تأثیر ظروف زرعیه مختلفة علی نمو و إنتاج دهن الخلیة الأحادیة و المادة الأولیة لفیتامین D_2 من خمیرة D_2 النامیة علی وسط مولاس القصب السکري

م.م. غيداء صلاح حسين قسم العلوم/كلية التربية الأساسية م.و لاء حمدون شكر قسم علوم الحياة /كلية التربية

جامعة الموصل

المؤتمر العلمي السنوي الأول لكلية التربية الأساسية (23-24/أيار/2007)

ملخص البحث:

شملت هذه الدراسة بيان تأثير بعض الظروف الزرعية على نمو وإنتاج دهن الخلية الأحادية من خميرة Rhodotorula glutinis والنامية على وسط مولاس القصب السكري بتركيز سكر 12% تبين من النتائج إن أقصى نمو وإنتاجية كان خلال اليوم الرابع من الحضانة ، وان اليوريا هي الأفضل من بين المصادر النتروجينية الأخرى المستخدمة فقد حفز نمو الخميرة وإنتاج دهن الخلية الأحادية بينما وجد إن نترات الصوديوم والببتون كان لهما تأثير مثبط على نمو وإنتاج دهن الخلية الأحادية. وعند دراسة تأثير تراكيز مختلفة من المضاد الفطري filipin أظهرت النتائج بان التركيز 75 ملغم/ لتر قد أعطى أعلى نمو وإنتاجية للمادة الأولية لفيتامين . D2

The effect of some conditions on the production of single cell oil and provitamin D₂ of the yeast *rhodotorula glutinis* grown on suger cane molasses medium.

Lecturer
Walla Hamdon Shuker

Assisi. Lecturer Ghayda Salah Husen

Dept. of Biology/Coll. of Education

Dept. of science/Coll. of Basic Education

University of Mosul

Abstract:

This study was conducted to show the effect of some cultural conditions on the growth and production of single cell oil (SCO) from *Rhodotorula glutinis*. The yeast was grown on sugar cane molasses

medium having a sugar concentration of 12%. The results have shown that the highest production rate was achieved during the fourth day of incubation and the urea was the best among the nitrogen resources used to stimulate the growth and (SCO) production while the medium contain sodium nitrate and peptone had a suppression effect on single cell oil (SCO) production. The effect of different concentrations of antifungal filipin revealed that filipin at the concentration of 75 mg/l gave the highest growth and provitamin D_2 production.

المقدمية

تمتاز العديد من الأحياء المجهرية بقدرات معينة تمكن الإنسان من التعرف عليها ، واستطاع استغلالها لما فيه خيره وسلامته ولقد وجهت بعض هذه القدرات نحو إنتاج مواد من تلك الأحياء ذات كلفة اقل وجودة عالية مقارنة بإنتاجها بالطرق التقليدية المكلفة ومن بين تلك المواد التي لاقت اهتماما هي بروتين الخلية الأحادية ودهن الخلية الأحادية ومنذ سنة 1860 كان هناك مشاريع بحثية مركزة حول إنتاج مثل هذه المواد. وإن عملية إنتاج أية مادة مهمة من الأحياء المجهرية تعتمد على عوامل عديدة ومنها الكائن الحي والوسط الغذائي المستخدم وقد أجريت بحوث ودراسات تبين قابلية أنواع مختلفة من الفطريات (الخمائر والاعفان) ومنها أجريت بحوث ودراسات تبين قابلية أنواع مختلفة من الفطريات (الخمائر والاعفان) ومنها الستيرولات (Saccharomyces spp. و Saccharomyce التي يصيب الأطفال. ومن الستيرولات (Ergosterol) والتي بدورها تحتوي على نسبة جيدة من الاركوستيرول (Sterols) ومن المادة الأولية لفيتامين D2 المستخدم لعلاج مرض الكساح الذي يصيب الأطفال. ومن الجدير بالذكر إن لهذه الكائنات القدرة على النمو والتكاثر على أوساط غذائية رخيصة وخاصة المخلفات الصناعية [5,4,3,2,1].

