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Abstract

In this paper, we are presented the existence and uniqueness theorem, and two

proposed methods, based on the theory of Gunwald-Letnikov fractional order
derivative. In the first method, the variational approach is implemented, while in
the second method, the fractional difference approach is implemented. Dynamic
test example is presented to each proposed method, to demonstrate their
computational algorithm.
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1. Introduction

1.1 Differential Algebraic

Equations (DAES) ([3],[12] &[19])
athematical models of
some engineering,
physical, and scientific

problems frequently take the

following explicit form of a system

of ordinary differential equations
(ODEs)
y = f(y,t) .. (1.1)

Where t is time and y is a vector of
dependent variables or state
variables. The initial value problem
for the equation (1.1) is to find the
solution of y(t) that satisfies a given
initial condition y(t)=Yyo. In some

cases, the model also involves
dependent variables whose time
derivatives do not appear in the

equations too. The set of equations
which is the combination of both
differential and algebraic equations
that defines this model is known as a
differential  algebraic  equation
(DAE) system. The most general
DAE system is expressed in the fully
implicit form as

F(y,y',t)=0 .. (1.2)
Where F is some function. Another
way to present a DAE system is to
use the following semi-explicit form

y = f(y,y,1) ... (1.38)

0= g(y,xt) ... (1.3b)
Where x is another vector of
dependent variables.ODE involves
differentiations only, while DAE
systems are more general than ODE
systems, since DAE involves both
integrations and differentiations, in
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which one may hope that performing
analytical differentiations to a given
system and eliminating, as needed
will result in an explicit ODE for all
unknowns. This turns out to be true
unless the problem issingular.
Therefore, a property known as the
index plays a key role in the
classification and behavior of DAEs.
Index is defined as the minimum
number of times that all or part of
DAE system must be differentiated to
get a system of ODEs.

1.2 Fractional Calculus: ([5], [15],
16], [19] & [20])

Although fractional derivatives
have a long mathematical history, for
many years they were not used in
many different sciences, but in recent
years, growing attention has been
focused on the importance of
fractional derivatives and integrals in
science. Recently, there has been
some attempt to solve linear
problems with multiple fractional
derivatives problems. Not much has
been done for the nonlinear
problems. A number of definitions
have emerged over the years
including Riemann-Liouville
fractional derivative.  Grunwald-
Letnikov  fractional derivative.
Caputo fractional derivative, etc. in
this  paper, Grunwald-Letnikove
fractional derivative is considered.
1.2.1 Properties

Let o > 0, the main properties of
fractional derivatives and integrals
are the following:

1. If f(t) is an analytical function

of t, then its fractional
derivative D7f(t) is an
analytical function of t, a

2. Fora=n, where n is an integer,
the operation D7 f(t) gives
the same result as classical
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differentiation of integer order
n.

3. Fora=0 the operation D/ f (t)
is the identity
oD ()= (1)

4. Fractional differentiation and
fractional integration are linear

operator:

operations
DY (Af (0 +1g(1)) =
Aaa DY F() + 44, D7 9(t)
5. The additive index law
(semigroup property)
oD DtE f(t)=

oDf D f ()=,D7 7 £ (t)

Holds under some reasonable

conditions on the functiofit).
1.2.2 Fractional Difference

In this paper, we are presenting

the fractional differencedue to
Grunwald-Letnikov [15], based on
a (generalization of the wusual
differentiation of a functiony(x) of
order n[N of the form

y(n) (t) — ur:g (Anhhyn)(t) (14)

Here (A y)(t) is a finite difference of
order n[IN, of function y(t) with a
stephdO and centered at the point
xO0O. Property (1.4) is used to define
a fractional derivative by directly
replacingnON in (1.4) bya > 0. For
this, h" is replaced byh*, while the
finite difference (A} y)(t) is replaced
by the difference (ATy)(t) of
fractional orderaJO defined by the
following infinite series:

> a
(A‘LY)(I)3=Z(—l)k(ka(t—kh)

k=0

(t,hO0;a > 0),

Where(”] are  the
K
coefficients. When h>0 the difference

(1.5) is called left-sided difference,

(1.5)
binomial
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while for h<0 it is called a right-sided
difference. The series in (1.5)
converges absolutely and uniformly
for eacho>0 and for every bounded
function y(x). In particular, when
a=nCN, (1.5) coincides with (1.4):

any)) = Z( 1)( jy(t kh)
t,hOO;nON). (1.6)

Following (1.4), the left- and right-
sided Grunwald-Letnikov derivatives

y?(t) and y*(t) are defined by

y2 1) = lim (A‘?h{)(t) (1.7a)
y9 () = lim (Ai;li’)(t) (1.7b)
respectively.

