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Abstract 
In this paper, we are presented the existence and uniqueness theorem, and two 

proposed methods, based on the theory of Gunwald-Letnikov fractional order 
derivative. In the first method, the variational approach is implemented, while in 
the second method, the fractional difference approach is implemented. Dynamic 
test example is presented to each proposed method, to demonstrate their 
computational algorithm. 
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 ه الجبريه الديناميكيه ذات الرتب الكسريهحلول أنظمة المعاد�ت التفاضلي
 الخ�صه

في ھذا البحث، قدمنا نظريه الوجود ووحدانيه الحل مع طريقتين لحل نظام من المعاد�ت 
ليتنكوف -التفاضليه الجبريه الديناميكيه ذات الرتب الكسريه با&عتماد على تعريف كراونوولد

ولى، تم أستخدام أسلوب التغاير بينما استخدمت في الطريقه ا&. للتفاض+ت ذات الرتب الكسريه
وقد تم تقديم مثال  أختباري لكل طريقه، لتوضيح . الطريقه الثانيه أسلوب الفروقات الكسريه

  .خوارزميه كل طريقه

1. Introduction
1.1 Differential Algebraic 
Equations (DAEs) ([3],[12] &[19]) 

athematical models of 
some engineering,
physical, and scientific 

problems frequently take the 
following explicit form of a system 
of ordinary differential equations 
(ODEs) 

),,( tyfy =′  … (1.1)
Where t is time and y is a vector of 
dependent variables or state 
variables. The initial value problem 
for the equation (1.1) is to find the 
solution of y(t) that satisfies a given 
initial condition y(t0)=y0. In some 
cases, the model also involves 
dependent variables whose time 
derivatives do not appear in the 

equations too. The set of equations 
which is the combination of both 
differential and algebraic equations 
that defines this model is known as a 
differential algebraic equation 
(DAE) system. The most general 
DAE system is expressed in the fully 
implicit form as 

0),,( =′ tyyF  … (1.2)
Where F is some function. Another 
way to present a DAE system is to 
use the following semi-explicit form 

),,( tyyfy ′=′  … (1.3a)

),,(0 txyg= … (1.3b)
Where x is another vector of 
dependent variables.ODE involves 
differentiations only, while DAE 
systems are more general than ODE 
systems, since DAE involves both 
integrations and differentiations, in 
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which one may hope that performing 
analytical differentiations to a  given 
system and eliminating, as needed 
will result in an explicit ODE for all 
unknowns. This turns out to be true 
unless the problem is singular. 
Therefore, a property known as the 
index plays a key role in the 
classification and behavior of DAEs. 
Index is defined as the minimum 
number of times that all or part of 
DAE system must be differentiated to 
get a system of ODEs. 
1.2 Fractional Calculus: ([5], [15], 
16], [19] & [20]) 
 Although fractional derivatives 
have a long mathematical history, for 
many years they were not used in 
many different sciences, but in recent 
years, growing attention has been 
focused on the importance of 
fractional derivatives and integrals in 
science. Recently, there has been 
some attempt to solve linear 
problems with multiple fractional 
derivatives problems. Not much has 
been done for the nonlinear 
problems. A number of definitions 
have emerged over the years 
including Riemann-Liouville 
fractional derivative. Grunwald-
Letnikov fractional derivative. 
Caputo fractional derivative, etc. in 
this paper, Grunwald-Letnikove 
fractional derivative is considered. 
1.2.1 Properties 

Let α > 0, the main properties of 
fractional derivatives and integrals 
are the following: 

1. If f(t) is an analytical function
of t, then its fractional
derivative )(0 tfDt

α  is an

analytical function of t, α.
2. For α=n, where n is an integer,

the operation )(0 tfDt
α  gives

the same result as classical

differentiation of integer order 
n. 

3. For α=0 the operation )(0 tfDt
α

is the identity operator:

)()(0 tftfDt =α
. 

4. Fractional differentiation and
fractional integration are linear
operations

( )
)()(
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5. The additive index law
(semigroup property)
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Holds under some reasonable 
conditions on the function f(t). 