وتركز هذه الدراسة الحالية على استخدام مولاس القصب السكري (الذي يطرح منه مقادير كبيرة من معامل السكر في العراق كناتج ثانوي) لغرض إنماء الخميرة وتمتاز خميرة مقادير كبيرة من معامل السكر في العراق كناتج ثانوي) لغرض إنماء الأوساط وبدورة حياة معلى النمو والتكاثر على مثل هذه الأوساط وبدورة حياة قصيرة كما إنها تحتوي على نسبة جيدة من المادة الأولية لفيتامين [6]. إن الهدف من الدراسة الحالية هو بيان مدى تأثير عوامل مختلفة على نمو هذه الخميرة وبالتالي تأثيرها على إنتاج دهن الخلية الأحادي والمادة الأولية لفيتامين 2 م.

المواد وطرائق العمل:

1. الكائن ألمجهري المستخدم:

استخدمت في هذه الدراسة خميرة Rhodotorula glutinis والتي تم الحصول عليها من قسم الأحياء المجهرية/كلية الزراعة/جامعة اليرموك/ألأردن.

2. ظروف حفظ الخميرة:

حفظت الخميرة على وسط بطاطا – دكستروز أكار المائلة بدرجة حرارة 1 ± 30 م° لمدة خمسة أيام وتم تنشيط الخميرة كل أسبوعين على الوسط المذكور. تم الحفظ في الثلاجة 4 م° [7].

3. الأوساط الغذائية والظروف الزراعية:

3-1 مولاس القصب السكري:

إن المادة الخام والتي استخدمت في هذه الدراسة لزراعة وتنمية الخميرة هي مولاس القصب السكري وتم الحصول عليها من معمل إنتاج السكر في الموصل. ويفضل استخدام مولاس القصب السكري على مولاس البنجر السكري وذلك لكون الأول غني بفيتامين البايوتين المهم لنمو الخميرة بينما الثاني يحتوي على المركب النتروجينني Betain التي لا تستطيع الخميرة استخدامه في النمو [2]. حضر الوسط بإذابة 50 غم من مولاس القصب في كمية معينة من الماء المقطر ثم أجريت عملية ترشيح الوسط وأكمل الوسط الغذائي إلى لتر بوساطة الماء المقطر بحيث يكون التركيز النهائي للسكر فيه 12%.

2-3 وسط بطاطة دكستروز -أكار:

استخدم هذا الوسط لحفظ وتنشيط الخميرة وتم تحضيره بأخذ 200 غم من البطاطا الطازجة والمقشرة والمقطعة بشكل مكعبات أضيف أليها 500 سم 8 من الماء المقطر ويغلى المزيج حتى النضج. ثم رشح بوساطة قطعة من الشاش أضيف إلية 20 غم من الدكستروز و 20 غم من الاكار وأكمل الحجم إلى لتر واحد. تم توزيع الوسط في أنابيب اختبار وعقم بجهاز المعقام عند ضغط واحد جو ودرجة حرارة 121 م $^{\circ}$ ولمدة 20 دقيقة ووضعت بصورة مائلة Agar slant [8].

4. تحضير معلق الخميرة:

تم تحضير معلق الخميرة وذلك بإضافة 5 سم 6 من الماء المقطر المعقم لكل أنبوبة من أنابيب الاختبار الحاوية على الوسط ألزرعي بطاطا-دكستروز أكار المائلة والنامية عليها الخميرة وبعمر 4 أيام وبوساطة العروة المعقمة تم إزالتها وجمعت في دورق صغير وذو سداد مطاطي. وقد تم عد خلايا الخميرة بعد إجراء التخفيف المطلوب وكان تقريبا 4 10x5 خلية مل بالاستعانة بشريحة العد 19]. [9].

