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MaximizinggtheeValueeoffDecay 

Rateefore a VibratednBeam 

Abtract-This paper presents design controllers by using control strategies and 

(LMI) in order to attenuate the vibrations of a beam. An Aluminum beam with 

fixed-fixed configuration was chosen as an application example of (AVC) of 

structure. Six conditions had been taken for (AVC) of the beam. In each 

condition the beam was the same, the changes was in the actuator and in the 

disturbance according to the location and the kind of the force applied. The 

attenuation in vibrations of this beam is in maximizing the decay rate 

(increasing the damping) and limiting the amplitude of the Beam. In this study 

Pzt actuator had be used, this Pzt  have some constraints in the maximum 

voltage that can be applied, so the input signal must be bounded and limited 

to some value. In the result there are  four requirements for (AVC), stability, 

input peak bound, output peak bound, and maximizing the decay rate. These 

requirements had been formulated in the form of (LMI). These (LMI) can be 

solved by using The Method of Centers For Minimizing The Eigen values. 

Once the problem solved, the response of the system in the time domain and 

in frequency domain had been plotted with controller and without controller. 

The percentage of reduction in the settling time for condition one was (75.9%), 

while for condition four was (94.6%) and for condition five was (88.32%). The 

settling time for conditions two and three had increased which means these 

two conditions are not useful for active vibration control 
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1. Introduction

Light structures are usually lightly damped, which 

can cause large amplitude of vibration. Any 

disturbances in these e systems can n degrade thee 

demand performance of mechanical systems sand 

lead to a number of undesirable circumstances. 

Structural or mechanical failure can often result 

from sustained vibration (e.g. cracks in airplane 

wings). Electronic components used in airplanes, 

automobiles, machines, and so on, may also fail 

because of vibration, shock, and/or sustained 

vibration input. Therefore, the elimination of 

structural vibration has been attracting the 

attention of engineers. An attractive methodology 

fora attenuation structural vibration is to use 

Active VibrationnControl (AVC) [1]. 

A linearrmatrixxinequalityy(LMI) has the 

standard form [2]  

𝐹(𝑝) = 𝐹0 + ∑ 𝑝𝑖𝐹𝑖 > 0

𝑚

𝑖=1

 (1)

 Where 𝑝 ∈ 𝐑𝒎 is the variable and the 

symmetriccmatricess𝐹𝑖 𝐑𝒏×𝒏, 𝑖 = 0, 1, 

2…,  , are given. The inequality symbol in equ.1 

means that (𝑝) is positive definite. 

In theelastt decade LMI has been used to solve 

many problems, not necessarily active vibration 

control, which until then were not possible using 

other methodologies [2,3]. Once formulated in 

terms of an LMI, a problem can be solved 

efficiently using convex optimization algorithms, 

for example, interior-point methods [3]. [4] used 

LMI to design an output feedback controller to 

increase the damping in some modes of a 

cantilever beam. However, the resulting matrix 

inequalities involved bilinear matrix inequalities 

(BMI) in unknown variables, and hence it became 

a no convex optimizationaproblem.aBecause of 

this, the BMI could not be solved directly using 

standardaconvexaoptimization software, and it 

was necessary to use an iterative method, as cone 

complementary linearization algorithm, described 

in [4].  The article [5] describes the application of 

LMI to design an active control system. The 

positioning of the actuators, the design of a robust 

state feedback controller and the design of an 

observer are all achieved using LMI. Active 

vibration control of a flat plate is chosen as an 

application example. The simulation system 

results demonstrate the efficacy of the approach, 

and show that the control system increases the 

damping in some modes. [6]Uses a cantilever 

beam with bounded PZT actuators and sensor. 

Three control methods that have been successfully 
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implemented to suppress the vibration of the beam 

in this study. The first method of active control 

uses derivative controller. The second method of 

active control uses the Proportional and Derivative 

(PD). The third method of active control is the 

state feedback with a full state observer a linear 

quadratic regulator (LQR) optimal control method 

was implemented for vibration suppression in 

simulation study and real-time control. The LQR 

state feedback method provided the best vibration 

suppression compared to the derivative control and 

PD control. [7] direct output feedback based active 

vibration control has been implemented on a 

cantilever beam using Lead Zirconate-Titanate 

(PZT) sensors and actuators. Three PZT patches 

were used, one as the sensor, one as the exciter 

providing the forced vibrations and the third acting 

as the actuator that provides an equal but opposite 

phase vibration/force signal to that of sensed to 

damp out the vibrations. The designed algorithm is 

implemented on Lab VIEW 2010 on Windows 7 

Platform. In this study, a beam will be chosen as 

an application example of (AVC) of structure. The 

beam is considered fixed-fixed configuration. The 

attenuation in vibrations of this beam will be in 

maximizing the decay rate (increasing the 

damping) and limiting the amplitude of the beam. 

The Pzt actuator will be used, the Pzt have some 

constraints in the maximum voltage that can be 

applied, and so the input signal must be bounded 

and limited to some value. The purpose of this 

study is to illustrate the design procedure of an 

Active Vibration Control system using LMI. A 

procedure that was first proposed by [5], is used. 