The definition (1.5) of the fractional
difference (A]y)(t) assumes that the

function y(t) is given at least on the
half-axis. For the functiog(t) given
on finite interval [a, b], such a
difference can be defined as follows
by a continuation ofy(t) as a
vanishing function beyond]a, b]:

ALY)(t) = Z( D ( ]y (t—kh)

(t,hOO;a >0), (1.8)
where
v = {y(t) tOfa,bl,
0, tO[a,b].
It is acceptable to rewrite the

fractional difference (1.8) in terms of
the function y(t) itself, avoiding its

continuation as a vanishing function,
in the forms

><a

(B = Z( D [ ] y(t—kh)

k=0

(tDD;h>O,a>O). (1.9a)
(&7,-Y() = Z( 1D ( jY(Hkh)
(tO00;h>0,a >0). (1.9b)

Then, by analogy with (1.7a) and
(1.7b), the left-and right-sided
Grunwald-Letnikov fractional
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derivatives of ordew>0 on a finite
interval [a, b] are defined by

ya=im &0 @.10a)
and
2 (1) = lim Lo y)(t) . (1.10b)

respectively.
so we define the fractional derivative
in the Grunwald-Letnikov sense as:

0" YO =lmn 3 (- 1){ J ¢~ in),

.. (1.12)
where, f] means the integer part bf
andh is the step size.

Next, we recall that the left-handed
shifted Grunwald estimate to the left-
handed derivative is
(4
D'y = ¢y (t-(i-Dh)
i=0
The definition of operator in the
Grunwald-Letnikov sense (1.12) is
equivalent to the definition of
operator in the Riemann-Liouville
sense. Nevertheless the Grunwald-
Letnikov operator is more flexible
and most straightforward in
numerical calculations.

|
y(t)=2 Cyy(t-ih)
j=0
Could be written as following
y,)=3Cly, .. (1.13b)
j=0

where | is the number of steps,

. (1.12)

.. (1.13a)

andcf’ are  Grunwald-Letnikov

coefficients defined as:
or = Ly o0
h I

(j=12..).
Where

¢ =he, ¢ [1 “Ja] o0 (12120,

We can compute the coefficients in a
simple way. For j=1 we have
¢/ =ah™. For details about the

fractional difference and its

. (1.14)
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applications for solving fractional
differential equations, see [26].
2. Proposed Problem

In this paper, we are studying
more extened structure, hopping to
reach the general structures. Consider
the following Fractional Order
Differential  Algebraic Equations
FODAEs:
YO) = Fle, Y)Y (1) x(®) (2.1a)
0=CY(t)+r(t) (2.1b)
Where Y(t)=(y,(t).....y,(t)) is the
solution of the system (2.1),
3. Existence and Uniqueness
Solution ([4], [9] & [26])

In this section, by Approximating
the fractional derivative in (2) by
(1.13), and if we considered system
(2) in the following form

Y1) =3 AYOD (1) + BX() + (1),

31a
0=CY(t)+r(t) (3.1b)
Where A, B and C are smooth
functions of t, é<t<t, A(t)0 R™,
ji=1,...,m, B{OR™ C(OR™", n>2,
1<k<n and CB is nonsingular
(FODAE has indexa+k+1) except
possibly at a finite number of isolated
points of t, which in this case, the
FODAEs (4.1) have constraint
singularity. The inhomogeneties are
g(t) andr(t)eR anda=0. From [3] &
[12], we can write (3.1a) as

X =(cB)*cy@ —i[AY("l’ +q)

tof,.t,]

So the problem (3.1) transforms to
the over determined system:

[l - B(CB)IC[Y(”) - Z AY 4 q}

t0lt,.t, | ...(3.2)
which is a DAEs system withm
equations andm unknowns with
index m. leads to the numerical
solution algorithm described by the
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following recursive relations(see
[19]):
|
yi,o :B' Yn = Fn _ZC?Ynfi'
(n=12..) ...(3.3)

Set D=1xC’(t)where C'(t) is the
class of all continuous column
vectors Y(t) with the norm

vl =Xl @] = . masky. )

Now, we can state the following
theorem:
Theorem:

Let Fiy@)dc (t)y, where
Ft.Y(®)=(flt, Y(O)), ... fult, Y(B))',
i.e.fi(t, Y(t))O c(D) for all i=1,...m.
and each satisfies the Lipschtiz
condition

1Y)~ 1,6 XO) <KD ]y ©-x0)

for all i, ... (3.4)

For (t,Y(t)) and (t, X())J D, k=min

ki >0

if maxC" <(1-k), ... (3.5)

then (3.1) has one and only one
solution Y{eC(l) that satisfies
DY) OC(l).

