIT with structure weighting
in this case is necessary to calculate
eigen-decomposition  of  matrix
multiplication
[Ku Esuﬁ!s Esu]H_[Ku EsuH!s Esu] =
[Ky B Ko By 1R 0% s T Uy [*;5165513': E.]
where matrixE,, consists of signal-
subspace eigenvectors of matrix
Re(UHRU), Ky = Re(UH,,_, LU),K, =
Im(UH 4 JoU),
and obtained weighting matrix
Uy 1B Uy—1=Xun is also
diagonal, such that
Jun=diag[l12.ww1l2..wl.

3. Esprit Algorithm
A sequence of steps for

realization of the unitary ESPRIT

algorithm with structure
weighting and maximum
overlapping is as follows:

1. computation of the ED of matrix
Re(UHRU) and obtaining of
MxVmatrix E.,  whose
columns are eigenvectors
of Re(U#RU), that correspond to

the V greatest eigen-values
of Re(UH#RU),
2. definition of

(M — 1) x M matrices K, K, ,
and calculation of the ED of

3. partition of the matrbE, into
submatrices of sizE x V
_ Ell E:LZ]
f=[z £
4. calculation of the eigen-values

Ay, V=1,..., Vof matrix
¥, Y= (_Elz ;glji

5. determination of the spatial
frequency sources as
o=2tan(l),i=1,..V.

4. Ant  Colony  Optimization
Algorithm

The Ant Colony Optimization
(ACO) was firstly proposed by

Dorigo and et al for the
combinatorial optimization problem
solving [16], and numerous

variations have been studied ever

since. It is an efficient method for

handling various optimization tasks,

such as routing and scheduling [17-

19]. The ACO can be characterized

by [20]:

(1)Probabilistic transition rule is
used to determine the moving
direction of each ant,

(2)Pheromone update mechanism
indicates the problem solution
quality.

Local search is indeed important in

dealing with continuous optimization

problems. The continuous ACO has
been extended to a hierarchical
structure, in which the global search
only aims at the ‘bad’ regions of the
search space, while the goal of local
search is to exploit those ‘good’
regions. The basic ACO algorithm
for continuous optimization at each
generation is described as follows
[20].

(K, B K, E Hut, YU, K E. K E, P Createn, global ants.

matrix multiplication
E AE®,
\where is the eigen-value

matrix of this multiplication, and
E_ is the eigenvector matrix ;
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b. Evaluate their fitness.
c. Update pheromone and age of
weak regions.
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d. Move local ants to better regions,
if their fitness is improved.
Otherwise, choose new random
search directions.

e. Update ants’ pheromone.
f. Evaporate ants’ pheromone.
Obviously, the continuous ACO is
based on both the global and local
search towards the elitist. The local
ants have the capability of moving to
the latent region with the best
solution, according to transition
probabllltyP : t} of region:

P[ ‘\t} - - ll

i-:,_T_i':f':

17)
wherert;(t) is the total pheromone at
region ; at time ¢t , and g is the
number of global ants. Therefore, the
better the region is, the more
attraction to the successive ants it
has. If their fitness is improved, the
ants can deposit the pheromone
incrementar; as in (18). Otherwise,

no pheromone is left.

1) = IT{?{ + At if fitness isl improved
’ T; L) otherwize
(18)
After each generation, the
pheromone is updated as:
,(t +1) = (1 — p)7;(t)
(19)
where p is the pheromone

evaporation rate.

The probability for the local ants
can be concluded to select a region is
proportional to its pheromone trail.
On the other hand, the pheromone is
affected by the evaporation rate, ant
age, and growth of fitness. Thus, this
pheromone-based selection
mechanism is capable of promoting
the solution candidate update, which
is certainly suitable for handling the
changing environments in
optimization.A proposed flow chart
of the ESPRIT-ACO algorithm
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applied for signal parameter

estimation is shown in Fig. (2). Data

is obtained by measuring the

complex responses of the antenna
array elements.

5. Simulation Results

The performance of the ESPRIT
in DOA estimation by using ACO
algorithm is studied in this section.
There are several cases simulated
using software developed to function
under Matlab 7.8 environment. The
receiver antennas are supposed to be
uniform linear arrays.

For single emitter source, a
simulated narrow-band emitter is
used with number of sensors
(M=12), number of snapshots
(N=50) and suppose the emitter
signal with 5dB additive noise is
impinging on sensors array from
azimuth of 60 degree. When the
ESPRIT algorithm is applied give
the result for one emitter in direction
60° degree is 60.4725degree but
with ACO algorithm will be given
the result for one emitter in direction
60° degree is 60.0192as shown in
Fig (3).

