
Al-Mustaqbal Journal of Pharmaceutical and Medical Sciences Al-Mustaqbal Journal of Pharmaceutical and Medical Sciences 

Volume 2 Issue 1 Article 1 

2024 

Development of a Multi-Target Pharmacophore-Based Virtual Development of a Multi-Target Pharmacophore-Based Virtual 

Screening Agent Against COVID-19 Screening Agent Against COVID-19 

Nashwa A. Ibrahim 
Medicinal chemistry department, Faculty of Pharmacy, Beni-Suef University, Beni-Suef 62514, Egypt, 
nashwa.ahmed@pharm.bsu.edu.eg 

Ahmed M. Gouda 
Medicinal chemistry department, Faculty of Pharmacy, Beni-Suef University, Beni-Suef 62514, Egypt, 
ahmed5_pharm5@yahoo.com 

Hany A. M. El-Sherief 
Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Deraya University, Minia, Egypt, 
hany.abdeltawab@deraya.edu.eg 

Follow this and additional works at: https://mjpms.uomus.edu.iq/mjpms 

 Part of the Pharmacy and Pharmaceutical Sciences Commons 

ISSN: 2959-8974 – e-ISSN: 3006-5909 

Recommended Citation Recommended Citation 
Ibrahim, Nashwa A.; Gouda, Ahmed M.; and El-Sherief, Hany A. M. (2024) "Development of a Multi-Target 
Pharmacophore-Based Virtual Screening Agent Against COVID-19," Al-Mustaqbal Journal of 
Pharmaceutical and Medical Sciences: Vol. 2 : Iss. 1 , Article 1. 
Available at: https://doi.org/10.62846/3006-5909.1005 

This Original Study is brought to you for free and open access by Al-Mustaqbal Journal of Pharmaceutical and 
Medical Sciences. It has been accepted for inclusion in Al-Mustaqbal Journal of Pharmaceutical and Medical 
Sciences by an authorized editor of Al-Mustaqbal Journal of Pharmaceutical and Medical Sciences. 

https://mjpms.uomus.edu.iq/mjpms
https://mjpms.uomus.edu.iq/mjpms/vol2
https://mjpms.uomus.edu.iq/mjpms/vol2/iss1
https://mjpms.uomus.edu.iq/mjpms/vol2/iss1/1
https://mjpms.uomus.edu.iq/mjpms?utm_source=mjpms.uomus.edu.iq%2Fmjpms%2Fvol2%2Fiss1%2F1&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/731?utm_source=mjpms.uomus.edu.iq%2Fmjpms%2Fvol2%2Fiss1%2F1&utm_medium=PDF&utm_campaign=PDFCoverPages
https://doi.org/10.62846/3006-5909.1005


AL-MUSTAQBAL JOURNAL OF PHARM. & MED. SCIENCES 2024;2:1–12 Scan the QR to view
the full-text article on
the journal website

ORIGINAL STUDY

Development of a Multi-Target
Pharmacophore-Based Virtual Screening
Agent Against COVID-19

Nashwa A. Ibrahim a, Ahmed M. Gouda a, Hany A. M. El-Sherief b,*

a Medicinal chemistry department, Faculty of Pharmacy, Beni-Suef University, Beni-Suef 62514, Egypt
b Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Deraya University, Minia, Egypt

ABSTRACT

The worldwide outbreak of the COVID-19 pandemic compelled scientists to develop new, highly effective therapeutic
approaches to fight it. Multitarget drugs have been proven to be effective in managing complex disorders. But designing
multitarget drugs is a great challenge. In this study, to prevent a lack of efficacy due to viral mutation escape, a multi-
target agent against the COVID-19 virus was discovered. As crucial targets, RNA-dependent RNA polymerase (RdRp),
COVID-19 main protease (Mpro), and SARS-CoV-2 Nsp15 were selected. A pharmacophore model was developed using
the native ligands of the chosen targets. This model was used to screen the ZINC Drug Database for commercially
available compounds having similar features to the experimentally tested drugs. Pharmacophore-based virtual screening
yielded 1331 hits, which were further docked into the binding sites of selected proteins using PyRx AutoDock Vina.
Evaluation of docking results revealed that glisoxepide (Zn 00537804) has the highest binding scores for the three
target proteins. It showed binding free energies of−6.8,−6.2, and−7.8 kcal/mol towards SARS-CoV-2 Mpro, Nsp15, and
RdRp, respectively. According to an in silico ADME study, glisoxepide follows Lipinski’s rule. The results of a molecular
dynamics simulation study and subsequent investigations showed that glisoxepide had good dynamics and stability
within the active sites of selected targets. The promise of glisoxepide as a potential treatment for SARS-CoV-2 still needs
to be further evaluated through experimental research.