1.2.2 Fractional Difference 
 In this paper, we are presenting 
the fractional difference due to 
Grunwald-Letnikov [15],  based on 
a generalization of the usual 
differentiation of a function y(x) of 
order n∈ℕ of the form 

n

n

h

h

n

h

ty
ty

))((
lim)(

0

)( ∆
=

→
(1.4) 

Here ))(( tyn

h∆  is a finite difference of 

order n∈ℕ0 of function y(t) with a 
step h∈ℜ and centered at the point 
x∈ℜ. Property (1.4) is used to define 
a fractional derivative by directly 
replacing n∈ℕ in (1.4) by α > 0. For 
this, hn

 is replaced by hα, while the 
finite difference ))(( tyn

h∆  is replaced 

by the difference ))(( tyh
α∆  of 

fractional order α∈ℜ defined by the 
following infinite series: 

∑
∞

=

−







−=∆

0

)()1(:))((
k

k
h khty

k
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),0;,( >ℜ∈ αht  (1.5) 

where









k

α  are the binomial 

coefficients. When h>0 the difference 
(1.5) is called left-sided difference, 
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while for h<0 it is called a right-sided 
difference. The series in (1.5) 
converges absolutely and uniformly 
for each α>0 and for every bounded 
function y(x). In particular, when 
α=n∈ℕ, (1.5) coincides with (1.4): 

∑
=

−







−=∆

n

k

kn

h khty
k

n
ty

0

)()1())((

).;,( Ν∈ℜ∈ nht                    (1.6) 
Following (1.4), the left- and right-
sided Grunwald-Letnikov derivatives 

)() tyα
+  and )() tyα

−  are defined by 

α

α
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lim:)(
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→+

                     (1.7a) 
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ty h
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→−

∆
=                     (1.7b) 

respectively.  
The definition (1.5) of the fractional 
difference ))(( tyh

α∆ assumes that the 
function y(t) is given at least on the 
half-axis. For the function y(t) given 
on finite interval [a, b], such a 
difference can be defined as follows 
by a continuation of y(t) as a 
vanishing function beyond[a, b]: 

∑
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It is acceptable to rewrite the 
fractional difference (1.8) in terms of 
the function y(t) itself, avoiding its 
continuation as a vanishing function, 
in the forms 

∑
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Then, by analogy with (1.7a) and 
(1.7b), the left-and right-sided 
Grunwald-Letnikov fractional 

derivatives of order α>0 on a finite 
interval [a, b] are defined by 

α
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respectively.    
so we define the fractional derivative 
in the Grunwald-Letnikov sense as: 

∑
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                      … (1.11)  
where, [t] means the integer part of t 
and h is the step size. 
Next, we recall that the left-handed 
shifted Grunwald estimate to the left-
handed derivative is 

∑
=

−−=
][

0

))1((
h

t

j
j hjtycyD
αα    … (1.12) 

The definition of operator in the 
Grunwald-Letnikov sense (1.12) is 
equivalent to the definition of 
operator in the Riemann-Liouville 
sense. Nevertheless the Grunwald-
Letnikov operator is more flexible 
and most straightforward in 
numerical calculations. 

∑
=

−=
l

j
j ihtyCty

0

)( )()( αα      … (1.13a) 

Could be written as following 

∑
=

−=
l

j
jnjn yCty

0

)( )( αα            … (1.13b) 

where l is the number of steps, 

and
α
jc  are Grunwald-Letnikov 

coefficients  defined as: 

!
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We can compute the coefficients in a 
simple way. For j=1 we have             

αα α −= hc1 . For details about the 
fractional difference and its 
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applications for solving fractional 
differential equations, see [26]. 
2. Proposed Problem 
 In this paper, we are studying 
more extened structure, hopping to 
reach the general structures. Consider 
the following Fractional Order 
Differential Algebraic Equations 
FODAEs: 

( )( ) ( ) ( ) ( )( ))(,,, 1 tXtYtYtFtY m−=α    (2.1a) 
( ) )(0 trtCY +=                          (2.1b) 

Where ( ) ( )T

m tytytY )(),...,(1= is the 
solution of the system (2.1), 
3. Existence and Uniqueness 
Solution ([4], [9] & [26]) 

In this section, by Approximating 
the fractional derivative in (2) by 
(1.13), and if we considered system 
(2) in the following form   

( )( ) ( )∑
=

− ++=
m

j

j

j tqtBXtYAtY
1

1 ),()()(α      

                                              (3.1a)                                                        
( ) )(0 trtCY +=                       (3.1b) 

Where Aj, B and C are smooth 
functions of t, to≤t≤tf,  Aj(t)∈ Rnxn, 
j=1,…,m, B(t)∈Rnxk, C(t)∈Rkxn, n≥2, 
1≤k≤n and CB is nonsingular 
(FODAE has index α+k+1) except 
possibly at a finite number of isolated 
points of t, which in this case, the 
FODAEs (4.1) have constraint 
singularity. The inhomogeneties are 
q(t) and r(t)∈R and α≥0. From [3] & 
[12], we can write (3.1a) as 