Proof:

If we write

TY, = F(t,Yn(t))—Zl“C;"Y

n=j

then fort,Y(t)) and (t, X(t))OD, we
get

Y, -7,

=HF(t,Yn(t))—Z|:C;’Yni -

FLX,0)-YC7 X,

<|F @Y, @) -F X, 0+

| |
Z;c:i”‘\(n,j "Z;Ci”‘ X,
j= j=
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kY |n®-x ]+
2 ma*C;"

<kY, = X, |+ @-k)
Yn - Xn
Y., - Y, and X , - X

Hence, the mapping T¢(D) —» C(D)

is a contraction mapping, and then it
has a fixed point M[=T(Y(1)).
Providing the condition (3.5) and
hence, there exists a unique solution
Y(t)ec(D) for the system (3.1).

4. The Proposed Methods: ([4], [9],
[10], [12], [22] & [25])

The first practical numerical
mehod for DAE's was thBackward
differentiation  formulas (BDF)
introduced byGear in 1971[8]. The

method was initially designed for
semi-explicit index one DAE's (1.3),

99 The

\ A

Y - X,

, SN - o,

where is nonsingular.

algebraic variablec is treated in the
same way as the differential variables
y in BDF, then the method was soon
extended to fully implicit DAE's
(1.2). still, not all DAE's were solved
successfully with  BDF methods.
More details can be found in [4].
While the BDF methods have been
successful in solving DAE's, there is
a considerable research on solving
DAE's with Implicit Runge-Kutta
(IRK) methods. A comprehensive
analysis for IRK methods presented
in [10], applied toHessenbergndex
one, two and three systems. In
general, IRK methods do not attain
the same order of accuracy for DAE's
as they do for ODE's, see [17]. Also,
extrapolation methods may be
viewed atRK methods, in which,
those methods are an effective way to
find the numerical solutions of
nonstiff and stiff ODE's. Many
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researchers have shown great interest
in applyingextrapolation methods to
DAE's, [4]. In this paper, we
proposed two approaches, the
variational and Fractional
Difference, to constract iterative
formulas, to obtain the successive
approximation solutions for
Differential ~ Algebraic Equatins
(FODAE's Fractional Order)
4.1 Variational Approach

In this section, the variational
iteration method is applied for
finding the solution of linear and
nonlinear fractional order differential
algebraic equations FODAE The
functional of the fractional order
derivatives is constructed by a
general Lagrange multiplier. The
successive approximation will be
obtained, by the sequence of such
functional. A tested problem s
presented to demonstrate the
performance of the proposed method.
For simplicity, we consider problem
(3.1) when m=1 (problem has index
2), n=2,3 and k=1,2.Also, if we
suppose that DAE is nonsingular, i.e.
CB()#0, tOlt,.t, |, then by theorems
presented in [3] & [12], the given
index-2 problem is equivalent to the
index-1 DAE system problem

Ay’ +By=§ ...(4.1a)
And
X= (CB)’lc[y" - Ay—q] ... (4.1b)
Such that
Z - b1a21 - bzau b1a22 - b1a12

Cl C2 ,

B= bz bl g= bqu_blqz
0 0} -r

Now, we proposed a modification of
a general Lagrange multiplier
method [16]. In the variational
iteration method, the differential
equation

L[u(®]+N[u()]=h(t)
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is considered, wheré and N are
linear and nonlinear operators,
respectively and h(t) is an
inhomogeneous term. The correction
functional

U () = U, ©) + [ Alu, ©]+ N[T, ()

~h(s)lds ...(4.2)
Is considered, whera is a general
Lagrange multiplier,uy, is the m"
approximate solution andi, is a
restricted variation which means
Sily, m=0, see[6].

The main difficulties when
dealing with fractional derivatives
arise during the computations such as
in the fractional calculus of variation,
while we are applying the
fundamental theorem, the following
property is needed (see [14]&[15]),
called Classical product rule for
Riemann-Liouville derivatives, for
all o>0:

ij f(£)g(t) dt—j. f(t)D"g(t)dt

L3
As long ad(a)=f(b) andg(a)=g(b).
Also, we are presenting the definition
and some properties of classical
Mittag-Leffer function, denoted by
E.(.). More details can be found in
[27]. The function Kt) defined by

>t
& O ;I’(a’kﬂ)
In particular, wheru=1 anda=2, we
haveE,=e'and E,(t) = cosh\/t) .