Keywords: Multi-target pharmacophore, Virtual screening, Anti-SARS-CoV-2 RdRp, Mpro, and Nsp15, Molecular docking,
Molecular dynamics simulation, Glisoxepide

1. Introduction

In December 2019, the severe acute respira-
tory syndrome-related coronavirus 2 (SARS-CoV-2,
COVID-19) attacked the world, and the respiratory
sickness spread quickly [1]. In March 2020, the World
Health Organization (WHO) declared the infection
a pandemic disease due to its rapid spread in 225
countries, which resulted in 774,771,942 confirmed
cases of COVID-19 and 7,035,337 fatalities as of 25th

February 2024, 13.59 billion doses of the vaccine had
been administered (https://covid19.who.int/) [2].
The Coronaviridae family includes the SARS-CoV-2

virus. It is an enveloped (+ss) RNA betacoronavirus
whose genomes encode several accessory proteins,
structural proteins, and non-structural proteins (nsps)
[3]. Most people have a moderate infection, but
the elderly or those who have underlying medical
conditions, including cancer, diabetes, cardiovascu-
lar disease, or chronic respiratory disease, are more
likely to experience a serious sickness that can lead
to pneumonia, respiratory distress, and organ damage
[4]. Most nations throughout the world have imple-
mented extremely limited safety measures that are
insufficient to stop the COVID-19 virus waves from
spreading. The situation has improved with recently
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licenced vaccines, but returning to normal conditions
is still challenging, and infections are still increasing,
especially considering the emergence of new virus
strains that may be more resistant to vaccines. These
variations emerged because of modifications to the
virus’s spike glycoprotein, which is the protein that
the body’s immune system uses to recognise host
cells [5]. Additionally, many immunocompromised
people might not be completely protected following
vaccination [6]. The Omicron variant, which replaced
older variants, has become the dominant variant glob-
ally. Currently, Omicron HV.1 and JN.1 subvariants
have quickly replaced the early Omicron BA.2, BA.5,
BA.2.75. and XBB.1 subvariants. Although infections
caused by the Omicron variant have decreased in
severity, they still pose a significant threat to public
health. The virus’s mutations can weaken vaccines,
weakening the protective barrier. Researchers and
vaccine developers are constantly monitoring these
changes and adapting strategies to address emerging
variants [7–9].

Therefore, there is an urgent need to develop
a targeted, effective medication for the SARS-CoV-
2 infection. To achieve this purpose, a number
of strategies could be used, including the inhibi-
tion of enzymes that are essential to SARS-CoV-2’s
life cycle, such as the main protease (Mpro) (nir-
matrelvir/ritonavir and lopinavir/ritonavir), RNA-
dependent RNA polymerase (remdesivir, favipiravir,
and molnupiravir), papain-like protease (disulfiram),
helicase (ivermectin), and Nsp15 endoribonuclease
NendoU (glisoxepide and idarubicin) [1–3]. Drug re-
purposing strategy was used to find effective drugs
through virtual screening of various approved and
investigational drug libraries, such as drug bank,
FDA-approved drugs, etc. [4–6]. This approach has
more benefits than the conventional drug discovery
process, including a lower failure rate, a quicker drug
development process, and lower costs [10].

Several therapeutic molecules of diverse clinical
uses were approved to treat the COVID-19
patients as hydroxychloroquine, and chloroquine
(antimalarial drugs), azithromycin (antibiotics), ri-
tonavir/lopinavir, nirmatrelvir/ritonavir, favipiravir,
remdesivir, and molnupiravir (antivirals), ivermectin
(antiparasitic), dexamethasone (corticosteroids),
tocilizumab, and sarilumab (monoclonal antibodies),
baricitinib (immunomodulators), losartan (antihy-
pertensive) and interferons (IFN) [11–17].

2. Rationale and design

Morphy and Rankovic [18] stated that multi-target
designed or directed ligands MTDLs are drugs that

simultaneously interact with many targets to manipu-
late multifactorial disorders like Alzheimer’s disease,
cancer, and infectious diseases. This approach has
many benefits, including increased efficacy, fewer
side effects, better bioavailability, and a lower chance
of developing drug resistance [19–21].

The objective of this work is to identify an in-
hibitor of RNA-dependent RNA polymerase (RdRp),
the Nsp15 of SARS-CoV-2, and the main protease
(Mpro) of COVID-19 by applying the MTDLs, and
drug repurposing strategies using various computer-
aided drug design techniques such as ligand-based
pharmacophore modelling, virtual screening, molec-
ular docking, and molecular dynamic simulation. This
is intended to prevent a lack of efficacy due to viral
mutation escape.