5. تحضير المضاد الفطري filipin:

تم تحضيره وذلك بعد إزالة العلبة التي تحيط به ومن ثم سحقه بشكل جيد باستخدام هاون خزفي تم وزن الكميات المطلوبة حسب التجربة باستخدام ميزان حساس أذيبت في كمية قليلة من الماء المقطر والمعقم وأضيفت إلى الأوساط الغذائية والمحضرة سابقا. [10].

6. تحضير المزارع والتلقيح والتحضين:

استخدمت دوارق زجاجية سعة 250 سم 6 أضيفت إلى كل منها 50 سم 6 من الوسط الغذائي وبواقع ثلاث مكررات لكل معاملة وبعد التعقيم بجهاز المعقام والتبريد تم تلقيح الأوساط الغذائية بمعلق الخميرة والتي بعمر 4 يوم وبإضافة 1 سم 6 من المعلق لكل دورق ثم وضعت في الحاضنة الهزازة وتحت سرعة هز 125 دورة/دقيقة ودرجة حرارة 125 م $^{\circ}$ وتم سحب ثلاث مكررات لكل وسط غذائي بعد كل فترة حضانة وبشكل عشوائي لغرض إجراء التحليل.

طرائق التحليل:

1. تقدير الوزن الجاف:

تم تقدير الوزن الجاف للعينات بعد انتهاء كل فترة حضانة وذلك بآخذ الوسط الغذائي ورجه بشكل جيد ثم عزلت الكتل الحية بطريقة النبذ المركزي وبسرعة 6000 دورة/ دقيقة لمدة 15 دقيقة وبعد التخلص من الراشح تم غسل الراسب بـ 50 سم 8 من الماء المقطر ثم أعيدت عملية النبذ المركزي تحت نفس الظروف أعلاه. وبعد التخلص من الراشح جفف الراسب في فرن بدرجة حرارة 60 م 9 ولمدة 24 ساعة ثم قدر الوزن الجاف [11].

2. تقدير دهن أحادي الخلية:

قدر المحتوى ألدهني للخميرة وذلك بأخذ الخميرة الجافة والتي تم الحصول عليها من الخطوة 1 وسحقها بشكل جيد باستخدام هاون خزفي ثم اخذ 1 غم من الخميرة المسحوقة واستخلص منها الدهن وذلك من خلال استخدام المذيب العضوي Petroleum ether ذو درجة غليان 60–80 م° ولمدة 15 ساعة وباستخدام جهاز Soxholate apparatus اعتمادا على الطريقة التي وضعها [12].

D_2 تقدير المادة الأولية لفيتامين D_2

تم تقدير المادة الأولية لفيتامين D_2 من الدهن الناتج من الخطوة 2 بعد إذابة العينة في مادة الكلوروفورم بمقدار D_1 سم D_2 من المحلول السابق ووضع في مادة الكلوروفورم بمقدار D_2 سم D_3 الكلوروفورم و D_3 سم (acetic anhydride) أنبوبة اختبار نظيفة وجافة أضيف إلية D_3 سم D_4 الكلوروفورم و D_4 سم D_5 من حامض الكبريتيك المركز ووضعت الأنابيب في مكان مظلم ولمدة D_4 دقيقة بعدها رجت الأنابيب بشكل جيد ثم قدرت كمية المادة لفيتامين D_4 وباستخدام جهاز الطيف الضوئي من نوع (Spectrophotometer SP-6-550 UV/VIS) وعند طول موجي الطيف الضوئي من نوع (Spectrophotometer SP-6-550 UV/VIS) وعند طول موجي بالاركوستيرول والذي تم تحضيره باستخدام تراكيز مختلفة من مادة الاكوستيرول القياسي واعتمدت نفس الطريقة في تحضير المنحني القياسي [6].

