
Eng. & Tech. Journal ,Vol.29, No.3, 2011

*Computer Sciences Department, University of Technology/Baghdad

513

Effective Web Page Crawler

Dr. Hilal Hadi Saleh* & Dr. Isra’a Tahseen Ali*
Received on: 17/9/2009
Accepted on: 2/9/2010

Abstract

The World Wide Web (WWW) has grown from a few thousand pages in
1993 to more than eight billion pages at present. Due to this explosion in size,
web search engines are becoming increasingly important as the primary means
of locating relevant information.

This research aims to build a crawler that crawls the most important web
pages, a crawling system has been built which consists of three main
techniques. The first is Best-First Technique which is used to select the most
important page. The second is Distributed Crawling Technique which based on
UbiCrawler. It is used to distribute the URLs of the selected web pages to
several machines. And the third is Duplicated Pages Detecting Technique by
using a proposed document fingerprint algorithm.

Keywords: search engine, web crawl, and fingerprint.

 صفحات الويب الكفوء)غواص(عجمّ مْ
 الخ�صة

 8الى ما يتجاوز 1993بسبب تزايد حجم شبكة المعلومات من بضعة ا�ف صفحة منذ
اصبحت محركات بحث ا�نترنت ذات ا�ھمية المتزايدة تستخدم , ب�يين صفحة في وقتنا الحالي

لبحث يھدف الى بناء محرك بحث ان ھذا ا .كوسائل اساسية في تحديد اماكن المعلومات المطلوبة
. و الفھرسة) Crawling(يعمل على احتواء العدد الحقيقي لصفحات ا�نترنت اثناء عملية الـ

التي تستخدم ث�ت كفؤة)crawling(الصفحات ا�كثر اھمية تم بناء منظومة)crawl(لغرض
, لصفحة ا�كثر اھمية او�ً 8ختيار ا)Best-First(ا�ولى ھي تقنية الــ : تقنيات مقترحه اساسية

و اللتي بدورھا تعتمد)crawling(الثانية ھي توزيع الصفحات المختاره الى مجموعة من مكائن الــ
و الثالثة تقنية اكتشاف الصفحات المتكررة بإستخدام الخوارزمية المقترحة , UbiCrawlerعلى

).بصمة ا�صبع النصية(

1. Introduction
eb search services have
proliferated in the last
years. Users have to deal

with different formats for inputting
queries, different results presentation
formats, and, especially, differences
in the quality of retrieved
information. Also performance (i.e.
search and retrieval time) is a

problem that has to be faced while
developing such a type of application
which may receive thousands of
requests at the same time [1].To be
more fully understood, the search
engine responsibilities, participants
are first introduced to the architecture
and algorithms of the search engine.
With this background, a
comprehensible discussion will be

W

https://doi.org/10.30684/etj.29.3.9
2412-0758/University of Technology-Iraq, Baghdad, Iraq
This is an open access article under the CC BY 4.0 license http://creativecommons.org/licenses/by/4.0

Eng. & Tech. Journal ,Vol.29, No.3, 2011 Effective Web Page Crawler

514

done prior to the work in indexing
program, ranking system, and user
interface design for search engine
server-side and client-side search
tools. Figure 1 represents the main
parts of a generic search engine that
will be explained in detail in the
following sections [1].

The search engine's indexer
indexes all of its word and phrases
and may be the relative position of
the words to each other. Later, a user
can search this index for the presence
of a particular word, phrase or even
combination of some words in a web
document. Usually, web crawlers
store the complementary information
for each page, such as time of
download and update, different ranks
that are computed off-line, header
and title, etc [2].

Generic search engines cannot
index every page on the Web
because the dynamic Web page
generators such as automatic
calendars, the number of pages is
infinite. To provide a useful and cost-
effective service, search engines
must reject as much low-value
automated content as possible. In
addition, they can ignore huge
volumes of Web-accessible data,
such as ocean temperatures and
astrophysical observations, without
harm to search effectiveness. Finally,
Web search engines have no access
to restricted content, such as pages
on corporate intranets [3].
2. Crawling System:

A crawler, also known as “robot”,
“spider”, “worm”, “walker”, and
“wanderer” [4, 5], is a program,
which retrieves and stores
information from the World Wide
Web in an automated manner [6].
The first crawler, “Matthew Gray’s
Wanderer”, was written in the spring
of 1993, roughly coinciding with the
first release of NCSA Mosaic [5].

Web crawling is an important
research issue. Crawlers are software
components, which gather web pages
by visiting portions of Web trees,
according to certain strategies, and
collect retrieved objects in local
repositories [2, 6]. Other crawlers
may also visit many pages, but may
look only for certain types of
information (e.g., email addresses),
such crawlers are called focused
crawlers. At the other end of the
spectrum, there are personal crawlers
that scan for pages of interest to a
particular user, in order to build a
fast access cache [7].