The primary target for the development of antivi-
ral drugs is the main coronavirus protease (MPro),
sometimes referred to as 3C-like protease (3CLpro,
nsp5), which is essential for virus replication and
regulation of the host cell response. It is a dimer, and
each monomer contains two regions: an N-terminal
catalytic region and a C-terminal area. The two large
polyproteins, pp1a and pp1ab, are cleaved into ma-
ture non-structural proteins (nsps) [12]. The primary
protease inhibitor, nirmatrelvir/ritonavir, was autho-
rized by the WHO for use in patients with non-severe
COVID-19 [13].

In the life cycle of coronaviruses and other RNA
viruses, RNA-dependent RNA polymerase (RdRp,
nsp12) is a crucial enzyme. It controls the tran-
scription and replication of the RNA genome during
infection. To perform its tasks, RdRp requires ac-
cessory factors like nsp7 and nsp8. Its structure
and functionality are conserved by viruses with
RNA genomes from various families. Additionally,
it has no human equivalent, making it a prime
candidate for the creation of new antiviral drugs
[3, 12, 14].

For patients with non-severe COVID-19, the WHO
has approved the nucleotide analogues molnupiravir
and remdesivir as SARS-CoV-2 RdRp inhibitors. Both
are prodrugs. In vivo, remdesivir changes into its ac-
tive triphosphate form. Beta-D-N4-hydroxycytidine,
however, is the active form of molnupiravir
[13, 14].

Only the Nidovirales contain SARS-CoV-2 endori-
bonuclease (nsp15/NendoU), which is regarded as a
genetic marker for these viruses. It produces 2′–3′
cyclic compounds by cleaving RNA at the 3′ posi-
tion of uridylates. It prevents the synthesis of IFN-β
and is connected to the coronavirus retinoblastoma
tumor suppressor protein. Therefore, its suppression
is thought to be essential to the SARS-CoV-2 life cycle
[9, 15–17].
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Pharmacophore-based virtual screening is a com-
monly applied technique in drug discovery. This
process involves generation of a 3D pharmacophore
models based on active ligands which can be used
in screening virtual libraries of molecules to se-
lect/optimise the lead compounds34 to optimize lead
compounds [22].

Computer-aided virtual screening is a rapid, effi-
cient, and low-cost method used in modern medicinal
chemistry for discovering novel lead compounds. It
allows researchers to quickly find active compounds
from huge, small-molecule libraries, improving the
speed and efficiency of experimental determination.
This tool is particularly useful for the discovery and
optimization of anti-SARS-CoV-2 lead compounds
and shortening the development cycle [23].

Therefore, a variety of in silico methods were
used to accomplish this study’s objectives, including
ligand-based pharmacophore and virtual screening to
identify novel molecules based on their distinctive
features and molecular dynamics studies to assess the
stability of the protein-ligand complex under various
environmental conditions.

3. Materials and methods

3.1. Pharmacophore model

3.1.1. Generation of the pharmacophore model
The PharmaGIST webserver (http://bioinfo3d.cs.

tau.ac.il/PharmaGist/php.php) was used to gener-
ate the pharmacophore model since it is capable of
quickly and accurately identifying pharmacophores
while considering the flexibility of the ligands. Since
the process is fully automated, employing the online
interface is easy and intuitive [24].

The training set of native ligands of chosen tar-
get proteins (pdb codes: 6LU7, 6WXC, and 7BV2)
(https://www.rcsb.org/), which were then extracted
and combined in Discovery Studio Visualizer (Das-
sault Systems BIOVIA, Discovery Studio Visualizer,
v17.2.0.16349, San Diego: Dassault Systems, (2016)
into mol2 format files. A deterministic algorithm is
used by the open-source website PharmaGist to find
the overlapping possible pharmacophoric sites be-
tween the set of ligands [24]. Following an analysis
of the data, the pharmacophore with the greatest
alignment score was chosen for additional research.
The chemical similarity between the acquired phar-
macophoric features and their ligands in each dataset
was determined using the molecular overlay module
of Discovery Studio Visualizer. It uses a fingerprint-
based method to quantify and estimate the similarity
between the pharmacophores, reporting the overlap
on a scale of 0 to 1.

3.1.2. Pharmacophore based virtual screening
The best pharmacophore model obtained from

PharmaGist was used as a constraint to screen against
the ZINC Drug Database using ZincPharmer (http:
//zincpharmer.csb.pitt.edu) [25]. ZINCPharmer uses
the open-source Pharmer software to enable the inter-
active search of ZINC Drug Database conformations in
just a few minutes, if not seconds.

