On MP-rings and DS-rings

Lugen .M.Zake.Sheet Al-Sufar

College of Basic Education/ University of Mosul

The 1st Scientific Annual Conference for College of Basic Education (23-24/May/2007)

Abstract:

The research aims to study two kinds of rings,MP-rings and DS-rings. The researcher gave some binding relation with other modules and rings. The researcher put the hypothesis that condition.

على الحلقات من النمط-MP و الحلقات من النمط-DS

ملخص البحث:

MPيهدف البحث إلى دراسة نوعين من الحلقات هي الحلقات اليسرى من النمط وحلقات ,والحلقات اليسرى من النمط DS . وأعطينا بعض العلاقات التي تربط بين هذه الحلقات وحلقات أخرى ,وأعطينا شرط(*) في أثبات علاقة الحلقات اليسرى من النمط DS مع حلقات أخرى .

1. Introduction:

To study a left MP-rings and a left DS-rings[3] requires our knowledge of other definitions as:

- 1. A right R-module M is said to be P-injective if and only if ,for each principal right ideal I of R ,and every right R- homomorphism $f:I \rightarrow M$, there exists y in M such that f(x)=yx for all x in I,[2].
- 2. An R-module M is called simple when its only sub modules are 0 and M, [5].

- 3. A right annihilator of a non-zero element a in a ring R is defined by $r(a)=\{b\in \mathbb{R}: ab=0\}$, a left annihilator l(a) is similarly defined,[5].
- 4. An R-module M is called faithful if and only if Ann(M)=0,[5].

Many scientists studied rings such Nicholson, Yousif and Watter, Nicholson proved that [3](Every MP-ring is DS-ring), if R is P-injective or R is commutative. So (Every MP-ring is A left faith R-module).

2- MP-Rings

Following [3]

A ring R is called a left MP-ring if every minimal left ideal of R is a P-injective module. And a left R-module M is called an MP-module if every simple sub module is a P-injective module.

Theorem (2-1)[3]

The following conditions are equivalent for a ring R:-

- 1. R is a left MP-ring.
- 2. R is has a faithful left MP-module.
- 3. If L is a maximal left ideal of R then either r(L) = 0 or R/L is P—injective module.
- 4. Every simple left R-module K either is P-injective or satisfies hom(K,R)=0.

Lemma (2-2)

Let R be a left MP-ring , if for each minimal left ideal L of R ,and every $0 \neq a \in R$ Then r(l(a)) = aL.

Proof:

Let L be a minimal left ideal of R and $0 \neq a \in R$ since _RL is P-injective, then r(l(a)) = aL.

Theorem (2-3)

Let R be a left MP-ring, such that for each minimal left ideal L of R, and every $0 \neq a \in R$. If f: Ra \rightarrow L is any R-linear map, then f(a) \in aL.

Proof:

Let L be a minimal left ideal of R and $0 \neq a \in R$

Then rl(a) = aL

If f: $Ra \rightarrow L$ is any R-linear map, Then:

$$l(a) f(a) = f(l(a)a) = f(0) = 0$$

So
$$f(a) \in rl(a) = aL$$

Then f(a) € aL

Theorm (2-4)

Let R be a left MP-ring, such that for each minimal left ideal L of R and every $0 \neq a \in R$, if $l(a) \subseteq l(k)$, where $0 \neq k \in L$, then $0 \neq kL \subseteq aL$

Proof:

Let L be a minimal left ideal of R and $0 \neq a \in R$, if $l(a) \subseteq l(k)$, where kEL, then $kL = rl(k) \subseteq rl(a) = aL$, L=Re, $e^2 = e \in R$, since $k = ke \in kL$, $kL \neq 0$ then $0 \neq kL \subseteq aL$

Theorem (2-5)

The following conditions are equivalent

1. R is a left MP-ring.

2. For each minimal ideal L of R and every $0 \neq a \in \mathbb{R}$, $r(Rb \cap l(a)) = r(b) + aL$

Proof:

$$1 \longrightarrow 2$$

Let L be a minimal left ideal of R and $0\neq a$, b \in R.

We can suppose $a \in r(b) + aL$, we know $a \in r(b) \subset r(Rb)$, so $a \in aL = r(l(a))$

Therefore $a \in r(Rb) \cap r(l(a)) \subseteq r(Rb \cap l(a))$

$$\therefore$$
 r(Rb \cap l(a)) \supseteq r(b) + aL1

Now suppose $x \in r(Rb \cap l(a)) \dots 2$

Then $l(ba)\subseteq l(bx)$. If bx=0 then $x \in r(b) + aL$

If $bx\neq 0$ then by theorem (2-4) $0\neq bxL\subseteq baL$

So L=Re, from the same theorem, where e^2 =e.

Hence $bx=bxe \in bxL \subseteq baL$, bx=bay, where $y \in L$.

Then b(x-ay)=0 and $x-ay \in r(b)$.

Hence $x \in r(b) + aL \dots 3$

From(2),(3) we get $r(Rb \cap l(a)) \subseteq r(b) + aL \dots 4$,

from (1),(4)

Then $r(Rb \cap l(a)) = r(b) + aL$.

$$2 \longrightarrow 1$$

If for every minimal L left ideal L of R and 0≠a, b∈R

We have $r(Rb \cap l(a)) = r(b) + aL$.

Then we let b=1 and then rl(a) = aL.

Hence R is a left MP-ring by theorem (2-2).

3- DS-ring:

Following [3]

A ring R is called a left DS-ring if every minimal left ideal of R is a direct summand.

Definition (3-1) [4]

A ring R is called a right (left) minijective ring if and only if for any minimal right (left) ideal E of R. every R-homomorphism of E into R extends to one of right (left) R into R.

Following [3] A left R-module M is called a DS-module if every simple sub module is a minijective.