A web crawler often has to
download thousands of millions of
pages in a short period of time and
has to constantly monitor and refresh
the downloaded pages. As the size of
the Web grows, it becomes more
difficult or impossible to crawl the
entire or significant portion of the
Web by a single crawling process
[1]. The objective of crawling is to
quickly and efficiently gather as
many useful web pages as possible,
together with the link structure that
interconnects them [8].
3. Crawling Strategies:

Sometimes crawls are started
from a single well connected page, or
a directory such as yahoo.com, but in
this case a relatively large portion of
the web is never reached. If web
pages viewed as nodes in a graph,
and hyperlinks as directed edges
among these nodes, then crawling
becomes a process known in
mathematical circles as graph
traversal. Various strategies for
graph traversal differ in their choice
of which node among the nodes not
yet explored to explore next [9].
33..11 Breadth-First Strategy: In

order to build a major search
engine or a large repository such as
the Internet Archive, high-

Eng. & Tech. Journal ,Vol.29, No.3, 2011 Effective Web Page Crawler

515

performance crawlers start out at a
small set of pages (initial URLs or
seeds) and then explore other pages
by following links in a “breadth
first-like” fashion of those pages
directly connected with this initial
set before following links further
away from the start. In reality, the
web pages are often not traversed
in a strict breadth-first fashion, but
by using a variety of policies, e.g.,
for pruning crawls inside a web
site, or for crawling more important
pages first [10, 11].

33..22 Depth-First Strategy: The
other strategy, Depth-First
crawling, employs a narrow, but
deep, way of traversing the
hypertext structure. This is in
contrast to the wide and shallow
traversal in Breadth-First approach.
Starting from the seed page, the
robot picks the first link on the
page and follows it, then the first
link on the second page, and so on
until it cannot go deeper, returning
recursively [9].

3.3 UURRLL ––OOrr ddeerr iinngg SSttrr aatteeggyy:: This
strategy consists of sorting the list
of URLs to be visited using some
important metrics and crawling the
Web according to the established
ordering. This technique impacts
both the repository refresh time and
the resulting index quality since the
most important sites are chosen
first. Five importance measures are
investigated by Garcia–Molina et al
to establish site importance:
Backlink Count where the
importance is the number of URLs
linking to the current URL,
PageRank which is based on the
PageRank ranking metrics,
Forward Link Count, and Location
Metric [1, 7, 12].

3.4 II nnccrr eemmeennttaall CCrr aawwll iinngg
SSttrr aatteeggyy:: This strategy is
concerned with the problem of the

data repository freshness. One can
choose between two different
repository management strategies.
The first consists of rebuilding the
entire archive from the scratch, and
the second consists of updating the
changed important pages in the
repository and replacing “less–
important” pages with new and
“more important” pages [1, 13].
The crawler may keep visiting
pages after the collection reaches
its target size, to incrementally
update/refresh the local collection.
The major difficulty with this
approach resides in the estimation
of the freshness of Web pages
needed to reduce the number of
Needless Downloads [1, 13].

4. Duplicated Web Pages
Detecting:

The Internet is the largest public
repository of information ever
created. Much of this information is
published in more than one location.
For example, an internet search using
the phrase "Linux Documentation
Project" results in dozens of almost
identical web pages held at different
locations, copied from each other and
revised slightly. A related issue is
that many digital documents are
dynamic, continually changing and
evolving. It is common practice to
keep multiple versions of documents
at different stages of development, so
it can be necessary to determine
whether two documents are different
versions of the same text or are
different texts altogether. Another
problem is plagiarism. Many
documents that are published on the
Internet are copies or plagiarisms of
other documents. Since a plagiarism
may not be identical to the original
document, using conventional search
techniques it can be difficult to
distinguish plagiarized documents

Eng. & Tech. Journal ,Vol.29, No.3, 2011 Effective Web Page Crawler

516

from those that are simply on the
same topic [14].

There are two types of document
fingerprint are full fingerprint and
near fingerprint:
a) Full Duplicated Fingerprinting is

a technique used in detecting
similar documents, rather than
using term occurrences and
frequency information,
fingerprinting aims to produce a
compact description, or
fingerprint, for each document in
the collection. The fingerprint
represents the content of the
document, and, by comparing
these fingerprints, it is possible to
determine the likelihood that the
documents are co-derivatives
[14].

b) Near Duplicated Fingerprint is
performed on the keywords
extracted from the web
documents. First, the crawled web
documents are parsed to
extracting distinct keywords.
Parsing includes removing HTML
tags, java scripts, stop
words/common words and
stemming of remaining words.
The extracted keywords ad their
counts are stored in the table in a
way that the search space is
reduced for the detection. The
similarity score of the current web
document giants a document in
the repository is calculated from
the keywords of the pages. The
documents with similarity score
greater than a predefined
threshold are considered as near
duplicates [15].
A document fingerprint is a

collection of integers that represent
some key content of the document.
Each of these integers is referred to
as a minutia. Typically a fingerprint
is generated by selecting substrings
from the text and applying a

mathematical function to each
selected substring [14].

