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ABSTRACT

When multicollinearity arises in the inverse Gaussian regression (IGR), there is a substantially unstable variance in the
maximum likelihood estimator. Based on the (r-(k-d)) class estimation method, we present a novel Liu-type estimator
in the IGR model in this study. The study examines the effectiveness of the suggested estimator and draws comparisons
with alternative estimators. Based on simulation and real data results, the suggested estimate performs better than the
other estimators in terms of mean squared error.

Keywords: (k – d) class estimator, Liu-type estimator, Inverse Gaussian regression model, (r – d) class estimator, (r – k)
class estimator

1. Introduction

One of the most popular models for assessing real-
world data is the inverse Gaussian regression model
(IGR), which is especially useful in the fields of med-
ical science, insurance, and health-care economics
[8, 10, 23]. The IGR is employed when the response
variable is favorably biased or not distributed nor-
mally. Consequently, the response variable in inverse
Gaussian regression is assumed to have an inverse
Gaussian distribution [11, 14, 15].

Similar to the linear regression model, the IGR
also makes the assumption that there is no correla-
tion between the regressors. In many applications of
regression models, there is a natural link between
the explanatory variables. Regression coefficient es-
timates are challenging to comprehend when corre-
lations are large because estimation of the regression
parameters becomes erratic [2, 7, 18–20].

As pointed out by Mackinnon and Puterman [18],
when using the maximum likelihood (ML) technique

to estimate the regression coefficients for the IGR, the
estimated coefficients usually contain a high variance
that results in low statistical significance [1, 4, 17]. In
regression analysis, multicollinearity complicates the
estimation of the values of each explanatory variable
if the other predictors included in the model also
have visible correlations with the dependent variable.
In addition, the sample variance of the regression
coefficients can influence prediction and inference.

Numerous strategies have been proposed as cor-
rective measures to address the multicollinearity
problem. The ridge estimator (RE), proposed by Hoerl
and Kennard in 1970, has been demonstrated to be
a good substitute for the ML estimator. The RE was
employed by Mackinnon and Puterman [18] in his
generalized linear models (GLM). Liu [16] suggested
an additional solution to the collinearity problem,
which is referred to as the Liu-type estimator. Addi-
tionally, this estimator was thoroughly examined in
the literature and applied to a number of models that
belong to GLMs.
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The Liu-Type estimator offers a connection between
estimating parameters of the IGR model in presence
of analytic complexities like the multicollinearity and
small sample sizes. The experience shared in this pa-
per can thus be judged as evidence of its efficacy
in enhancing estimation accuracy across all fields
of application. Future research may explore a direct
comparison of the Liu-Type with other estimation
methodologies to strengthen the role of the former
as commonly used denoising techniques.

2. The inverse Gaussian regression model

The inverse Gaussian distribution is defined as

f (y, θ, η) =
1√

2πy3η
exp

[
−

1
2y

(
y − θ
θ
√
η

)2
]
,

y > 0, θ, η > 0 (1)

Eq. (1) can re-write in terms of generalized linear
models (GLM) as [3, 21]

f (y, θ, η) =
1
η

{
−

y
2θ2 +

1
θ

}
+

{
−

1
2

ln(2ηy3)−
1
2

ln(η)
}
, (2)

The ML method is the basis of the IGR model es-
timation, the log probability function of the IGR is
described as

`(β) =
n∑

i=1

{
1
η

[yixT
i β

2
−

√
xT

i β

]
−

1
2τyi
−

ln η
2
− ln(2πy3

i )
}
.

(3)

Then the ML estimator can be solved as

∂`(β)
∂β
=

n∑
i=1

1
2θ

yi −
1√
xT

i β

 xi = 0. (4)

and then

β̂IGR = Q−1XTŴm̂, (5)

where Q = (XTŴX), Ŵ = diag(µ̂3
i ), the MSE equal

MSE(β̂IGR) = η
p∑

j=1

1
λ j
, (6)

where λ j is the eigenvalue of the XTŴX matrix
[22].