In this proposed method, first we
determine the Lagrange multipli@r
that can be identified via variational
theory, i.e. the multiplier should be
chosen such that the correction
functional is stationary, i.e.
SUn+1(Un(t), 1)=0. Then the successive
approximation Un, m= 0 of the
solutionu will be obtained by using
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any selective initial functionuy, and
calculated Lagrange multipliér
Consequently =limu,. It means

that, by the correction functional

(4.2) several approximations will be

obtained and therefore, the exact

solution emerges at the limit of the

resulting successive approximations.
To demonstrate the performance

of our proposed method, we consider

the linear index-2 FODAE problem:

Yy @=Ay+Bx+q

(la)

0=Cy+r

(Ib)

With 0<t<1 and

SN

L]

r(t)=—(e"+sin(t))
with y;(0)=1, w(0)=0, with exact
solution, whena=1(i.e. it is DAE’S)
y,(t) =€, y,(t) = sin(t) and

cost

1+2t

The tested problem (I) can be

transform to the following index-1
DAE:
y, +y, =€" +sin(t) ... (lld)

y, " +y -y, +sint)=0 ... (llb)

To solve the new problem, we
transform the algebraic equation (lla)
in the iterative form with respect to
y, and by the variational iteration
method and using (4.2), we construct
the correction functional in 1y
direction for the differential equation
(llb). Therefore, we obtain the
following system:

Yana(t) =€ +sin(t) —y, ()

x(t) =

.. (INa)
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Yo = ¥, O + [ Ay, (9 + 10 (9) -
y,.(S) +sin(s)|ds ..(Ilb)

Where vy, is considered as a

restricted variation, i.edy,, =0.

By taking the variation from both
sides of the correction functiona

(lb) and using the property (4.3),

we have
&0 = 3,0+ [[4(9-219)y,.(9)Jds

By imposingdy,,..(t)=0, we obtain
the stationary condition

A (s)+A(s)=0 .. (IV)
Therefore

At)=¢! (V)
where

@St e
[27].

By substituting the optimal value (V)
into functional (llib), we obtain the
following iteration formula:

Yora(t) =€ #sin(t) ~y,, (1) ... (Vla)

Vi =Y O~ [ [ (9) +v,,(9 -

y,.(9) +sin@)]ds ...(VIb)
with n=1,2,..., y;~y1(0)=1 and
Yo,=Y2(0)=0.

Now, we expand the coefficient

functionse™ and sin (t) at t=0 ane™
at t =s, by Taylor series expansion,
We obtain
1 1 1
) ==t ==t +—t*+...
Yul) =2t =St

1 1
t)=1-t+=t>——t*+...
Yer(®) Ay

619

o1, 1 1 501
yzm(t)_t gt +H)t mt +3—62t
-t t e+
4989600
- 1, 1, 1. 1.
Yio(t) =1 t+2t 6t +24t 120t +
itﬁ_ithy
720 5040
and continuing as n tends to infinity,
the obtained series are the Taylor
series expansion wher1, y,(t)=e ",
, cost
yo(t)=sin (t) andx(t) Tt
The exact and approximated results
are presented tables (1) & (2), and
figures (1) & (2).
4.2 Fractional Difference
Approach

In this section, we are
constructing an  approximation
solution to the fractional order
differential eguations system
FODAEs, using the fractional
difference method, based on the
definition of Grunwald-Letnikove
sense. A simple non-fractional order
recurrence formula is constructed.
The testing problem is presented to
describe the ability of the algorithm,
and the simplicity computational
performance.

The importance and desirability of
working directly with (1.2) have been
recognized for years by scientists and
engineers in many areas. There has
been considerable researches on
numerical methods for DAE Most
of the numerical analysis literatures
on DAEs to date has dealt with
DAESs of indices less than three, and
often assumed the DAE system to
have a special structure. See [4], [6],
[9], [10] &[19]).

Now, system (3.1a) can be
transformed to a system of DAEs, by
the classical idea, in studying
fractional order derivative, using the
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definition of the Grunwald-Letnikov
fractional derivatives.

Substituting (2.1b) into the first sum
term of (3.1a), we obtain

Yo =B,
b SA) va-Slers. )
(n=1.2, ... ) .. (4.1)

In this proposed method, the
successive approximatiop, will be
obtained. The algorithm is simple for
computational performance for all
values ofo.