This function, similar to a hashing
function, produces one minutia. The
minutiae is then stored in an index
for quick access when querying.
When a query document is compared
to the collection, the fingerprint for
the query is generated. For each
minutia in the fingerprint, the index
is queried, and a list of matching
fingerprints is retrieved. The number
of minutiae in common between the
query fingerprint and each
fingerprint in the collection
determines the score of the
corresponding document [14].

In designing a fingerprinting
process, there are four areas that need
consideration. The first is the
function used to generate a minutia
from a substring in the document.
The second is the size of the
substrings that are extracted from the
document (the granularity). The
third is the number of minutiae used
to build a document fingerprint (the
resolution). Fourth is the choice of
the algorithm used to select
substrings from the document (the
selection strategy). There have been
several methods for fingerprinting,
based on variation in –previously
mentioned four design parameters
[14].
5. The proposed System

Architecture:
Engineering a Web search engine

offering effective and efficient
information retrieval is a challenging
task. In particular, the search engine
must deal with huge volumes of data.
Unless it has unlimited computing
resources and unlimited time, one
must carefully decide what web
pages to retrieve and in what order.

This research aims to enhance the
performance of web crawler for web
search engines by collecting as

Eng. & Tech. Journal ,Vol.29, No.3, 2011 Effective Web Page Crawler

517

possible as the most important pages,
and maximize the download rate.
These goals are achieved by
implementing an effective –general
purpose – Web Page Crawler using
multi-threaded distributed crawler
that runs simultaneously on as many
machines as are available. This
distribution is based on UbiCrawler
Distributed Crawler. The proposed
crawler also respects the robots
exclusion protocol and does not
traverse pages that are explicitly
prohibited from being crawled.

Running a web crawler is a
challenging task. There are complex
performance and reliability issues.
The crawler must carefully decide
what URLs to scan and in what
order. It must also decide how
frequently to revisit pages it has
already seen, in order to keep its
client informed of changes on the
Web. Crawling is the most fragile
application since it involves
interacting with several web servers
and various server names which are
all beyond the control of the system.
Crawler software doesn't actually
move around to different computers
on the Internet, as viruses or
intelligent agents do. A crawler
resides on a single machine. It simply
sends HTTP requests for documents
to other machines on the Internet,
just as a Web browser does when the
user clicks on links.
5.1 Crawling Algorithm:

In this proposed system, more
than 26000 web pages have been
downloaded as the main data set used
in the proposed Search Engine. The
crawler_threads execute
simultaneously to fetch contents of
the URLs in the urlsToVisit. These
threads are also responsible for
fetching a page, parsing the page for
URLs reachable and partitioning the
collected URLs among the different

crawler_machines. The algorithm
followed by these crawler_threads is:
Algorithm : Crawling Algorithm
Input : S; Set of seed URLs
Output : Collection of Crawled web
pages
Step1: Initialization
 urlsEncountered = S;
 urlsToVisit = S;
Step2: while urlsToVisit is not
 Empty and thresholdnot greater
 than 10 do
 url = get Next urlsToVisit;
 robot_exclusion_status = call
 robots_exclusion(url);
 If robot_exclusion_status = “not
 allowed” then
 goto step 2;
 else
 threshold= level(url)
 page = downloadPage(url);
 if content_seen(page) then
 goto step 2;
 else
 newUrls =parseForHyperLinks(page);
 info=parseFor Info(page);
 for all newUrls do
 if newUrl is Relative then
 newUrl = make newUrl Absolute;
 end if
 if urlsEncountered is not contain
 newUrl then
 insert newUrl into urlsToVisit;
 urlsEncountered insert(newUrl);
 end if
 end for
 call partition_URL_list(newUrls);
end if
 end if
end while

The algorithm starts by
initializing the set urlsEncountered
(URLs that are known to the crawler)
and the set urlsToVisit (URLs that
are yet to be crawled) to the seed, S.
The seed preferably would be a URL
to a web page which would contain
lot of hyperlinks. The urlsToVisit set
is resided in the frontier which is the

Eng. & Tech. Journal ,Vol.29, No.3, 2011 Effective Web Page Crawler

518

data structure that contains all the
URLs that remain to be downloaded,
as shown in figure 2. The urlsToVisit
provides two important functions
urlsToVisit.insert(url) and
urlsToVisit.getNext() for inserting
newly found hyperlinks and
obtaining the next URL to crawl,
sequentially. Initially it would hold
the seed S (initial set of URLs),
during each step of the crawl one
URL is removed from the set using
the getNext() function. The getNext()
function is based on the Best_First
strategy which refers to the ordering
of the URLs based on some priority
scheme. The priority scheme is based
on using Page Rank value, and the
number of hyperlinks coming
out/pointing to the page. The data
structure used is a priority queue.
Now in a repetitive manner one URL
from the set urlsToVisit is obtained
using the urlsToVisit.getNext()
function.