النتائج والمناقشة:

1. تأثير فترات الحضانة المختلفة:

تبين النتائج المدونة في الجدول 1 بان نمو الخميرة وإنتاج دهن الخلية الأحادي يتأثران بفترة الحضانة، حيث كان هناك تناسبا طرديا بين النمو والإنتاج مع فترة الحضانة حيث تم لحصول على أعلى كتلة حيوية 18.6 ملغم/سم ومن الوسط الغذائي عند اليوم الرابع من الحضانة وهذا يعني إن الخميرة كانت بأقصى نشاطها وحيويتها خلال اليوم الرابع من الحضانة حيث أعطت أعلى نمو. وبعد هذه المدة حدث انخفاض في نمو الخميرة وبلغت الكتلة الحيوية 9.08 ملغم/ سم بعد مرور ستة أيام من الحضانة وسبب هذا الانخفاض يرجع إلى نفاذ المصدر النتروجيني من الوسط الغذائي أو يعود إلى نفاذ المصدر الكاربوني أو نتيجة لتغيير الرقم الهيدروجيني للوسط الغذائي نتيجة الفعاليات الايضية للخميرة. وعند تقدير وزن الدهن لوحظ بان له علاقة مع نمو الخميرة فقد تم الحصول على أعلى وزن خلال اليوم الرابع من الحضانة حيث بلغ 10.786 ملغم/سم من الوسط الغذائي وتم الحصول على أدنى وزن للدهن خلال

اليوم السادس من الحضانة وهذا يدل على وجود علاقة طردية أيضا بين النمو والإنتاجية وعليه فقد تم الاعتماد في التجارب اللاحقة على اليوم الرابع من الحضانة وتبدو هذه النتائج مقاربة إلى ما توصل إليه [13,8,6]. فقد أكدا على أن اليوم الرابع من الحضانة كان الأفضل لإعطاء أعلي نمو وإنتاجية كما هي الحال عند استخدام خميرة S. cervisiae وتوصل [14]. إلى نفس الشي عند استخدامه لخميرة Rhodotorula minuta.

الجدول (1): تأثير فترات حضانة مختلفة على نمو الخميرة وإنتاج دهن أحادي الخلية والمادة الأولية لفيتامين D2 النامية على وسط مولاس القصب السكري

% للمادة الأولية لفيتامين D2 في الدهن	% للمادة الأولية لفيتامين D2 في الوزن الجاف	وزن المادة الأولية لفيتامين D2 ملغم/سم ³	% للدهن المستخلص	وزن الدهن المستخلص ملغم/سم ³	وزن الخميرة الجافة ملغم/ سم ³	فترات الحضانة بالأيام
6.2	2.6	0.26 (0.05)	42	421.2	10.13 (0.19)	2
7.5	3.8	0.63 (0.04)	50	846.0	(0.18) 16.92	3
9.0	5.2	0.97 (0.03)	58	1078.6	(0.21) 18.60	4
7.0	3.7	0.56 (0.04)	53	811.4	(0.21) 15.31	5
5.0	2.4	0.21 (0.05)	48	453.8	9.08 (0.17)	6

كل رقم يمثل متوسطا لثلاث مكررات.

الأرقام داخل الأقواس تمثل الانحراف المعياري لثلاث مكررات.

2. تأثير المصادر النتروجينية المختلفة:

النتائج المدونة في الجدول (2) تشير إلى وجود اختلاف في كمية الكتل الحية للخميرة وإنتاج الدهن والمادة الأولية لفيتامين D2 عند استخدام مصادر نترو جينية مختلفة ولتحديد المصدر النيتروجيني الأمثل فقد تم استخدام المصادر النتروجينية الآتية ((اعتمادا على المحتوى النتروجيني لفوسفات الأمونيوم 1.06 غم نتروجين/ لتر من الوسط)). وكما يلي: يوريا 0.2% ونترات الصوديوم 64. 0% وكلوريد الأمونيوم 4 .0% وببتون 54 .0% وفوسفات الأمونيوم 5 .0% حيث أعطى الوسط المجهز باليوريا أفضل نمو و بلغت كمية الوزن الجاف للخميرة .0% حيث أعطى الوسط الغذائي يليه الوسط الحاوي على فوسفات الأمونيوم الأحادية 18.84 ملغم/سم 3 من الوسط الغذائي وتظهر النتائج أيضا بان الوسط الغذائي المجهز بنترات الصوديوم والببتون قد اظهر تأثيرا مثبطا على النمو مقارنة ببقية الأوساط الغذائية المجهز المحهز