For two non-coherent emitter
sources with the assumptions that
two emitter sources with 5dB
additive noise is impinging on a
sensor array from azimuth of 6@nd
120 degrees, The ESPRIT gives the
result for two emitter sources in
direction 60 and 120 degrees is
(60.3962) and (120.494Y degrees
and (60.0213 and (120.024)
when it is implemented with ACO
algorithm as shown in Fig (4), and it
gives the result for two closely
spaced emitter sources in direction
60° and 63 degrees is (61.3093
and (64.27583 degrees and with
ACO algorithm is (60.101%2 and
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(63.1109) as shown in Fig (5)The
ESPIRT algorithm will improve
its performance at increasing M
and N to 20 and 100 respectively
as shown in Fig. (6) with
(60.0132) and (63.0129 arrival
angles by using ACO algorithm.

For three non-coherent emitter
sources, with the same previous
assumptions is applied. The ESPRIT
gives the result for three emitter
sources in direction 40 9¢ and
140 degrees is  (40.4207
(90.5227) and (140.521% degrees
and it gives the results by using
ACO algorithm is (40.021%,
(90.0192) and (140.0213 as
shown in Fig (7), and it gives the
result for three closely spaced
emittersources in direction 8083
and 86 degrees is (81.5391
(84.3173) and (87.619% degrees
and (80.120%9, (83.2389) and
(86.2198) with ACO algorithm as
shown in Fig (8). But at increasing
M and N to 20, 100 respectively are
given the results of (80.03)5
(83.0318) and (86.0218. It clear
that ESPRIT algorithm with ACO
succeed in distinguishing between
the closely spaced targets in case
non-coherent emitter sources with
acceptable computing efficiencies
compared with other techniques of
DOA estimation as shown in Fig.
(9). Finally, from the Fig.(10) of
case 1 (single emitter source), it is
cleared that for higher values of SNR
resolving capabilities of ESPRIT-
ACO will be more pronounced than
lower values of SNR.

6. Conclusions

Many conclusions can be
derived in this paper; the most
important results can be summarized
as follows:
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1. The ACO succeeds in giving
reliable results of DOA-ESPRIT
without the need of any spectral
search for DOA angles.

2. The efficiency of the ESPIRT-
ACO algorithm increases with
the increasing number of
sensors Xf) and number of

snapshots ). It is evident
that using more sensordf)
and snapshots N) improves
there solution of the algorithm

in detecting the incoming
signals as shown in Figures (6,
9).

3. The ESPRIT-ACO algorithm

achieves accurate DOA estimates
without full knowledge of
antenna array response.

4. The ESPRIT-ACO algorithm
reduces the computation time and
it presents low computational
complexity in comparison to
other DOA methods.

5. With higher values of SNR, the
performance of ESPRIT-ACO

algorithm will be better than
lower values of SNR as shown in
Fig. (10).
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Figure (1): Uniform Linear Array (ULA) and the
Direction of Arrival (DOA) problem.
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Figure (2) Flow chart of ESPRIT-ACO algorithm.
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ESPRIT Spectrum in dB

20 40 60 80 100 120 140 180 180
Arrival angle in Degree

Figure (3): DOA-ESPRIT for single emitter source &0° with M=12, N=50 and
SNR=5dB.

45

P S UM H S ASSOOR SU OUOOOR N SO

T M| SO NS St et

ESPRIT Spectrum in dB

20 40 60 80 100 120 140 160 160
Arrival angle in Degree

Figure (4): DOA-ESPRIT for two emitter sources60”, 120° with M=12, N=50
and SNR=5dB.
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Figure (5): DOA-ESPRIT for two closaly spaced emitter sourcesé0®, 63°
with M =12, N=50 and SNR=5dB.

L
o0
i

=}
I

i

ESPRIT Spectrum in dB
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Figure (6): DOA-ESPRIT for two closely spaced emitter sources 60°, 63°
with M=20, N=100 and SNR=5dB.
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45

ESPRIT Spectrum in dB

60 &0 100 120 140 160 180

Arrival angle in Degree

Figure(7): DOA-ESPRIT for three emitter sources. 40°, 30° and 140° with
M=12, N=50 and SNR=5dB.
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Figure (8): DOA-ESPRIT for three closely spaced emitter
sources. 80%, 83%and 86° with M=12, N=50 and SNR=5dB.
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Figure (9): DOA-ESPRIT for three closely spaced emitter
sources. 80°%, 83%and 86" with M =20, N=100 and SNR=5dB.
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Figure (10) RMSerror of the ESPRIT-ACO versus SNR,

with M=12,

N=50 and V=1.
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