To make sure that the crawler
performs the crawl in a polite
manner, robot exclusion status
should be checked for each URL
before page downloading by calling
robots_exclusion which returns the
status of robot exclusion to get the
permission to crawl the web page if it
is allowed. Algorithm that returns the
status is as the following:
Algorithm : robots_exclusion
Algorithm
Input : a URL
Output : Boolean value (true or false)
which means “allowed” or “not
allowed”
Step1: Look for a "/robots.txt" file
on the site.
Step2: If found then
 parse_content("/robots.txt")
 for User-agent: *
 retrieve Disallow:/string/
 {full or partial URL not to visit}
 if matches(URL, /string/) then

 return “not allowed”
 else
 return “allowed”
 end if
 end for
 else
 return “allowed”
 end if

Then the level of the obtained
URL is returned using level(url)
procedure which is assigned to
Threshold. In the proposed crawling
system, in addition to
urlsToVisit.Empty stopping
condition, another stopping condition
is used, which is called Crawl & Stop
with Threshold. The Threshold
represents the number of web pages
that are at a depth from the seed page
which is equal to 10 in the proposed
crawling system.

As it is obvious in figure 2,
after obtaining the next URL the
server can be contacted and the web
page requested for download. To
download a page, a connection is
open with the http server to obtain a
page. Each server would respond to
this request in a different manner and
speed. A few of these servers could
be nonexistent or be very slow to
replying. Performing this operation
synchronously (waiting for
completion of one request before
placing the next request) could
seriously reduce the speed of the
crawler. This is overcome by using
multiple connections. Managing the
connections becomes difficult if one
were to allow infinite connections.
So, it should be fix the number of
connections which obtain individual
URLs to crawl from the urlsToVisit.
5.2 Mirrored Documents
Detection:

There are many cases in which
documents are mirrored on multiple
servers. Both of these effects will
cause any web crawler to download

Eng. & Tech. Journal ,Vol.29, No.3, 2011 Effective Web Page Crawler

519

the same document contents multiple
times. To prevent processing a
document more than once, a web
crawler performs a Content_seen test
to decide if the document has already
been processed. So, in the proposed
crawling algorithm, once the web
page has been downloaded it will
processed by Content_seen test to
determine whether this document
(which is associated with a different
URL) has been seen before or not. If
so, the document is not processed
any further, and the crawler removes
the next URL from the frontier.

One of the major difficulties in
detecting replicated collections is
that many replicas may not be strictly
identical to each other. The reasons
include:
1. Update frequency: The

primary copy of a collection
may often be updated, while
mirror copies are updated only
daily, weekly, and monthly.
However the mirrors of these
collections are usually out of
date, depending on how often
they are updated.

2. Different formats: The
documents in a collection may
not themselves appear as exact
replicas in another collection.
For instance, one collection may
have documents in HTML while
another collection may have
them in Adobe PDF or
Microsoft Word. Similarly, the
documents in one collection
may have additional buttons,
links and images that make them
slightly different from other
versions of the document.

The content-seen test would be
expensive in both space and time if
the complete contents of every
downloaded document are saved.
Instead, a data structure called the
document fingerprint set that stores a

64-bit of the contents of each
downloaded document is maintained.

As shown in figure 2, a document
fingerprint is computed for each
fetched page. This value is then
compared with the fingerprint values
of the previously downloaded web
pages which stored in the repository,
but the fingerprint values are stored
in a separated table in SEDB(Search
Engine Database).

An improved fingerprint
algorithm is used in the proposed
search engine. In the following
algorithm, all white spaces and
special characters are removed to
obtain a pure text block, then this
lock is partitioned into K-length
substrings (K must be efficient as
possible as the match is detected).
then for each substring a hash value
(in the improved algorithm MD5 is
used as a hash function) is computed.
The number of K-substrings and
hence the number of hashes is closed
to the size of the document. Simply,
it is equal to (m-K+1), where m is
the size of the document.
Algorithm: Fingerprint Algorithm
Input : document (a web page)
Output : document's fingerprint
Step1:text=remove_specialchar_whit
 espace(document);
Step2:list_substring=partition_substr
 ing(text,K);
Step3: for all substring in
 list_substring do

hashs=hash_function(substring);
 end for
step4: list_hashs=subset(hashs,W);
step5: initiate:
 right_end=0;
 min_index=0;
 for all hashs in list_hash do
 right_end=(right_end +1) mod W;
 hashs[right_end]=next_hash();
 if (min_index=right_end) then
 i=(right_end-1) mod W;

Eng. & Tech. Journal ,Vol.29, No.3, 2011 Effective Web Page Crawler

520

 while not (i=right_end) do
 if (hashs[i]< hashs[min_index]) then
 min_nindex=i;
 i=(i-1+W) mod W
 end if
 end while

 recored(hashs[min_index]);
 else
 if(hashs[right_end]
 ≤hashs[min_index]) then
 min_index=right_end;
 recored(hashs[min_index]);
 end if
 end if
 end for

The improvement of fingerprint
algorithm will be obvious in the
following steps. The set of the hash
values are also partitioned into
subsets in the same manner that the
document is partitioned (each subset
has W items). Then, the minimum
hash value in each subset is selected.
If there is more than one hash with
the minimum value, the rightmost
occurrence will be selected, but the
minimum hash value selected only
once. Finally, all selected values are
saved as the fingerprints of the
document.