A controller is to be designed to satisfy the 

requirements of stability, input peak bound, output 

peak bound, and maximizing the decay rate, i.e. 

increasing the damping. The beam is aluminum 

with surface bonded PZT (Lead-Zirconate-

Titanate) patches. The surface bonded 

piezoelectric parches are used as actuators and a 

source of disturbances. If two Pzt elements are 

fixed on the both asides of the beam element, the 

longitudinal and lateral motion can be configured 

for the beam by these two Pzt. If the voltage 

applied on these elements are in-phase, then a 

longitudinal motion is obtained. If the voltages 

applied on the Pzt elements are out-of-phase, then 

it will generate moments at the end of the Pzt 

elements, generation a lateral motions [9]. As 

showed at Fig.1. 

(a) 

 

 
(b) 

Figure 1: a: Pzt actuators in-phase.  b. Pzt 

actuators out-of-phase  

 

Several conditions will be taken in each condition 

the structure will be the same, the different will be 

in the actuator placement, the type of the force that 

will generated by the actuator, and the disturbance 

placement. The purpose of taking several 

conditions is to specify the best condition 

according to actuator and sensor displacement. 

 

2. NodalaState-Space Model 
The standard form of theastate-spaceamodel is: 

𝑿̇ = 𝐴𝑿 + 𝐵𝑢𝒖 + 𝐵𝑤𝑤 

𝑦 = 𝐶𝑿 

          

(2) 

Where, 𝑿 is called state vector, 𝒖 is the state input 

vector, 𝑤 is the state disturbance, 𝑦 is the output 

vector, 𝐴 is the state matrix, 𝐵𝑢 is the input 

vector. 𝐵𝑤 is the disturbance vector. 𝐶 is the output 

vector. The nodal state-space model of a structure 

can be formulated by using the second order 

structural model which can be obtained by the 

finite elementamethod (FEM), such a model is 

given by[9]: 

𝑀𝛿̈ + 𝐷𝛿̇ + 𝐾𝛿 = 𝐵𝑜𝑢𝒖 + 𝐵𝑜𝑤𝑤 

𝑦 = 𝐶𝑜𝛿𝛿 
(3) 

 

In the above equation 𝛿 is the 𝑛𝑑 x1 nodal 

displacement vector, where 𝑛𝑑 is the number of 

degree of freedom(DOF), 𝛿̇ is the (𝑛𝑑x 1) nodal 

velocity vector; 𝛿̈ is the (𝑛𝑑x 1) nodal acceleration 

vector; 𝒖 is the 1 x 1 input vector; 𝑤 is the 1 x 1 

disturbance vector; 𝑦 is the output vector, r x 1, 

where  r is the number of outputs; 𝑀 is the mass 

matrix, 𝑛𝑑x𝑛𝑑; 𝐷 is the damping matrix, 𝑛𝑑x𝑛𝑑;and 

𝐾 is the stiffness matrix, 𝑛𝑑x𝑛𝑑 . The input matrix 

𝐵𝑜𝑢and 𝐵𝑜𝑤they are      𝑛𝑑x 1, the output 

displacement matrix is 𝐶𝑜𝛿 r x 𝑛𝑑. In order to obtain 

state representation from the nodal model equ.3, 

the latter equation will be rewritten as follows  

 

𝛿̈ + 𝑀−1𝐷𝛿̇ + 𝑀−1𝐾𝛿
= 𝑀−1(𝐵𝑜𝑢𝒖 + 𝐵𝑜𝑤𝑤) 

𝑦 = 𝐶𝑜𝛿𝛿 

(4) 

 

The state vector 𝑋 is defined as a combination of 

the structural displacements, 𝛿, and velocities𝛿̇, [9] 

𝑿 = [
𝑋1

𝑋2
] = [

𝛿
 𝛿̇

]     (5) 
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In this case, equ.4 can be rewritten as follows: 

𝑋̇1 = 𝑋2 

𝑋̇2 = −𝑀−1𝐾𝑋1 − 𝑀−1𝐷𝑋2 + 𝑀−1𝐵𝑜𝑢𝒖 + 𝑀−1𝐵𝑜𝑤𝑤 

𝑦 = 𝐶𝑜𝛿𝑋1 

Combining the above equations, the state 

equations can be obtained as in the standard form 

equ.2, with the following state-space 

representation [10]:  
 

𝐴 = [
0 𝐼

−𝑀−1𝐾 𝑀−1𝐷
], 

𝐵𝑢 = [
0

𝑀−1𝐵𝑜𝑢
], 

𝐵𝑤 = [
0

𝑀−1𝐵𝑜𝑤
] 

𝐶 = [𝐶𝑜𝛿  0 x 𝐶𝑜𝛿  ] 

(6) 

Use  𝑁 = 𝑛𝑑x 2 , 𝐴 is 𝑁 x 𝑁 , 𝐵𝑢 and 𝐵𝑤 they 

are𝑁x1, and 𝐶 is 1 x 𝑁. 