( ) ( ) ( )[ ]
[ ]f
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So the problem (3.1) transforms to 
the over determined system: 
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which is a DAEs system with m 
equations and m unknowns with 
index m. leads to the numerical 
solution algorithm described by the 

following recursive relations(see 
[19]): 
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where )(* tC  is the 
class of all continuous column 
vectors Y(t) with the norm 
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 Now, we can state the following 
theorem: 
Theorem: 
 Let  F(t,Y(t))∈ )(* tC , where 
F(t,Y(t))=(f1(t, Y(t)), …, fm(t, Y(t)))T, 
i.e. fi(t, Y(t))∈ )(DC

)

for all i=1,…,m. 
and each satisfies the Lipschtiz 
condition 
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for all i,                    … (3.4) 
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≤(1-k),            … (3.5) 

then (3.1) has one and only one 
solution Y(t)∈C(I) that satisfies 
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Hence, the mapping T: )(DC
)

→ )(DC
)

  
is a contraction mapping, and then it 
has a fixed point Y(t)=T(Y(t)). 
Providing the condition (3.5) and 
hence, there exists a unique solution 
Y(t)∈ )(DC

)

 for the system (3.1). 
4. The Proposed Methods: ([4], [9], 
[10], [12], [22] & [25]) 
 The first practical numerical 
mehod for DAE's was the Backward 
differentiation formulas (BDF) 
introduced by Gear in 1971 [8]. The 
method was initially designed for 
semi-explicit index one DAE's (1.3), 

where 
x

g

∂
∂

 is nonsingular. The 

algebraic variable x is treated in the 
same way as the differential variables 
y in BDF, then the method was soon 
extended to fully implicit DAE's 
(1.2). Still, not all DAE's were solved 
successfully with BDF methods. 
More details can be found in [4].  
While the BDF methods have been 
successful in solving DAE's, there is 
a considerable research on solving 
DAE's with Implicit Runge-Kutta 
(IRK) methods. A comprehensive 
analysis for IRK methods presented 
in [10], applied to Hessenberg index 
one, two and three systems. In 
general, IRK methods do not attain 
the same order of accuracy for DAE's 
as they do for ODE's, see [17]. Also, 
extrapolation methods may be 
viewed asIRK methods, in which, 
those methods are an effective way to 
find the numerical solutions of 
nonstiff and stiff ODE's. Many 

researchers have shown great interest 
in applying extrapolation methods to 
DAE's, [4]. In this paper, we 
proposed two approaches, the 
variational and Fractional 
Difference, to constract   iterative 
formulas, to obtain the successive 
approximation solutions for 
Differential Algebraic Equatins 
(FODAE's Fractional Order).  
4.1 Variational Approach 
 In this section, the variational 
iteration method is applied for 
finding the solution of linear and 
nonlinear fractional order differential 
algebraic equations FODAE's. The 
functional of the fractional order 
derivatives is constructed by a 
general Lagrange multiplier.  The 
successive approximation will be 
obtained, by the sequence of such 
functional. A tested problem is 
presented to demonstrate the 
performance of the proposed method.   
For simplicity, we consider problem 
(3.1) when m=1 (problem has index 
2), n=2,3 and k=1,2.Also, if we 
suppose that DAE is nonsingular, i.e. 
CB(t)≠0, [ ]fttt ,0∈ , then by theorems 

presented in [3] & [12], the given 
index-2 problem is equivalent to the 
index-1 DAE system problem  

qyByA ˆ=+α                      …(4.1a)                      
And 

( ) [ ]qAyyCCBx −−= − α1        … (4.1b) 
Such that 
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=
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qbqb
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Now, we proposed a modification of 
a general Lagrange multiplier 
method [16]. In the variational 
iteration method, the differential 
equation 
L [u(t)]+N[u(t)]=h(t) 
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is considered, where L and N are 
linear and nonlinear operators, 
respectively and h(t) is an 
inhomogeneous  term. The correction 
functional 

[ ] [ ][ )

] (4.2) …)(

)(~)()()(
0

1

dssh

suNtututu
t

mmmm

−

++= ∫+ λ

Is considered, where λ is a general 
Lagrange multiplier, um is the mth 
approximate solution and ũm is a 
restricted variation which means        
δũm, m≥0, see[6]. 
 The main difficulties when 
dealing with fractional  derivatives 
arise during the computations such as 
in the fractional calculus of variation, 
while we are applying the 
fundamental theorem, the following 
property is needed (see [14]&[15]), 
called Classical product rule for 
Riemann-Liouville derivatives, for 
all α>0: 