As a result of improving the
algorithm, it became:
1. White-space insensitivity: In

matching text files, matches
should be unaffected by such
things as extra white-space,
capitalization, punctuation, etc.
In other domains the notion of
what strings should be equal is
different—for example, in
matching software text it is
desirable to make matching
insensitive to variable names.

2. Noise suppression: Discovering
short matches, such as the fact
that the word (the) appears in
two different documents, is
uninteresting. Any match must

be large enough to imply that
the material has been copied and
is not simply a common word or
idiom of the language in which
documents are written.

3. Position independence: Coarse-
grained permutation of the
contents of a document (e.g.,
scrambling the order of
paragraphs) should not affect
the set of discovered matches.
Adding to a document should
not affect the set of matches in
the original portion of the new
document. Removing part of a
document should not affect the
set of matches in the portion that
remains.

5.3 URLs Extraction
After the web page is checked, it

will be parsed to extract hyperlinks
pointing to other web pages. This
process requires searching the entire
document for HTML <a> and <area>
tags and retrieving content of href
attribute that refers to hyperlinks.

Also, the Crawler extracts
important information about the links
between two web pages (source and
destination) by parsing the source
page. The information which is
considered as a link attributes will be
valuable in computation of the
PageRank during the Link-Based

 Ranker phase and compute the
priority value for each URL which is
useful in URL fetching from the
frontier. These attributes are:
11.. VViissiibbii ll ii ttyy ooff tthhee ll iinnkk..

This attribute is determined by
checking specific HTML tags which
represent the style of the text that
used as a link. These two tags are
, which means that the text of the
link is in bboolldd style; and <I>, which
means that the text of the link is in
IIttaalliicc style. If the hypertext is bold
and italic the value of link visibility
will be equal to (3). If the hypertext

Eng. & Tech. Journal ,Vol.29, No.3, 2011 Effective Web Page Crawler

521

is either bold or italic the value of
link visibility will be equal to (2),
other wise it will be equal to (1).
11.. PPoossii ttiioonn ooff tthhee ll iinnkk wwii tthhiinn tthhee

ssoouurrccee ppaaggee..
This attribute is determined by
computing the position of the first
word in the hyperlink (in other
words, the offset of the first word in
link’s text) within the source page.
The source page is partitioned into
three parts rather than two parts in
order to achieve more accurate
results during Link-Based Ranking
phase. The value of link’s position
will be equal to (1) if the link occurs
on the least significant one third part
of the page, (2) if the link occurred
on the middle one third part of the
page, (3) if the link is occurs on the
most significant one third part of the
page.
22.. DDiissttaannccee bbeettwweeeenn tthhee ssoouurrccee

wweebb ppaaggee aanndd tthhee ddeessttiinnaattiioonn
wweebb ppaaggee..

The distance is found by determining
the degree of the differences between
two host-names in the URL for
(sources and destinations) web pages.
But it is now no longer limited to
only two cases; the first is if the two
host-names are different the value of
the distance will be equal to 5, the
second case is if both host-names are
equal the value will be 1.
In the steps of extracting links, any
web crawler will encounter multiple
links to the same document. To avoid
downloading and processing a
document multiple times, a URL-
seen test must be performed on each
extracted link before adding it to the
URL frontier, as it s illustrated in
figure 2. The list of URLs that have
been crawled is stored in the
urlsEncountered data structure. It
provides two main functions
urlsEncountered.insert(URL) and
urlsEncountered.contains(URL) for

inserting URLs and checking for
duplicate URLs. This can be
achieved by searching the set
urlsEncountered (see Algorithm 1),
if a URL is found in urlsEncountered
then it will be discarded, if not it will
be added to the urlsToVisit and
urlsEncountered sets. This is what
called URL-seen test; where all the
URLs seen by crawler in canonical
form are stored in a large table called
the URL table. The
urlsToVisit.insert() function would
determine the priority of the URL
and insert it at the appropriate
position in the queue whereas
urlsToVisit.getNext() function would
remove the first URL from the
queue. Again, there are too many
entries for them all to fit in memory.
Once a hyperlink is found, its URL
has to be compared to all the URLs
that have been already encountered
to avoid duplication.