3.2. Molecular docking

3.2.1. Protein structures retrieval
The crystal structures of COVID-19 main protease

(PDB ID: 6lu7, Resolution: 2.16 A), SARS-CoV-2
Nsp15 (PDB ID: 6wxc, Resolution: 1.85 A) [14], and
RdRp (RNA-dependent RNA polymerase) (PDB ID:
7BV2, Resolution: 2.50 A) were downloaded in PDB
format from the PDB database (https://www.rcsb.
org/).

3.2.2. Binding site prediction
Binding site residues were anticipated through

a literature survey for SARS-CoV-2 main protease
[26], SARS-CoV-2 Nsp15 [17], and SARS-CoV-2 RdRp
(RNA-dependent RNA polymerase) [27].

3.2.3. Preparation of ligand library for docking
The 1331 hits from the ZINC Drug Database’s phar-

macophore ligand-based screening were loaded into
PyRx version 0.8 (http://www.sourceforge.net) [28]
using the program’s built-in Open Babel tool version
2.4.0 [29] and then subjected to energy minimiza-
tion. The uff geometry optimization force field was
used to reduce the ligand energies, with the opti-
mization algorithm set to conjugate gradients at 200
total steps. Then, using Autodock tools, the energy-
minimized ligands were changed into the PDBQT
form that was suited for docking.

3.2.4. Molecular docking
The graphical user interface of PyRx allows users to

perform virtual screening. Both the RMSD scores and
the binding affinities of each ligand can be evaluated.
AutoDock 4 and AutoDockVina, two docking software
programs, imply the Lamarckian Genetic Algorithm
and the Empirical Free Energy Scoring Function. The
protein and ligand molecules were imported into
PyRx and converted to the docking ready PDBQT for-
mat using Autodock tools. The AutoDock Vina tools
were then used to do the docking operation on PyRx.
The grid center was set to the following coordinates:
x 3.3477, y 11.8096, z 65.9519 for the SARS-CoV-2
main protease; x 64.1537, y -69.5576, z 30.3641 for
the SARS-CoV-2 Nsp15; and x 95.5712, y 97.2218, z
101.8072 for the SARS-CoV-2 RdRp.

http://bioinfo3d.cs.tau.ac.il/PharmaGist/php.php
http://bioinfo3d.cs.tau.ac.il/PharmaGist/php.php
https://www.rcsb.org/
http://zincpharmer.csb.pitt.edu
http://zincpharmer.csb.pitt.edu
https://www.rcsb.org/
https://www.rcsb.org/
http://www.sourceforge.net
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Fig. 1. The co-crystallized ligands of the target proteins.

3.3. ADMET properties determination

The SwissADME server (http://www.swissadme.
ch/index.php) was used to predict the physicochem-
ical properties of the glisoxepide (Zn 00537804),
which was identified as the best ligand to bind
to the three chosen targets among the docked
molecules, as well as its corresponding ADMET
parameters, pharmacokinetic properties, drug-like
nature, and medicinal chemistry friendliness using
its SMILES as obtained from the PubChem database
(www.pubchem.ncbi.nlm.nih.gov) [30]. Addition-
ally, ProTox-II (tox.charite.de) was used to calculate
its potential toxicity features [31].

3.4. Molecular dynamics simulation

The molecular dynamics simulation analysis car-
ried out through the iMODS server (http://imods.
chaconlab.org) by normal mode analysis was used
to assess the conformational stability of the interac-
tions between our targets (6lu7, 6wxc, and 7BV2)
and glisoxepide (Zn 00537804), which was revealed
as the best ligand bind to the three selected targets
among the docked molecules (NMA). iMODS is an
efficient molecular dynamics simulation engine that
may be used to analyze the structural dynamics of
protein complexes quickly, easily, effectively, and
intuitively. It makes predictions about the protein-
ligand interactions’ elastic network, deformability,
mobility profiles, eigenvalues, variance, and covari-
ance map [32].

4. Results and discussion

In this study, the researchers aimed to develop a
multi-target pharmacophore-based virtual screening
agent against COVID-19. The selected targets for this
agent were RNA-dependent RNA polymerase (RdRp),
COVID-19 main protease (Mpro), and SARS-CoV-2
Nsp15. The following is a theoretical discussion con-
tributing to the results obtained in the study.

4.1. Theoretical discussion

The development of a multi-target pharmacophore-
based virtual screening agent presents a promising
approach for identifying potential drugs against
COVID-19. By targeting multiple proteins involved in
the viral life cycle, the agent aims to enhance effec-
tiveness and reduce the likelihood of viral mutation
escape.

The selection of RdRp, Mpro, and Nsp15 as the
target proteins is based on their crucial roles in the
replication and regulation of SARS-CoV-2. RdRp is
responsible for viral RNA synthesis, making it an at-
tractive target for antiviral drug development [3, 12,
14]. Mpro plays a vital role in viral replication by
cleaving polyproteins into functional proteins, mak-
ing it a key target for inhibition [12, 13]. Nsp15, an
endoribonuclease, is involved in viral RNA process-
ing and has been identified as a potential target for
antiviral interventions [9, 15–17].