The inverse Gaussian ridge estimator (GRE) is
defined:

β̂GRE =
(
D+ kI

)−1 X ′Ŵẑ (8)

Then,

cov
(
β̂GRE

)
= τD−1

k D D−1
k (9)

bGRE = bias
(
β̂k
)
= −kD−1

k β (10)

The Inverse Gaussian Liu estimator (GLE) is known
as

β̂GLE = Td β̂MLE (11)

Td = (D+ I)−1(D+ dI) calculated using the follow-
ing formulas.

cov
(
β̂d
)
= τ TdD−1Td

T (12)

bGLE = bias
(
β̂d
)
= −

(
1− d

)
(D+ I)−1 β (13)

3. The proposed estimator

Baye and Parker [9] proposed a RE and principal
components regression (PCR) estimator ((r – k) class
estimator)).

β̂r(k) = Tr
(
T ′r XẀXTr + kIr

)−1 T ′r X̀y, (14)

Kaçıranlar and Sakallıoğlu [12] proposed Liu es-
timation and PCR ((r-d) class estimator), which is
defined as:

β̂r
(
d
)
= Tr

(
T ′r X̀WXTr + Ir

)−1 (T ′r X̀y + dT ′r β̂r
)

0 < d < 1, (15)

where β̂r = Tr(T ′r XẀXTr )−1T ′r X̀y is PCR. β̂r(d) is de-
fine as the. Alheety and Golam Kibria [6] proposed
Liu estimator with the (r – k) class estimator.

In this paper we extend this estimator to IGR, the
new estimation is known the (r - (k-d)) class estima-
tor. Our new estimator is defined as

β̂r
(
k, d

)
= Tr

(
T ′r X̀WXTr + Ir

)−1 (T ′r X̀y + dT ′r β̂r(k)
)
(16)

k > 0, −∞ < d <∞.
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4. Comparison of the proposed estimators

An estimator’s mean squares error matrix is defined
as follows:

MSE
(
β̂
)
= E

(
β̂ − β

)T (
β̂ − β

)
= Var

(
β̂
)
+
(
Bias

(
β̂
)) (

Bias
(
β̂
))′

(17)

where Bias(β̂) = E(β̂)− β is the bias of β̂ and
Var(β̂) = E[(β̂ − E(β̂))(β̂ − E(β̂))′] is a variation
of β. When MSE(β̂2)− MSE(β̂1) is a non-negative
definite matrix, the eβ̂2 is used.

4.1. Comparison between our proposed estimator
and (r – d) estimator

The β̂r(k, d) and β̂r(d) are known as:

MMSE
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where D−1
r (1) = (3r − Ir ).
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2
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i −(λi+k)2)
λi(λi+k)2(λi+1)2 and M2 =

k
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(α2

i −τ )
(λi+k)(λi+1)2 then,
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(
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(
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so, mse(β̂r(k, d))−mse(β̂r(d)) will be positive when
d < 0 and dM1+ 2M2 < 0. In this case,

dM1 + 2M2 < 0⇔ dM1 < −2M2 ⇔ d (−M1) > 2M2

⇔ d >
2M2

(−M1)
= d∗ > 0.

So, mse(β̂r − (k, d))−mse(β̂r(d)) > 0 for 0 < d <
d∗.

(β̂r(k, d))−mse(β̂r(d)) < 0. This inequity, will be
held when d < 0 and, dM1 + 2M2 > 0⇔ d < d∗ > 0.
So, mse(β̂r(k, d))−mse(β̂r(d)) < 0 for < 0 or d < d∗.

at the same method, when M2 < 0, mse(β̂r(k, d))−
mse(β̂r(d)) > 0 for d∗ < d < 0.

Also, mse(β̂r(k, d))−mse(β̂r(d)) < 0 for d >
0 and d > d∗.

Theorem 4.1:
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∑r

i=1
(α2

i −τ )
(λi+k) (λi+1)2 > 0 then:

(1) mse(β̂r(k, d)) > mse(β̂r(d)) for 0 < d < d∗.
(2) mse(β̂r(k, d)) < mse(β̂r(d)) for < 0 or d < d∗.
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∑r
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(α2

i −τ )
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(1) mse(β̂r(k, d)) > mse(β̂r(d)) for d∗ < d < 0.
(2) mse(β̂r(k, d)) < mse(β̂r(d)) for > 0 and d > d∗.
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d∗ =
2k
∑r

i=1
(α̂2

i −τ )
(λi+k) (λi+1)2∑r

i=1

(
(λi+k)2

−λ2
i

)
(λiα

2
i +τ )

λi (λi+1)2(λi+k)2

4.2. Comparison between our estimator and (r – k)
Class estimator
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5. Simulation research

In this section, we use a Monte Carlo simulation
experiment to test our proposed estimator’s efficiency
under various degrees of multicollinearity.