بالمصادر النتروجينية الأخرى. ويظهر من النتائج أيضا بان كمية الدهن أحادي الخلية المنتج من قبل الخميرة اختلفت باختلاف المصدر النيتروجيني المضاف للوسط الغذائي حيث اظهر الوسط الغذائي المجهز باليوريا تأثيرا محفزا مقارنة بالمصدر النتروجينية الأخرى حيث بلغ 12.44 ملغم/سم3 من الوسط أما نسبة المادة الأولية لفيتامين D2 فقد أعطى الوسط المجهز باليوريا أعلى نسبة مقارنة بالمصادر الأخرى حيث بلغت 10.3% وقد بينت النتائج أيضا بان نترات الصوديوم والببتون اظهرا تأثيرا مثبطا على الإنتاجية وهذه النتائج تبدو مقاربة إلى ما توصل إلية [13]. الذي أكد على أن اليوريا هي أفضل مصدر نتروجيني يضاف إلى وسط المولاس لإعطائه نمو جيد وإنتاجية أعلى من الاركوستيرول عند استخدامه خميرة ... المولاس لإعطائه نفس جيد وإنتاجية أعلى من الاركوستيرول عند استخدامه خميرة عند استخدامه نفس الخميرة ... وأحد استخدامه لله النسائج التي توصل إليها [15].

الجدول (2): تأثير مصادر نترو جينية مختلفة على نمو الخميرة وإنتاج دهن أحادي الخلية والمادة الأولية لفيتامين D2 النامية على وسط مولاس القصب السكري عند اليوم الرابع من الحضانة.

% للمادة الأولية لفيتامين D ₂ في الدهن	% للمادة الأولية لفيتامين D2 في الوزن الجاف	وزن المادة الأولية لفيتامين D 2 ملغم/سم ³	% للدهن المستخلص	وزن الدهن المستخلص ملغم/سم ³	وزن الخميرة الجافة ملغم/سم ³	المعاملة
10.3	6.3	(0.06) 1.28	62.0	12.44	(0.17) 20.08	Urea
8.9	4.9	(0.06) 0.92	55.0	10.36	(0.18) 18.84	(NH4)2HPO4
7.2	3.9	(0.05) 0.64	53.6	8.70	(0.18) 16.21	NH4CL
6.8	3.0	(0.05) 0.33	44.0	4.84	(0.17) 11.02	NaNO ₃
4.9	2.0	(0.06) 0.19	40.0	3.94	(0.16) 9.87	Peptone

كل رقم يمثل متوسطا لثلاث مكررات.

الأرقام داخل الأقواس تمثل الانحراف المعياري لثلاث مكررات.

3. تأثير إضافة تراكيز مختلفة من المضاد الفطري filipin:

لقد صممت هذه التجربة لمعرفة مدى تأثير المضاد الفطري على النمو من جهة وعلى الإنتاجية من جهة ثانية وقد تم الاعتماد على أله filipin كمضاد فطري في هذه التجربة حيث استخدمت منه ستة تراكيز: 60, 65, 70, 75, 80, 85 ملغم/لتر ولمدة 4 أيام. تبين من النتائج المدونة في الجدول (3) بان لهذا المضاد الفطري تأثيرا واضحا وطرديا مع زيادة تركيز المضاد الفطري على نمو الخميرة للوصول إلى الوسط الحاوي على التركيز 75 ملغم/ لتر من الوسط الغذائي الذي كان الأفضل مقارنة مع بقية الأوساط الغذائية الحاوية على التراكيز الأخرى للمضاد وقد بلغت الكتلة الحيوية 22.10 ملغم/سم3 وتم تقدير المحتوى ألدهني فقد أعطى التركيز نفسه أعلى محتوى وبلغ 15.20 ملغم/سم3 من الوسط الغذائي أما نسبة الدهن 8. 68% أي إن المضاد الحيوي عند التركيز 75ملغم/لتر كان له تأثير محفز على نمو الخميرة وإنتاج المادة الأولية لفيتامين D_2 وكذلك أظهرت النتائج بان هناك زبادة ملحوظة في نسبة إنتاج المادة الأولية لفيتامين D2 حيث بلغت نسبة الإنتاج 7.9%. وتبدو هذه الدراسة مشابهة لما توصل إليه [16]. إذ أكد على وجود زيادة ملحوظة في كمية ونسبة المادة الأولية لفيتامين وعند 30–25 بتركيز nystatine بتركين الفطريين S. cerevisiae استخدام خميرة ملغم/لتر. و filipin بتركيز 70-75 ملغم/لتر ويعزى السبب في تلك الزيادة في الإنتاج إلى كون مادة الستيرول الموجودة في الغشاء البلازمي للخلية يمنع دخول هذه المادة إلى داخل الخلية وعند إضافة هذه المضادات الفطرية وبتراكيز متدرجة تعمل الخلية على زيادة إنتاج الستيرول لمنع تأثير المضاد الفطري عليها ولكن لوحظ تثبيط في كمية ونسبة الإنتاج عند استخدام التراكيز العالية وبعزي السبب في ذلك إلى تأثير الأنزيمات التي تدخل في عملية إنتاج مادة الستيرول Transfer الناقلة D_2 وكذلك الأنزيمات الناقلة الأولية الأول enzymes الموجودة في الغشاء البلازمي للخلية وهذا ما أكده [18,17]. والنتائج تتفق أيضا إلى ما توصل إليه [15]. حيث أكد إلى أن إضافة المضاد الفطري nystatine قد أدى إلى إحداث زيادة واضحة في كمية الاركوستيرول المنتج من خميرة S. cerevisiae بمقدار 20.3% وأكد الشي نفسه [14]. عند استخدام خميرة Rhodotorula minuta وباستخدام المضاد الفطري nystatine فقد أشار إلى وجود علاقة قوبة بين كمية الستيرول الموجودة في جدار الخميرة وتركيز المضاد الفطري. وكما تتفق النتائج مع ما توصل إليه [19] حيث أكد أن استخدام المضاد الفطري يساعد على زيادة إنتاج الستيرول عند استخدامه لفطر . fischeri

الجدول (3): تأثير تراكيز مختلفة للمضاد الفطري filipin على نمو الخميرة وإنتاج دهن أحادي الخلية والمادة الأولية لفيتامين D2 النامية على وسط مولاس القصب السكري عند اليوم الرابع من الحضانة.

% للمادة الأولية لفيتامين D2 في الدهن	% للمادة الأولية لفيتامين D2 في الوزن الجاف	وزن المادة الأولية لفيتامين D2 ملغم/سم ³	% للدهن المستخلص	وزن الده <i>ن</i> المستخلص ملغم/سم ³	وزن الخميرة الجافة ملغم/سم ³	ترکیز آلـ filipin ملغم/لتر
9.9	6.1	(0.08)	61.2	1181.1	(0.02)	وسط
		1.17	01.2		19.30	المقارنة
8.0	3.2	(0.07)	40.0	656.8	(0.7)	60
		0.52	40.0		16.03	
8.9	4.2	(0.06)	48.3	927.8	(0.15)	65
		0.82			19.21	
10.8	6.5	(0.04)	60.0	1260.6	(0.14)	70
		1.36			21.01	
11.5	7.9	(0.05)	68.8	1520.4	(0.16)	75
		1.74			22.10	
9.5	5.4	(0.06)	57.0	1134.3	(0.28)	80
		1.07	57.0		19.90	
8.1	3.8	(0.06)	48.0	830.8	(0.03)	85
		0.67			17.31	

كل رقم يمثل متوسطا لثلاث مكررات.

الأرقام داخل الأقواس تمثل الانحراف المعياري لثلاث مكررات.

وسط المقارنة خالي من المضاد الفطري filipin فقط يحتوي على اليوريا.