The use of virtual screening and molecular docking
techniques allowed for the identification of glisox-
epide as a potential candidate with high binding
affinity to RdRp, Mpro, and Nsp15. Glisoxepide
demonstrated favorable binding free energies for all
three target proteins, indicating strong interactions
within their active sites.

The subsequent MD simulations provided insights
into the dynamic behavior and stability of the
glisoxepide-protein complexes. The observation of
good dynamics and stability suggests that glisoxepide
has the potential to maintain its binding and in-
hibitory effects on the target proteins over time.

It is important to note that the results presented
in this study are based on computational approaches
and in silico investigations. Further experimental
research is necessary to validate the efficacy and
safety of glisoxepide as a potential treatment for
SARS-CoV-2.

In summary, the development of a multi-target
pharmacophore-based virtual screening agent pro-
vides a promising strategy for identifying potential
drugs against COVID-19. The theoretical findings

http://www.swissadme.ch/index.php
http://www.swissadme.ch/index.php
www.pubchem.ncbi.nlm.nih.gov
http://imods.chaconlab.org
http://imods.chaconlab.org
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Fig. 2. Details of the best pharmacophore model (a, b) and mapping of test ligands to the pharmacophore model (c, d, e). (a) Spatial
disposition of the pharmacophoric features. Hydrogen bond acceptor (ACC, purple), hydrogen bond donor (DON, green), ring aromatic
(AR, blue). (b) Distances between feature centers. (c) Mapping of 6lu7; (d) Mapping of 6WXC; (e) Mapping of 7BV2 to the candidate
pharmacophore.

suggest that glisoxepide exhibits strong binding affin-
ity and favorable dynamics within the active sites
of RdRp, Mpro, and Nsp15. These results warrant
further experimental investigations to assess the ther-
apeutic potential of glisoxepide and its suitability for
clinical development.

4.2. Pharmacophore model

The researchers employed the PharmaGIST web
server to develop a multi-target pharmacophore for
RdRp, Mpro, and Nsp15. Pharmacophore modeling
is an essential technique in drug design that identi-
fies the critical features necessary for ligand-receptor
interaction [33]. By using the native ligands of the
chosen targets, the researchers constructed a pharma-
cophore model that represents the common features
required for binding to these proteins. The accuracy
of the pharmacophore model depends on the quality
of the training set and the selection of features used
to define the pharmacophoric points. If the training
set is not representative or the chosen features do
not adequately capture the essential interactions, the
model may have limited predictive power [34].

4.2.1. Generation of the pharmacophore model
The data produced by PharmaGIST for test lig-

ands was analyzed, and the pharmacophore with the
highest alignment score was selected. In this model,
an aromatic ring, a hydrogen bond acceptor, and a
hydrogen bond donor were found to have three phar-
macophoric properties. The model features’ spatial
arrangement was specified in Fig. 2(a), and Fig. 2(b)
indicated the distances between feature centers. Se-
lect inhibitors’ mapping to the pharmacophore model
is shown in Fig. 2(c–e). (Fig. 2).

4.2.2. Pharmacophore-based virtual screening
The ZINCPharmer server output uses a Jmol-based

molecular viewer to display the distinctive pharma-
cophore features inside the aligned input ligands. The
aromatic ring, hydrogen bond donor, and hydrogen
bond acceptor pharmacophore characteristics were
represented in purple, grey, and orange mesh, respec-
tively, while the aligned input ligands were shown as
sticks (Fig. 3).

This pharmacophore was used as a query to
screen the Zinc Drug Database, consisting of
around 20432 compounds, using ZINCPharmer.



6 AL-MUSTAQBAL JOURNAL OF PHARM. & MED. SCIENCES 2024;2:1–12

Table 1. Results of the docking study of glisoxepide into 6LU7, 6WXC, and 7BV2.

Type of interactions
Hydrogen bonding Hydrophobic

Target (pdb) Ligand 1Gb
a HBsb Ligandc AAd Lengthe AAd

6LU7 glisoxepide −6.8 4 NH THR24 2.38 MET49, LEU142
O SER46 2.33
CO ASN142 2.22
CO GLY143 2.95

6WXC glisoxepide −6.2 5 NH THR167 2.11 LYS90, LYS205, LYS277
NH ARG199 2.66
CO ASN200 2.06
O ARG207 2.85
CO TYR279 2.55

7BV2 glisoxepide −7.8 4 CO SER682 2.95 MET54, ASP623, VAL557, ALA688
OH ASP684 2.39
CO ALA688 2.25
CO THR687 2.63

aBinding free energy (kcal/mol); bHBs, number of hydrogen bonds; cAtoms in the ligand involved in H-bonds; dAmino acids in proteins
involved in H-bonds/hydrophobic interactions; elength in angstrom (Å).