A typical crawl of the web usually
lasts for days or may be weeks. If the
system were to crash, say after 20
days of operation then all the data
collected till then would be lost and
the crawler has to start its crawl from
the seed again. Checkpointing is a
way of storing the data that has been
collected along with the current state
of the system onto the disk.
Checkpointing could be done 2 or 3
times per day and in the event of a
crash the system can be restored back
till the most recent checkpoint. Since
we have stored the state of the
crawler on disk this information can
be used to start the crawler from that
point onwards. Though
checkpointing would reduce the
speed of the crawler momentarily it
would be of great help in the event of
a system failure. The process of
crawling is repeated until the set
urlsToVisit becomes empty or the

Eng. & Tech. Journal ,Vol.29, No.3, 2011 Effective Web Page Crawler

522

crawler stops based on the other
condition.
6. System Implementation:

To implement the Crawler
require network and text parsing
program. This is programmed in
Microsoft VB.NET connected to the
database in Microsoft SQL Server
7.0. (Note: After the Crawler finishes
its work, the Indexer and the Link-
Based Ranker could work
simultaneously, but in this research
they are run sequentially because of
the hardware specification which is
used as a local server).

On the server side, the process
involves creation of a database and
its periodic updating done by
software called Crawler. The Crawler
also called robot that store the
crawled Web Pages in the repository.
The main interface of the crawling
process is shown in Figure3.

The first field holds the currently
crawled URL which is fetched from
the frontier. During the parsing new
hyperlinks in the current web page,
the URL_id and a full URL are
displayed in the interface. Also all
extracted information is displayed as
a link properties as shown in Figure
3. Then all crawled pages are
indexed later.

The front-end of the search
engine is the client side having a
graphical user interface as in Figure
4, which prompts the user to type in
the search query. The interface
between the client and server side
consists of matching the user query
with the entries in the database and
retrieving the matched Web Pages to
the user’s machine. One point is
worth noting here: before the query
words are processed they are
stemmed before they are searched for
in the database. The database
consists of a number of tables that
are arranged so as to facilitate faster

retrieval of the data. This database is
housed in a database server that is
called Search Engine Indices, which
is connected to the search engine.
The typical English search engines
will have more than one database
server due to the huge number of
English web sites. When the user
types the query it is taken to the
server of the search engine.

The proposed search engine
validates the query and then
translates it into the structured query
language (SQL) which is
understandable to the database and
passes this SQL query to the SEDB.
The SEDB identifies the database
entries that match the query given
and sends to the proposed search
engine server these entries along with
other information related to other
entries such as the title, the author
name, URL and the matching portion
from the content of the
corresponding entry. The proposed
search engine sorts these database
entries using a ranking algorithm.
The ranking algorithm determines
the relevancy of a retrieved webpage
to the user query. The retrieved sites
are then displayed along with links to
these sites and a small portion of text
from the matched content. This text
gives an idea to the user about the
page before the user goes to that
particular page.

Advanced Search options allow
the user to search for various
combinations of the query terms.
Some of the search options include
Boolean search and phrasal search.
In Boolean Search, several options
should be available to the user to
refine the query. This is important
because the search should return only
the relevant pages to the user.
Boolean search option includes
XOR, NEAR, OR, AND and NOT
logic operators, the default being OR

Eng. & Tech. Journal ,Vol.29, No.3, 2011 Effective Web Page Crawler

523

operator. Boolean search can be
illustrated by the following example.
Consider a query consisting of two
words. The search results for the OR
logic will retrieve the pages
containing either of the two terms
and the search results for the AND
logic retrieve the pages containing
both query terms. The NOT search
returns the WebPages that not
contain the NOT term.

The search engine automatically
searches for both the AND & OR
logic. The results of AND search are
displayed at the beginning followed
by the results of the OR search.
Phrasal search looks for a phrase
instead of a word in the database. To
include phrase search in the query
the user should type the phrase
between two quotes. The
corresponding phrase will be
searched as is in the database. This
option is particularly useful if the
user knows a phrase in the domain of
the search. However, this option
requires huge processing power and
bigger memory in the database. In
addition to the use of the advance
search mode, the user could specify
the retrieved result by the occurrence
of the query within the web page, the
publishing date of the web page, as it
is represented in Figure 5.
7. System Evaluation:

Evaluating of the crawler system
is to measure the average of crawled
web pages per time unit. In this
research the crawling average is
5pages/sec with 5 connections per
machine to crawl 26160 web pages.
The Effective crawling algorithm is
based on best first search technique
and the target web page (the most
important) is the page that has high
PageRank value and the largest
number of in-come links. Figure 6
illustrates the diagram of average
PageRanke score by hours of crawl.

The average score for pages
crawled on the first hour is 8.06;
more than four times the average
score of 2.03 for pages crawled after
ten hours. The average score tapers
from there down to 1.17 after twenty
hours, 0.82 after 30 hours (more than
one day). Clearly, the more high
quality (more important) pages are
downloaded, i.e., pages with high
PageRank, early in the crawl than
later on.