To demonstrate the performance
of our proposed method, we consider
the FODAE problem:
yo = AlL-y),

O=y-r
With 0<t<1.The exact solution is
given by
vt = 1-3 —(1+ 6t +9t2)%

1+3
whena=1, A=1 & r=0.8.
Now, with initial conditiony,=0, and
step length h =0.01, we obtain: Start
with
n=1, y, =z#t"

n:2’ y2 = a+a;4r(a)

n:3’ y3 = Za+3022+803 r(a)
n:4, y4 — __-280 ta+3

(a+4)

The other components were also
determined, in which y(t) was
evaluated to have the following
expansion
y(t) :#w)ta + [a+a;3l'(a) tml + (20+3022+8¢7/3)F(a)
17+

ta+1

ta+2

ta+2

-280
+ M(a+4)

In which, setting a=1, in the
above expansion, we obtain the
approximate solution to the exact
solution in a series form as
y(t) =1-2t* + 27 - 2t" + 917 - 12t° +

107617 _ 543418
loet? — sasath 4

and using Pade’ approximation [28],
we have
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y(t) = t+45t* +5595° +1.642*

1+6.5t +1.9t* +10.8t° + 2.1t*
In which the exact and approximated
solutions are presented in table (3)
and figure (3).
5. Discussion
The main objective of this work has
been to construct an approximation
solution to the Fractional Order
Differential  Algebraic Equations
(FODAE's), by transforming
FODAE's into FODE'’s, and using
two  proposed methods, the
variational method and fractional
difference method. The two methods
were implemented without using
linearization, perturbation or
restrictive assumptions. There are
two points to make heré€&irst, in the
variational method, the lagrange
multiplier should be determined such
that the constructed correction
functional is in stationary state, and
several approximations will be
obtained and the exact solution will
be reached at the limit of the
resulting successive approximations.
Second,in the fractional difference
method, the fractional derivative
approximation and Pade’
approximants was combined, and
successfully implemented achieved
to be promising.
Also, one could see some differences
between the exact and the
approximated results in the tables and
in the figures, due to the terms
truncation in the forms of the final
approximated solutions.
In future works, we will focus an to

implement a new analytical
approach, without transforming
FODAE's into FODE'’s.
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Table (1) Solution of y(t) by using Variational Approach

and the exact of y(t) for t=0, ..., 2

Yq(t

t Ya(l) Exact Appro>(<i)mate

0 1 0.833753
0.181818| 0.833753 0.695144
0.363636| 0.695144 0.579581
0.545455| 0.579578 0.483245
0.727273| 0.483225 0.402982
0.909091 0.40289 0.336231
1.090909| 0.335911 0.280991
1.272727 0.280067 0.235813
1.454545 0.233506 0.199844
1.636364 0.194687 0.172896
1.818182 0.162321 0.155556

2 0.135335 0.833753

Table (2) Solution of y2(t) by using Variational Aproach

and the exact of y2(t) for t=0, ..., 1.2

t Y,(t) Exact Y,(t) Approximate

0 0 0
0.109091 0.108875 0.107108
0.218182 0.216455 0.210252
0.327273 0.321462 0.309453
0.436364 0.422647 0.40476
0.545455 0.518807 0.49627
0.654545 0.608799 0.584142
0.763636 0.691553 0.66861
0.872727 0.766085 0.750004
0.981818 0.831509 0.82876
1.090909 0.887047 0.905437

1.2 0.932039 0.980736

Table (3) Solution of y(t) by using Fractional Diference Approach

and the exact of y(t) fort=0, ..., 1.2
t y(t) Exact y(t) Approximate
0 0 0
0.109091 0.02746 0.009464
0.218182 0.063174 0.032045
0.327273 0.086277 0.060203
0.436364 0.095101 0.086067
0.545455 0.091769 0.102778
0.654545 0.078945 0.105544
0.763636 0.059012 0.09165
0.872727 0.033896 0.059909
0.981818 0.00508 0.010059
1.090909 -0.026321 -0.057705
1.2 -0.059479 -0.143007
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vt
= 2axact

vees APTOE

Figure (1)Graph of y, (t) by using Variational Approach
and the exact of y (t)

wait) ",
",
— axact

vans BPIOK

Figure (2)Graph of y, (t) by using Variational Approach
and the exact of y (t)

Figure (3) Graph of y (t) by using Fractional Diffeeence
Approach and the exact of y (t)
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