Fig. 3. Three-dimensional structural alignment display of the test
ligands, shows the three points with consensus pharmacophore
features. The regions of the consensus hydrogen bond acceptor
are shown in orange mesh, the region of the consensus hydrogen
bond donor is shown in grey mesh, and the region of the consensus
aromatic ring is shown in purple mesh.

Pharmacophore-based screening yielded 1331 hits,
which were further docked into the binding sites of
selected proteins (6lu7, 6wxc, and 7bv2).

4.3. Molecular docking

The ZINC Drug Database’s 1331 hits from the
pharmacophore-based screening were retrieved as a
single SDF file and loaded onto PyRx version 0.8.
The goal of this process was to identify the docked
molecule that would have the highest binding affin-
ity for the three chosen targets. Based on binding
affinity, each hit was scored. Bound native ligands
of each target were employed as controls to ver-
ify the screening and redocking protocols. For the
molecules 6lu7, 6wxc, and 7bv2, respectively, the
binding affinities ranged from−3.2 to−7.5 kcal/mol,

20.9 to −7.5 kcal/mol, and 1.5 to −8.4 kcal/mol
(Tables S1, S2, and S3). When a compound’s binding
energy is less than 6.0 kcal/mol, it is expected that
it will be active against protein [35]. Glisoxepide
(Zn 00537804), among the docked molecules, was
identified as the best ligand for binding to the three
chosen targets after docking findings were evaluated.
The interactions and binding affinities of glisoxepide
with our targets were demonstrated in (Table 1). Ac-
cording to the findings, glisoxepide binds to 6LU7,
6WXC, and 7BV2 with binding free energies of −6.8,
−6.2, and −7.8 kcal/mol, respectively. With THR24,
SER46, ASN142, GLY143 in 6LU7, THR167, ARG199,
ASN200, ARG207, TYR279 in 6WXC, and SER682,
ASP684, ALA688, and THR687 in 7BV2, it interacted
via establishing hydrogen bonds. Additionally, it cre-
ated hydrophobic connections with MET49, LEU142
in 6LU7, LYS90, LYS205, and LYS277 in 6WXC,
and MET54, ASP623, VAL557, and ALA688 in 7BV2
(Fig. 4, Table 1).

The significance of the interactions between glisox-
epide and the target proteins can be attributed to
the potential inhibitory effects of glisoxepide on their
biological functions. As a multi-target agent against
the COVID-19 virus, glisoxepide has the potential to
disrupt the activities of RNA-dependent RNA poly-
merase (RdRp), COVID-19 main protease (Mpro), and
SARS-CoV-2 Nsp15.

The interactions between glisoxepide and the target
proteins may involve various molecular forces, such
as hydrogen bonding, and hydrophobic interactions.
These interactions play a crucial role in stabilizing
the binding between glisoxepide and the target pro-
teins, thereby potentially inhibiting their enzymatic
activities.
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Fig. 4. Binding mode and interactions of glisoxepide into (A) the 3D binding mode of glisoxepide into the active site of the 6LU7 receptor,
shown as a hydrogen-bond surface; (B) the 2D binding mode of glisoxepide into 6LU7; (C) the 3D binding mode of glisoxepide into the
active site of the 6WXC receptor, shown as a hydrogen-bond surface; (D) the 2D binding mode of glisoxepide into the 6WXC receptor; (E)
the 3D binding mode of glisoxepide into the active site of the 7BV2 receptor, shown as a hydrogen-bond surface; (F) the 2D binding mode
of glisoxepide into the 7BV2 receptor.

Further experimental research is necessary to val-
idate the effectiveness of glisoxepide as a potential
treatment for SARS-CoV-2. However, based on the
docking results and the observed interactions, glisox-
epide shows promise as a candidate compound for
further evaluation and development as an antiviral
agent against COVID-19.