Definition (3-2)

A right R has condition (*) if $K\cong Re$ are simple, $e^2=e$, then K=Rg for some $g^2=g$.

Obviously a left DS-ring and a left minijective ring have condition (*).

Lemma (3-3)[3]

The following condition are equivalent:

- 1. R is a left Ds-ring.
- 2. Soc(R) is a minijective module.
- 3. R has a faithful left DS-module.

Theorem (3-4)

If L is a maximal left ideal of R and either r(L)=0 or R/L is a minijective module then R is a left DS-ring.

Proof:

Let Rk be a minimal left of R.

If $k^2 \neq 0$, then Rk = Re, e being an idempotent otherwise $k \in l(k)$, and then R/l(k) is a minijective let $f: Rk \rightarrow R/l(k)$, by f(rk) = r+l(k), then there exists $ad \in R$ such that $1-kd \in l(k)$

Henece k=kdk.

Let g=dk, then g is an idempotent ,and $Rk=Rkdk=Rkg\subseteq Rg=Rdk\subseteq Rk$.

Lugen .M.Zake.Sheet

Hence Rk = Rg.

Therefore R is a left DS-ring, Definition (3-2)

Theorem (3-5)

A ring R is a left DS-ring if and only if $J(R) \cap soc(R) = 0$.

Proof:

Let R be a left DS-ring, If $J(R) \cap Soc(R) \neq 0$ then there exists a minimal left ideal M of R with $M \subseteq J(R)$.

But M=re for some $0 \neq e^2 = eCR$

So $e \in J(R)$, a contradiction

Therefore $J(R) \cap soc(R) = 0$

Conversely:

If M is a minimal left ideal of r, then $J(R) \cap Soc(R) = 0$, implies $M^2 \neq 0$

So M=Re, where e^2 =eCR. Thus R is a left DS-ring.

Definition (3-6) [2]

Let R be a ring and x be an element in R, then x is said to be left singular if and only if L(x) is essential ideal in R. The set of all left singular elements in R is denotef by Z(R).

Z(R) is an ideal in R which is the left singular ideal of R.

Definition (3-7)

A ring R is said to be SSM-ring if and only if every singular simple left R-module is minijective.

Theorem (3-8)

Let R is a SSM-ring and has condition (*), then R is a left DS-ring.

Proof:

Let Rk be a minimal left ideal of R

l(k) be a maximal left ideal of R.

If l(k) is not essential. Then l(k) is a direct summand of R.

Hence $Rk \cong R/I(k)$ is projective, $Rk \cong Re$, where $e^2 = e$.

Then Rk=Rg ,since R has condition (*) where $g=g^2$.

If l(k) is essential, then Rk is singular simple so is minjective and we easily show that k=kdk [by proof Lemma (3-3)] let e=dk

Then Rk=Re and e²=e

Then R is a left DS-ring.

Theorem (3-9)

A sub direct product of a left DS-ring is a gain a left DS-ring.

Proof:

Let R/A_i be a left DS-ring for each $i \in I$ where $\bigcap_{i \in I} A_i = 0$ If M is a minimal left ideal of R, Then $M \not\subset A_i$ for some I, So $(M+A_i)/A_i$ is a minimal left ideal of R/A_i . It follows from Theorem (3-3) that $M^2 \not\subset A_i$ So $M^2 = M$.

Hence M=Re where e²=e and then R is a left DS-ring.

Theorem (3-10)

A ring R is a left DS-ring if and only if for each minimal left ideal K is $K \not\subset r(K)$.

Proof:

Suppose that R is a left DS-ring,

Let K be a minimal left ideal of R. Then K=Re, where e is an idempotent. Hence $K^2 \neq 0$, and $K \not\subset r(K)$.

Conversely,

If for each minimal left ideal K of R, $K \not\subset r(K)$,

Then $K^2 \neq 0$ and $K^2 = K$, so K = Re, $e^2 = e$, R is a left DS-ring.

Definition (3-11) [1]

A left R-module M is said to be flat if for any monomorphism N \rightarrow Q of right R-module N, Q, the induced homomorphism N \otimes M \rightarrow Q \otimes M is also homomorphism.

Theorem (3-12)

If $J(R) \cap Soc(R)$ is a flat left R-module, then R is a left DS-ring.

Proof:

Let $\{M_i \setminus i \in \Omega\}$ be a set of representative of non-isomorphic class of simple right R-module and $U = \Sigma_{i \in \Omega} \otimes M_i$.

Then we have an exact sequence:

L:
$$0 \rightarrow U \rightarrow E(U) \rightarrow E(U)/U \rightarrow 0$$
.

Where E(U) is the injective hull of U. Since $_R(J(R) \cap Soc\ (R))$ is flat, $0=U(J(R))\cap Soc\ (_RR))=E(U)(J(R)\cap Soc\ (_RR))\cap U$.

Hence $E(U)(J(R) \cap Soc(_RR))=0$

As U is essential in E(U), Since E(U) is an injective [see(2)] co generator it is faithful so $J(R) \cap Soc(_RR)=0$

By theorem (3-5), R is a left DS-ring.

References

- 1. Ming, R.Y.(1997);" A note On Yj injective ",Demon Math .Vol xxx No. 3,551-556 .
- 2. Ming, R.Y.(1973);"On Simple P-injective Modules",Math.Japonica. 19,173-176.
- 3. Nicholson, W.K. Watters, J.F. (1988); Rings With Projective Socle ", Proc. Amer , Math. Soc. 102,443-450 .
- 4. Nicholson, W.K., Yousif , M. (1997); "Minijective Rings ", Algebra, J. 187,548-578.
- 5. Shoker, N.H. (1974); "On V-rings", M.Sc. Thesis Baghdad University.