∫∫ −+ −
b

a

b

a

dttgDtfdttgtfD )()()()( αα  

                                               …(4.3) 
As long as f(a)=f(b) and g(a)=g(b). 
Also, we are presenting the definition 
and some properties of classical 
Mittag-Leffer function, denoted by 
Eα(.). More details can be found in 
[27]. The function  Eα(t)  defined by 

∑
∞

= +Γ
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0 )1(
)(

k
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k

t
tE
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In particular, when α=1 and α=2, we 

have E1=et
 and  )()(2 tcoshtE = . 

In this proposed method, first we 
determine the Lagrange multiplier λ 
that can be identified via variational 
theory, i.e. the multiplier should be 
chosen such that the correction 
functional is stationary, i.e. 
δum+1(um(t), t)=0. Then the successive 
approximation      um, m ≥ 0 of the 
solution u will be obtained by using 

any selective initial function u0 and 
calculated Lagrange multiplier λ. 

Consequently mm
uu

∞→
= lim . It means 

that, by the correction functional 
(4.2) several approximations will be 
obtained and therefore, the exact 
solution emerges at the limit of the 
resulting successive approximations. 

To demonstrate the performance 
of our proposed method, we consider 
the linear index-2 FODAE problem: 
y(α)=Ay+Bx+q                             
(Ia) 
 0=Cy+r                                     
(Ib) 
With 0≤t≤1 and 
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TC , 

r(t)=−(e−t+sin(t)) 
with y1(0)=1, y2(0)=0, with exact 
solution, when α=1(i.e. it is DAE’s) 

)()(,)( 21 tsintyety t == − and 

t

tcos
tx

21
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+
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 The tested problem (I) can be 
transform to the following index-1 
DAE: 

)(21 tsineyy t +=+ −                 … (IIa) 

0)(211 =+−+ tsinyyy α           … (IIb) 
To solve the new problem, we 

transform the algebraic equation (IIa) 
in the iterative form with respect to 
y2 and by the variational iteration 
method and using (4.2), we construct 
the correction functional in y1-
direction for the differential equation 
(IIb). Therefore, we obtain the 
following system: 

)()()( ,11,2 tytsinety n

t

n −+= −
+    … (IIIa)       



Eng. & Tech. Journal, Vol.29, No.3, 2011                     Solutions of Dynamic Fractional Order  
                                                             Differential Algebraic Equations System 

     

619 
 

[
] (IIIb) …)sin()(~

)()()()()(

,2

0
,1,1,11,1

dsssy

sysystyty

n

t

nnnn

+

−++= ∫+
αλ

Where ny ,2
~  is considered as a 
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By taking the variation from both 
sides of the correction functional 
(IIIb) and using the property (4.3), 
we have 
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By substituting the optimal value (V) 
into functional (IIIb), we obtain the 
following iteration formula: 
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with n=1,2,…, y1,0=y1(0)=1 and  
y2,0=y2(0)=0. 

Now, we expand the coefficient 
functions e−t and sin (t) at t=0 and es−t 

at  t =s, by Taylor series expansion,  
We obtain 
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and continuing as n tends to infinity, 
the obtained series are the Taylor 
series expansion when α=1, y1(t)=e−t,   

y2(t)=sin (t) and 
t

t
tx

21

cos
)(

+
= . 

The exact and approximated results 
are presented tables (1) & (2), and 
figures (1) & (2).  
4.2 Fractional Difference 
Approach 
 In this section, we are 
constructing an approximation 
solution to the fractional order 
differential equations system 
FODAEs, using the fractional 
difference method, based on the 
definition of Grunwald-Letnikove 
sense. A simple non-fractional order 
recurrence formula is constructed. 
The testing problem is presented to 
describe the ability of the algorithm, 
and the simplicity computational 
performance. 

The importance and desirability of 
working directly with (1.2) have been 
recognized for years by scientists and 
engineers in many areas. There has 
been considerable researches on 
numerical methods for DAE's. Most 
of the numerical analysis literatures 
on DAE's to date has dealt with 
DAE's of indices less than three, and 
often assumed the DAE system to 
have a special structure. See [4], [6], 
[9], [10] &[19]). 