4.4. ADMET properties determination

The SwissADME website (http://www.swissadme.
ch/) was used to estimate the ADMET characteristics
of glisoxepide. The results are presented in Tables 2
to 4. It has a TPSA of 142.02Å2, a molecular weight
of 449.52 g/mol, and 31 heavy atoms. It had a Con-
sensus log Po/W of 3.00, which is p 5. Glisoxepide’s
predicted water solubility was based on three dis-
tinct models: ESOL, Ali, and SILICOS-IT. According
to Sorkun et al. [36], log S values between 0 and
2 indicate solubility, while values between 2 and 4
suggest mild solubility, and values less than 4 indi-
cate insolubility. Its average log S value was −3.59,
indicating that it is only slightly soluble (Table 2).
Additionally, it demonstrated poor intestine absorp-
tion, as evidenced by its affinity for glycoprotein,
log Kp values less than 2.5 cm/s, and good skin

penetration potential [37]. The finding that glisox-
epide could pass the blood-brain barrier, however,
suggested that more research be done into its tox-
icity. Additionally, the fact that it was unable to
block CYP2C19 suggested that it could be able to halt
the metabolism of several therapeutic pharmaceu-
ticals, including analgesic, sedative, anticonvulsant,
and anti-ulcer medications (Table 3) [38]. Addition-
ally, it was unable to inhibit the enzymes CYP1A2
and CYP2D6, which suggests that it could inhibit
liver metabolism and stop the metabolism of anti-
hypertensitive drugs, beta-blockers, antiarrhythmic
drugs, and antidepressants, whereas it was able to
inhibit the enzymes CYP2C9 and CYP3A4, which
indicates the potency of stopping the oxidation of
steroids, fatty acids, and xenobiotics Additionally,
Fig. 5 and Table 4 exhibit the glisoxepide theoretical
drug-likeness data. It was anticipated that the glisox-
epide would not be orally accessible because its radar
plot at the polarity and flexibility points fell below
the acceptable range (Fig. 5). Glisoxepide, however,
complied with all drug-likeness rules, except for Ve-
ber and Egan rules since its TPSA is greater than
140 and 131.6, respectively (Table 4) [25]. This was
determined by the appraiser of the respective drug’s
likeness using various rule-based filters, including
the Lipinski, Ghose, Veber, Egan, and Muegge filters.

http://www.swissadme.ch/
http://www.swissadme.ch/
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Table 2. Physicochemical properties of glisoxepide.

Properties Glisoxepide

Molecular weight (g/mol) 449.52
Number of heavy atoms 31
Number of arom. heavy atoms 11
Fraction Csp3 0.45
Number of rotatable bonds 10
Number of H-bond acceptors 7
Number of H-bond donors 3
Molar Refractivity 116.58
TPSA 142.02 Å2

Lipophilicity
Log Po/w (iLOGP) 2.17
Log Po/w (XLOGP3) 3.50
Log Po/w (WLOGP) 3.07
Log Po/w (MLOGP) 3.13
Log Po/w (SILICOS-IT) 3.15
Consensus Log Po/w 3.00

Water solubility
Log S (ESOL) −3.36
Log S (Ali) −3.97
Log S (SILICOS-IT) −3.44

Table 3. Pharmacokinetics properties of glisoxepide.

Properties Glisoxepide

GI absorption Low
BBB permeant No
P-gp substrate Yes
CYP1A2 inhibitor No
CYP2C19 inhibitor No
CYP2C9 inhibitor Yes
CYP2D6 inhibitor No
CYP3A4 inhibitor Yes
Log Kp (skin permeation) −6.98 cm/s

GI = gastro-intestinal absorption, BBB = blood-brain barrier, P-gp
= permeability glycoprotein.

Table 4. Predictive drug-likeness of glisoxepide.

Properties Glisoxepide

Lipinski Yes; 0 violation
Ghose Yes
Veber No; 1 violation: TPSA > 140
Egan No; 1 violation: TPSA > 131.6
Muegge Yes
Bioavailability Score 0.55

glisoxepide’s virtual toxicological evaluation showed
that it is non-toxic due to the fact that its toxic dose
was 10000 mg/kg, and it was in class 6 (Table 5) [26].

4.5. Molecular dynamics simulation

It was crucial to study molecular dynamics to eval-
uate protein-ligand binding, which can be done by
comparing protein dynamics in their normal mode.
Essential molecular dynamics was also used in this
study to analyze a variety of our targets’ normal
modes to assess their mobility and stability using the

Table 5. Oral toxicity prediction results of glisoxepide.

Properties Glisoxepide

LD50 (mg/kg) 10000
Toxicity Class 6
Hepatotoxicity Inactive
Carcinogenicity Inactive
Immunotoxicity Inactive
Mutagenicity Inactive
Cytotoxicity Inactive
Aryl hydrocarbon receptor Inactive
Androgen receptor Inactive
Androgen receptor ligand binding domain Inactive
Aromatase Inactive
Oestrogen receptor alpha Inactive
Oestrogen receptor ligand binding domain Inactive
Peroxisome proliferator activated receptor-c Inactive
Nuclear factor (erythroid-derived 2)-like 2/ Inactive

antioxidant responsive element
Heat shock factor response element Inactive
Mitochondrial membrane potential Inactive
p53 Inactive
ATPase family AAA domain-containing protein 5 Inactive

Fig. 5. Suitability for oral administration of glisoxepide. LPO =
lipophilicity, POLAR = polarity, INSOLU = solubility, FLEX = flexi-
bility, and INSAT = saturation.

iMODS server. We investigated the binding kinetics of
the three docked complexes that included glisoxepide
with 6LU7, 6WXC, and 7BV2 (Fig. 6). Fig. 6A dis-
played the 3D interaction models of glisoxepide with
the complexes 6LU7, 6WXC, and 7BV2.