المصيادر

- 1. Dulaney, E.L., E.O. Stapley, and K Simpl (1954). Erogosteral production by yeast. J. Appl. Microbial, 2; 371-379.
- 2. Conzalez-Bibesca, J.I. and C. C. Campillo (1961). Ergosterol content of *Saccharomycer microellipsides* and other soil yeast. J. Rev. Latincon Microbial 4: 83-96.
- 3. Ykema, A. (1989). Isolation and characterization of fatty acid auxotrophs from the oleaginous yeast *Apiotrichum curvatum*. J. Appl. Microbial-Biotechnol., 32: 76–84.
- 4. علاوي، رعد حساني سلطان (1996). دراسة إنتاج السكر المتعدد (البوليلان) من مولاس البنجر بوساطة الفطر Aureobasidium pullulans مع تشخيص جزئي للمنتوج، رسالة ماجستير، جامعة الموصل، العراق.
- 5. الجبوري، شمال يونس (1997). التحليل الحامضي لمسحوق نبات الكلفان (Silybum). رسالة (Marianum) لانتاج بروتين أحادي الخلية بواسطة الخميرة Marianum). ماجستير، كلية التربية، جامعة الموصل، العراق.
- 6. الحيالي، ولاء حمدون شكر (1996). تقدير المادة الأولية لفيتامين D_2 من خميرة $S_{accharomycer}$ cerevisiae والمنماة على وسط مولاس القصب. رسالة ماجستير، كلية التربية، جامعة الموصل، العراق.
- 7. Legatt-Bailey, J. (1967). "Techniques in protein chemistry" 2nd-2d. Elsevier publishing Co.; 304-346, London & New York.
- 8. Haider, M.M. (1978). A study of growth, Fat and sterol production by *Saccharomyces cerevisiae* using locally produced Molasses as the principal subtract. M.Sc. Thesis College of Science. University of Mosul. Iraq.
- 9. Matric, L. and G. Majda (1995). Sudden substrate dilution induce a higher rate of citric acid production by *Aspergillus niger*. Appl. And enviro-Microbiology., 61:2732-2737.

- 10.Lampan, J. O., P.M.Arnow and R.S. Safferman (1960). Mechanism of production by sterol against polyene antibiotics J. Bacterial, 84:200-210
- 11.Reindal. .F., Neider-Lander, K., and Pfandt, R. (1937). Sterol production in yeast. J. Biochem. Z. I: 297
- 12.Kobrina, Y.P. (1970). Way of increasing the ergosterol contents in bakers yeast. IZV.Vyssh Vche Buzaved pish Teknd. 4:50-53.
- 13. Haider, M. M. (1994). The effect of some conditions on the production of Single Cell Oil and provitamin-D₂ of the yeast *Saccharomyces cerevisiae*. J. Educ. & Sci., 18: 89-99.
- 14. البصام، رعد (1994). المحتوى الكيميائي للأحماض الدهنية والاستيرولات في خميرة Rhodotorula minuta والمعزولة من الترب العراقية. مجلة الأحياء المجهرية، بغداد، العراق،6: 5-15.
- 15.Mveen, C.Lang (2004). Production of lipid compounds in the yeast. *Saccharomycer cervisiae*. Applied microbiology and Biotechnology, 63(6):635-646.
- 16.Florent, J. (1986). Vitamins" In Biotechnology". Eds., H. J. Rehm & G. Reed, Germany, 4: 115-158.
- 17.Parks, L.W. & J.S. Steven (1995). Biochemical and Physiological effect of sterol alteration in yeast- Areview. J. Lipids. 3:227-230.
- 18.Parks, L.W. & M. C. Warren (1995). Physdgical implication of sterol biosynthesis in yeast, J. Annu. Rev. Microbial., 49: 95-116.
- 19.Wench,P.R. W.H.Peterson and E.B.Fred (1935). Chemistry of mold tissue IX Factors influencing growth and sterol production of *Aspergillus fischeri*. ,J Zentr. Bakt. Parasitenk., 92:330-338.