Now, system (3.1a) can be 
transformed to a system of DAEs, by 
the classical idea, in studying 
fractional order derivative, using the 
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definition of the Grunwald-Letnikov 
fractional derivatives. 
Substituting (2.1b) into the first sum 
term of (3.1a), we obtain 
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In this proposed method, the 

successive approximation yn will be 
obtained. The algorithm is simple for 
computational performance for all 
values of α. 

To demonstrate the performance 
of our proposed method, we consider 
the FODAE problem: 

( ) ,1 4)( yAy −=α  
0= y − r 
With 0≤t≤1.The exact solution is 
given by  
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when α=1, A=1 & r=0.8. 
Now, with initial condition y0=0, and 
step length h =0.01, we obtain: Start 
with  
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The other components were also 
determined, in which y(t) was 
evaluated to have the following 
expansion 
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 In which, setting α=1, in the 
above expansion, we obtain the 
approximate solution to the exact 
solution in a series form as 
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and using Pade’ approximation [28], 
we have 

432

432

1.28.109.15.61

642.1595.55.4
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tttt

tttt
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++++
+++=  

In which the exact and approximated 
solutions are presented in table (3) 
and figure (3). 
5. Discussion 
The main objective of this work has 
been to construct an approximation 
solution to the Fractional Order 
Differential Algebraic Equations 
(FODAE’s), by transforming 
FODAE’s into FODE’s, and using 
two proposed methods, the 
variational method and fractional 
difference method. The two methods 
were implemented without using 
linearization, perturbation or 
restrictive assumptions. There are 
two points to make here. First,  in the 
variational method, the lagrange 
multiplier should be determined such 
that the constructed correction 
functional is in stationary state, and 
several approximations will be 
obtained and the exact solution will 
be reached at the limit of the 
resulting successive approximations. 
Second, in the fractional difference 
method, the fractional derivative 
approximation and Pade’ 
approximants was combined, and 
successfully implemented achieved 
to be promising. 
Also, one could see some differences 
between the exact and the 
approximated results in the tables and 
in the figures, due to the terms 
truncation in the forms of the final 
approximated solutions. 
In future works, we will focus an to 
implement a new analytical 
approach, without transforming 
FODAE’s into FODE’s. 
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Table (1) Solution of y1(t) by using Variational Approach  
and the exact of y1(t) for t=0, …, 2 

 

t Y1(t) Exact 
Y1(t) 

Approximate 
0 1 0.833753 

0.181818 0.833753 0.695144 
0.363636 0.695144 0.579581 
0.545455 0.579578 0.483245 
0.727273 0.483225 0.402982 
0.909091 0.40289 0.336231 
1.090909 0.335911 0.280991 
1.272727 0.280067 0.235813 
1.454545 0.233506 0.199844 
1.636364 0.194687 0.172896 
1.818182 0.162321 0.155556 

2 0.135335 0.833753 
 

Table (2) Solution of y2(t) by using Variational Approach  
and the exact of y2(t) for t=0, …, 1.2 

 

t Y2(t) Exact Y2(t) Approximate 
0 0 0 

0.109091 0.108875 0.107108 
0.218182 0.216455 0.210252 
0.327273 0.321462 0.309453 
0.436364 0.422647 0.40476 
0.545455 0.518807 0.49627 
0.654545 0.608799 0.584142 
0.763636 0.691553 0.66861 
0.872727 0.766085 0.750004 
0.981818 0.831509 0.82876 
1.090909 0.887047 0.905437 

1.2 0.932039 0.980736 

 
Table (3) Solution of y(t) by using Fractional Difference Approach 

 and the exact of y(t)    for t=0, …, 1.2  
 
 

 

t y(t) Exact y(t) Approximate 
0 0 0 

0.109091 0.02746 0.009464 
0.218182 0.063174 0.032045 
0.327273 0.086277 0.060203 
0.436364 0.095101 0.086067 
0.545455 0.091769 0.102778 
0.654545 0.078945 0.105544 
0.763636 0.059012 0.09165 
0.872727 0.033896 0.059909 
0.981818 0.00508 0.010059 
1.090909 -0.026321 -0.057705 

1.2 -0.059479 -0.143007 
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Figure (1)Graph of y1 (t) by using Variational Approach 
 and the exact of y1 (t)  

 
 

 
 

Figure (2)Graph of y2 (t) by using Variational Approach 
 and the exact of y2 (t)  

 

 
Figure (3) Graph of y (t) by using Fractional Difference  

Approach and the exact of y (t) 