Evaluating of the search result is
to measure how well the retrieved
results meet the user’s particular
information need. There are two
standard measurements Recall and
Precision that are used in evaluating
the performance of the proposed
search engine. Recall and Precision
are based on human –relevance
judgments and are thus difficult to
establish unless such a judgment is
readily available. To explain these
principles, some examples will be
introduced. P is the set of all relevant
web pages in existence at a certain
point of time. R is the set of all
results returned for a search at the
same time. C is the set of all relevant
results. p, r, and c are defined as the
count of the capitalized sets (e.g. p is
the amount of elements in P).Recall
and Precision could be defined as:

1. Recall
Recall determines the

percentage of relevant documents
that were retrieved. The Recall value
is between 0 and 1. It is defined as:

p

c

documentsrelevantofNumber

retrieveddocumentsrelevantofNumber
call =

⋅⋅⋅
⋅⋅⋅⋅

=Re

 A high recall means the most of the
page that should be returned by a
perfect search engine is returned.
While in normal or in advanced
mode all results that are presented in
the Search Engine User Interface are
still used. Those pages must have a
rank score higher than 10% to be

Eng. & Tech. Journal ,Vol.29, No.3, 2011 Effective Web Page Crawler

524

retrieved. The full evaluation of the
recall can only be done by doing a
user plane review or (by a user
judgment).

2. Precision
Precision is a measure that shows

how much of what the user sees is
relevant. The resulting value is a real
number between 0 and 1. Precision is
very important to the proposed
search engine given thousands of
web pages. This measure is defined
as:

r

c

documentsretrievedofNumber

retrieveddocumentsrelevantofNumber
precision =

⋅⋅⋅
⋅⋅⋅⋅

=

In this research, five different

kinds of queries are tested and
evaluated by Recall and Precision of
the retrieved results. The results
obtained are illustrated in Table.1.
The results show that the general
Precision of the retrieved web pages
is always 100%, which is reasonably
good. From the Precision results it is
obvious that the rank values of the
retrieved web pages reflect the real
relevancy of the existent web pages
in the proposed search engine
databases.
88.. CCrr aawwll iinngg SSyysstteemmss CCoommppaarr iissoonn

Several parameters can be used to
compare crawlers of search engines
that are listed in Tables 2. Notice that
Mercator crawler is used in AltaVista
search engine.
99.. CCoonncclluussiioonnss::
1. By implementing the proposed

search engine with different
kinds of queries, the yielded
results prove that the aim of this
research is achieved using Best-
First Crawl and Distributed
Crawling Techniques.

2. By crawling the web pages two
problems are detected;
Alternative paths on the same
host (existing of multiple paths

to the same file on a given host),
and Replication across different
hosts (multiple copies of a
document may reside in different
web servers). Both of these
problems are solved by avoiding
download duplicate documents
using Document Fingerprint.

3. The primary copy of a collection
may often be updated, while
mirror copies are updated only
daily, weekly, and monthly.
However the mirrors of these
collections are usually out of
date, depending on how often
they are updated.

4. The documents in a collection
may not themselves appear as
exact replicas in another
collection. For instance, one
collection may have documents
in HTML while another
collection may have them in
Adobe PDF or Microsoft Word.
Similarly, the documents in one
collection may have additional
buttons, links and images that
make them slightly different
from other versions of the
document.

1100.. SSuuggggeesstt iioonnss ffoorr ffuuttuurr ee wwoorr kk::

By the experiments, several
suggestions are identified that could
be implemented in the future to make
the research more optimal in its
activation with the user:
1. Because of the long time spent

in indexing process, a
distributed web pages indexing
system is suggested.

2. Because of the large storage
space that is required by the
Inverted Index, a lossless
compression method could be
used to reduce the storage space.

3. Building an Intelligent spelling
checker to identify the wrong
word in the user query. This

Eng. & Tech. Journal ,Vol.29, No.3, 2011 Effective Web Page Crawler

525

provides a helpful user interface
to the user.

11. References

1. Yong, J. Lee, Ho, S. Lee, Kim, Y..

SCrawler: A Seed – By – Seed
Parallel Web Crawler. School of
computing, Soongsil University,
Seoul, Korea. 2007. Available at:
http://dblabssu.ac.kr/publication/L
eLe07.pdf

2. Hawking, D., Web Search Engine:
Part1 & Part2, CSIRO ICT Center.
June 2006. Available at:
http://computer.org/portal/site/com

puter/
3. Andre, L. Barroso, Dean, J., Hölzle,

U., Web Search for a Planet: The
Google Cluster Architecture. The
IEEE Computer Society. 2004.
Available at:
http://research.google.com/archive/

googlecluster-ieee.pdf
4. Abdollahzadeh, A. Barfourosh, H.

R. Motahary Nezhad, M. L.
Anderson, D. Perlis. Information
Retrieval on the World Wide Web
and Active Logic: A Survey and
Problem Definition.