The deformity graph showed peaks that correspond
to portions of the protein that are deformable;
the deformability calculation was based on the
individual distortion of each residue; the hinges
of the plot correspond to residues with high
deformability (Fig. 6B). The B-factor values indicated
the relative amplitude of atomic displacements
around the equilibrium state and were inferred
via NMA to be equivalent to RMS (Fig. 6C). A
lower eigenvalue suggested simpler deformation
as less energy is required to distort the complex
structure, according to the motion stiffness of C
atoms computed using the eigenvalue coupled with
the confirmed normal mode model. The eigenvalues
for glisoxepide with the 6LU7, 6WXC, and 7BV2
complexes were determined to be 1.06661810-4,
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Fig. 6. A and B. Molecular dynamics simulations show (A) NMA mobility and (B) main-chain deformability. The elastic network model of (i)
glisoxepide in 6LU7, (ii) glisoxepide in 6WXC, and (iii) glisoxepide in 7BV2.

Fig. 6. C, D, and E. (C) experimental B-factor, (D) Eigenvalues, (E) variance associated with each normal mode. The elastic network model
of (i) glisoxepide in 6LU7, (ii) glisoxepide in 6WXC, and (iii) glisoxepide in 7BV2.

6.35561410-5, and 7.59600310-5, respectively.
These values showed the complexes to be extremely
stable (Fig. 6D). The variance plot showed individual
variances in red, whereas cumulative variances
were in green (Fig. 6E). The covariance matrix
demonstrated the connection between pairs of
residues, with the correlated, uncorrelated, and
anticorrelated pairs of residues being represented
by the red, white, and blue colors, respectively (Fig.
6F). Whereas an elastic network map represented
the pairings of atoms connected by springs, and each

dot in the graph represented a spring between the
corresponding pair of atoms. Stronger springs are
shown by a darker gray in the graph (Fig. 6G).

Our compounds clearly displayed a good degree
of deformability, as demonstrated by the previ-
ous molecular dynamics investigation. They also
exhibited a moderate eigenvalue, which indicated the
possibility of deformation. In contrast to individual
variations, the variance map showed a larger level of
cumulative variances. A satisfactory result was also
obtained with the elastic network map.
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Fig. 6. F and G. (F) Covariance matrix, (G) The elastic network model of (i) glisoxepide in 6LU7, (ii) glisoxepide in 6WXC, and (iii) glisoxepide
in 7BV2.

5. Conclusion

In this study researchers developed a multi-target
pharmacophore model for SARS-CoV-2, targeting
RNA-dependent RNA polymerase, Mpro, and Nsp15.
This model aids in screening and identifying potential
drug candidates. Ultimately, the goal of this model is
to develop effective therapeutics that can effectively
combat the virus, minimize viral mutation escape,
and enhance the overall efficacy of treatment options
for COVID-19.

The pharmacophore-based virtual screening and
docking techniques identified 1331 potential hits
from the ZINC Drug Database. These hits were then
docked to three viral proteins: Mpro, Nsp15, and
RdRp. glisoxepide (Zn 00537804) showed the highest
binding scores, indicating its potential as a therapeu-
tic candidate. A molecular dynamics simulation study
confirmed its favorable dynamics and stability, indi-
cating its sustained inhibitory effect on the targeted
viral proteins. This study highlights the value of a
drug repurposing strategy that accelerates drug de-
velopment by utilising compounds with known safety
profiles and pharmaceutical properties.

The findings of this study provide a solid foun-
dation for further experimental research to validate
the efficacy of glisoxepide and explore its potential
as a therapeutic agent for COVID-19. Experimental
studies are necessary to confirm the in silico findings

and assess the safety and effectiveness of glisoxepide
in vivo.

The novelty and significance of the study’s findings
lie in the development of a multi-target pharma-
cophore model, the identification of glisoxepide as a
potential therapeutic candidate, and the demonstra-
tion of its stability within the active sites of key viral
proteins. These findings contribute to the growing
body of knowledge on multi-target drug design for
COVID-19 and provide valuable insights for future
research and drug development efforts in combating
the disease.

Supplementary data

Supplementary material includes copies of docking
results of glisoxepide with 6LU7, 6WXC, and 7BV2
(Tables S1, S2, and S3).
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