5.1. Simulation design

The yi of n observations from IGR is generated as,
yi ∼ Inverse Gaussian (µi, τ ); where τ = (0.7,1.2,3)
and µi = exp(xi

Tβ), β = (β1, . . . , βp) with
∑p

j=1 β
2
j =

1 [13]. The xT
i = (xi1, xi2, . . . , xin) have been gener-

ated from

xij =
(
1− ρ2)1/2wi j + ρwip i = 1,2, . . . ,n,

j = 1,2, . . . , p

where wi j’s are independent standard normal pseudo-
random numbers. Three representative sample sizes
of 50, 100, and 150 are considered. Furthermore,
p = 4 and p = 8 are used with the degrees of cor-
relation of ρ = (0.90, 0.95, 0.99). The average MSE
is calculated as:

MSE
(
β̂
)
=

1
1000

1000∑
i=1

(
β̂ − β

)T (
β̂ − β

)

5.2. Results of the simulation

The averaged MSE for each combination of compo-
nents is shown in Tables 1 to 3. The best value of the
averaged MSE is bolded. From the tables, we can infer
the following conclusions:

Table 1. Averaged MSE when τ = 0.7.

n p ρ IGR r-k r-d r-(k-d)

50 4 0.90 4.229 3.988 3.649 3.535
0.95 4.273 4.038 3.699 3.585
0.99 4.539 4.304 3.965 3.851

8 0.90 4.343 4.108 3.769 3.655
0.95 4.393 4.158 3.819 3.705
0.99 4.659 4.424 4.085 3.971

100 4 0.90 3.981 3.746 3.407 3.293
0.95 4.031 3.796 3.457 3.343
0.99 4.297 4.062 3.723 3.609

8 0.90 4.107 3.866 3.527 3.413
0.95 4.151 3.916 3.577 3.463
0.99 4.417 4.182 3.843 3.729

150 4 0.90 3.93 3.695 3.356 3.242
0.95 3.98 3.745 3.406 3.293
0.99 4.246 4.011 3.672 3.558

8 0.90 4.05 3.815 3.476 3.363
0.95 4.1 3.865 3.526 3.412
0.99 4.366 4.131 3.792 3.678

Table 2. Averaged MSE when τ = 1.2.

n p ρ IGR r-k r-d r-(k-d)

50 4 0.90 4.12 3.885 3.546 3.432
0.95 4.169 3.934 3.595 3.481
0.99 4.436 4.201 3.862 3.748

8 0.90 4.24 4.005 3.666 3.552
0.95 4.289 4.054 3.715 3.6
0.99 4.556 4.321 3.982 3.868

100 4 0.90 3.878 3.643 3.304 3.19
0.95 3.928 3.692 3.353 3.239
0.99 4.194 3.959 3.62 3.506

8 0.90 3.998 3.763 3.424 3.31
0.95 4.048 3.813 3.474 3.36
0.99 4.314 4.079 3.74 3.626

150 4 0.90 3.827 3.592 3.253 3.139
0.95 3.876 3.641 3.303 3.188
0.99 4.143 3.908 3.569 3.455

8 0.90 3.947 3.712 3.373 3.259
0.95 3.996 3.761 3.423 3.308
0.99 4.263 4.028 3.689 3.575

Table 3. Averaged MSE when τ = 3.

n p ρ IGR r-k r-d r-(k-d)

50 4 0.90 3.747 3.512 3.173 3.059
0.95 3.796 3.561 3.222 3.108
0.99 4.063 3.828 3.489 3.375

8 0.90 3.867 3.632 3.293 3.179
0.95 3.916 3.681 3.342 3.227
0.99 4.183 3.948 3.609 3.495

100 4 0.90 3.505 3.27 2.931 2.817
0.95 3.555 3.319 2.98 2.866
0.99 3.821 3.586 3.247 3.133

8 0.90 3.625 3.39 3.051 2.937
0.95 3.675 3.44 3.101 2.987
0.99 3.941 3.706 3.367 3.253

150 4 0.90 3.454 3.219 2.88 2.766
0.95 3.503 3.268 2.93 2.815
0.99 3.77 3.535 3.196 3.082

8 0.90 3.574 3.339 3.241 2.886
0.95 3.623 3.388 3.05 2.935
0.99 3.89 3.655 3.316 3.202

1) The results of the new estimator are the best
in all the circumstances examined. Furthermore,
at higher correlation coefficient values, r-(k-d)
performs better.