5. Junghoo, cho. Crawling the web:
Discovery and Maintenance of
Large-Scale web Data. Ph. D. in
Computer Science. November
2001. Available at:
http://www.webir.org/resource/phd/

cho-2001-thesis.pdf
6. Bhatia, M., Gupta, D., Discussion

on Web Crawlers of Search Engine,
Proceedings of 2nd National
Conference on Challenges &
Opportunities in Information
Technology (COIT-2008) RIMT-
IET, Mandi Gobindgarh. March 29,
2008. Available at:

http://wwwrimtengg.com/coit2008/p
roceedings/WB01.pdf

7. Web Crawling and Indexing,
Cambridge University Press.

January 25, 2008. Available at:

http://www1.cs.columbia.edu/~cs69
98/textbook/chapter20-
crawling.pdf

8. Andrei, Z. Border, Najork, M.,
Janet, L. Wiener, Efficient URL
Caching for World Wide Web
Crawling, May 24, 2003. Available
at:

http://research.microsoft.com/pubs/
65157/p96-broder.pdf

9. Hafri, Y., Gjeraba, C., Dominos: A
new Web Crawler's Design, Ecole
polytechnique de nates, September
16, 2004. Available at:

http://iwaw.europarchive.org/04/Ha
rfi.pdf

10. Shkapenyuk, V., Suel, T., Design
And Implementation of a High-
Performance Distributed Web
Crawler. In ICDE. 2002 . Available
at:

http://cis.poly.edu/suel/papers/craw
l.pdf

11. Junghoo, cho., Garcia-Molina, H.,
Page, L. , Efficient Crawling
Through URL Ordering. In
proceeding of the seventh
international web conference,
Brisbanc, Australia, April 14-18,
1998. Available at:

http://www.csd.uchgr/~hy558/pape
rs/cho-order.pdf

12. Selvitri, F., high Performance
Issues in Web Search Engines:
Algorithms and Techniques. May
2004. Available at:

http://www.webir.org/resource/phd/

Eng. & Tech. Journal ,Vol.29, No.3, 2011 Effective Web Page Crawler

526

Silvestri-2004.pdf

13. Molina G. Hector, Searching the
Web, August 2001. Available at:

http://oak.cs.ucla.edu/~cho/papers/c
ho-toit01.pdf

14. Cheng, J.. Design and
Implementation of ICS Web Search
Engine. Information and Computer
Science Department University of
California, Irvine. 1996. Available
at:

http://contact.ics.uci.edu/download/
cheng-report.pdf

15. Bahle, D.. Efficient Phrase
Querying. Ph. D. in Computer
Science. Royal Melbourne Institute
of Technology, Melbourne,
Victoria, Australia. March 17,
2003. Available at:

http://portal.acm.org/

Table (1) Searching result, Recall and Precision measures.

Query Results Recall Precision

Web crawling 891 very relevant

23 relevant

90% 100%

“ASP.NET source code” 368 very Relevant

52Relevant

80% 100%

Sport or game 40 Very Relevant

12 relevant

100% 100%

HTML and Java Script 134 Very Relevant

10 Relevant

70% 100%

Internet not web 7 Very Relevant 100% 100%

Eng. & Tech. Journal ,Vol.29, No.3, 2011 Effective Web Page Crawler

527

Table (2) System Comparison Table

Crawlers Proposed
Crawler Google UbiCrawler Mercator Internet

Archieve

urlsEncountered data
structure

array of
values

— — hash-table
disk sorted
list

Bloom
Filter per
domain

Programming
Language

VB.NET C++ Java Java
—

Connection per
machine

5 300 4 100 64

System size (# of
machines)

2 4 16 4 —

Crawl order 26
thousand

24
million

— 891 million
100
million

Crawl rate (pages/sec) 4 48 52 600 10

Figure (1) A simple architecture of a generic search engine

Eng. & Tech. Journal ,Vol.29, No.3, 2011 Effective Web Page Crawler

528

Figure (2) Functional diagram of the Proposed Crawler

Page
Downloader

WWW

Content-Seen

Documents

URLs Extractor URL -Seen

URLs

Frontier

Page Information
Extractor

Page

Information

URL
Canonalizer

If not empty

Eng. & Tech. Journal ,Vol.29, No.3, 2011 Effective Web Page Crawler

529

Figure (3) The main interface of the crawling process

Figure (4) Search Engine User Interface in English

Eng. & Tech. Journal ,Vol.29, No.3, 2011 Effective Web Page Crawler

530

Figure (5) Advanced Mode Search Engine

8.06

1.17
0.69 0.63 0.56 0.47 0.33

0.82

2.03

0.14 0.005
0

1

2

3

4

5

6

7

8

9

0 20 40 60 80 100 120

Hours of Crawl

A
ve

ra
g
e

P
ag

eR
an

k

Figure (6) Average PageRank Score by Hours of Crawl