2) In terms of MSE, Tables 1 to 3 demonstrate
that r-(k-d) is the most efficient. In the sec-
ond rank, the r-d estimator performs better than
the IGR and the r-k estimators. Moreover, mul-
ticollinearity has a significant impact on the
IGR estimator’s efficiency, which is the lowest
among the r-k, r-d, and r-(k-d) estimators.

3) Upon increasing the number of explanatory vari-
ables from four to eight, it becomes evident that
the MSE experiences a detrimental impact as
their values rise. Furthermore, with regard to
sample size, the MSE values decrease with in-
creasing n, independent of ρ and p values.
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4) It is evident that the MSE values fall as the dis-
persion parameter, τ , increases.

6. The application

A chemical dataset was used to explain the r-(k-
d) estimator’s capacity in practical applications. This
data with n = 212 and p = 10. The logarithm of
the reciprocal of the minimum inhibitory concentra-
tion (MIC), which measures the antibiotic efficiency
against Candida albicans in milligrams per milliliter,
is known as pMIC. Although it shows how many
chemical descriptors are used as explanatory vari-
ables [5].

The response variable is initially tested to see if it
fits into the IG distribution using the Chi-square test.
A p-value of 0.8704 and a result of 12.1056 were
obtained from the test. This result demonstrates how
well the IG a distribution fits this response variable.
The approximate dispersion parameter is 0.0153. Sec-
ond, following the fitting of the log link function
and an approximate dispersion parameter of 0.063
to the IGR, the eigenvalues are 1.97× 109, 3.74×
106, 1.21× 104, 1.34× 103, 1.22× 103, 1.07× 103,
4.63× 102, 2.08× 101, 10.68, and 1.57.

The evaluated condition number CN =
√
λmax/λmin

of the data is 35422.83 suggesting the presence of a
significant multicollinearity problem. The MSE values
and approximate Inverse Gaussian regression coef-
ficients for the IGR, r-k, k-d, and r-(k-d) estimators
are shown in Table 4. As Table 4 illustrates, the r-
(k-d) effectively reduces the value of the estimated
coefficients.

Moreover, the decrease on the MSE is also evidently
observed in favour of the r- (k-d). To be precise, the
proposed estimator was about 36.174%, 23.621%,
and 19.688% less than the IGR, r-k, and k-d estimator,
respectively.

Table 4. The estimated IGR and MSE values.

Estimators

IGR r-k k-d r-(k-d)

X1 0.9148 0.8934 0.8745 0.8688
X2 1.9196 1.8982 1.8793 1.8736
X3 0.6957 0.6743 0.6554 0.6497
X4 −1.3663 −1.3877 −1.4066 −1.4123
X5 −1.9661 −1.9875 −2.0064 −2.0121
X6 −0.0743 −0.0957 −0.1146 −0.1203
X7 −1.3981 −1.4195 −1.4384 −1.4441
X8 −0.4238 −0.4452 −0.4641 −0.4698
X9 −1.3662 −1.3876 −1.4065 −1.4122
X10 2.8926 2.8712 2.8523 2.8466

MSE 3.7877 2.9539 2.8397 2.1653

7. Conclusion

The IGR model is used in modeling positive contin-
uous data in which the response variable is inverse
Gaussian. The Liu-Type estimator is a mollified form
of traditional estimators where a new parameter is
introduced with an aim of enhancing efficiency of
estimation particularly under conditions of multi-
collinearity. In this study, we theoretically analyzed
the (r-(k-d)) class estimator for the IGR model that
we have proposed previously. The MSE has been
used in the analysis to compare our suggested estima-
tor with another estimator. Based on the simulation
and real data evidence presented in detail, the sug-
gested estimator outperforms the other estimators
considering the MSE. For future work, the enhanced
robustness against multicollinearity in IGR model
can be handled. Further, applying (r-(k-d)) class es-
timator to other real-world datasets across various
fields such as healthcare, finance, and environmental
studies.
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