 

3. State-feedback Analysis via Miss 

The problem to be investigated is the state 

feedback control, with the control law [5]:  

𝒖 = 𝐺𝑓𝑏 𝑿     (7) 

 [𝐺𝑓𝑏] is the "Gain of the feedback" vector and it 

have to be found in such a way satisfying the 

requirement of active vibration control system. 

The stability of the LDI (2) is studied first, that is, 

whether all trajectories of system of equ.2 

converge to zero as t→∞. By the second method of 

Liapunov, a sufficient condition for this is the 

existence of a quadratic function  
(𝑿) = 𝑿𝑻𝑷𝑿                                                         (8) 

  𝑷 > 0 that decreases along every nonzero 

trajectory of (2). If there exists such a 𝑷, equ.2  is 

said to be 𝑎𝑠𝑦𝑚𝑝𝑡𝑜𝑡𝑖𝑐𝑎𝑙𝑙𝑦 𝑠𝑡𝑎𝑏𝑙𝑒. The equ.2  is 

said to be 𝑁𝑜𝑟𝑚 − 𝐵𝑜𝑢𝑛𝑑𝑒𝑑 LDI if  [10]:  

𝑤𝑇𝑤 ≤ 𝑦𝑇𝑦                                          (9)  
With 𝒖 = 𝐺𝑓𝑏 𝑿, the NLDI is 𝑎𝑠𝑦𝑚𝑝𝑡𝑜𝑡𝑖𝑐𝑎𝑙𝑙𝑦 

𝑠𝑡𝑎𝑏𝑙𝑒 if there exist 

 𝑄 > 0  
Such that  

[
(

𝑄𝐴𝑇 + 𝑌𝑇𝐵𝑢
𝑇 + 𝐴𝑄

+𝐵𝑢𝑌 + 𝐵𝑤𝐵𝑤
𝑇 ) 𝑄𝐶𝑇

𝐶𝑄 −𝐼

] < 0 (10) 

 

Where𝑌 = 𝐺𝑓𝑏𝑄. The applicability of the second 

method of Liapunov to control theory is not 

limited to stability analysis. It can be applied to the 

study of the transient response [10] (Decay rate) 

behavior of linear and nonlinear systems. The 

formulation that impose the decay rate on the close 

loop system is as follows:   

𝑉̇(𝑋) ≤ −2 ∝ 𝑉(𝑋)                               (11) 

 

Where 𝛼  is the decay rate. Then 𝑉(𝑋(𝑡)) ≤
𝑉(𝑋(0))𝑒−2𝛼𝑡,[2]. So the constraint of the decay 

rate can be expressed as follows: 

(
𝜆𝑄 − (𝐴𝑄

+𝑄𝐴𝑇 + 𝐵𝑢𝑌 + 𝑌𝑇𝐵𝑢
𝑇)

) ≥ 0 (12) 

 
 Just as quadratic stability, it can also be 

interpreted in terms of invariant ellipsoids [5], it 

can interpret quadratic stabilizability in terms of 

hold able ellipsoids. The ellipsoid  

𝜀𝑄 = {𝑥 ∈ 𝑅𝑛|𝑋𝑇𝑄−1𝑋 < 1} (13) 

 

is hold able for the system of equ.2 if there existsaa 

state-feedback gain 𝐺𝑓𝑏 such that  is invariant for 

the system of equ.2  with 𝑢 = 𝐺𝑓𝑏𝑿. If  LMI equ.10 

holds, then the Liapunov function 𝑉(𝑋) =
𝑋𝑇𝑄−1𝑋 satisfies 𝑉̇(𝑋) < 0 ,this means that 

𝑋(0) ∈ 𝜀𝑄 → ∀𝑡 > 0, 𝑋(𝑡) ∈ 𝜀𝑄 (14) 

 

The Pzt actuator have some constraints in the 

maximum voltage that can be applied, and this, 

also, can be treated as LMI. So a new constraint is 

added on the input peak, to ensure that: ‖(𝑡)‖ < 𝜇 , 

∀𝑡 ≥ 0.  

Where 𝜇 is the input peak bounder. This can be 

formulated in LMI form  

 [
𝑄 𝑌

𝑌𝑇 𝜇2𝐼
] > 0  (15) 

 

In this case, for each initial condition 𝑋(0). Use 

𝜇 = 10 [5].  

Equ.7  is a property that can be used to bound the 

output signals. This means that for every initial 

condition started inside the ellipsoid, all states will 

stay inside the ellipsoid [5]. 

 𝑦(𝑡)𝑇𝑦(𝑡) ≤ 𝛽2
𝑥(𝑡)∈𝜀𝑄

𝑚𝑎𝑥    (16) 

 

Where 𝛽 is the maximum value of the output peak 

in Euclidian norm. With 𝑦 = 𝐶𝑋. Equ.16 can be 

formulated as a constraint on 𝑄. 

 𝛽2𝐼 − 𝐶𝑄𝐶𝑇 > 0 (17) 

By using Shur complements [3], the condition of 

equ.14 can be formulated as LMI 

 [
1 𝑋(0)𝑇

𝑋(0) 𝑄
] ≥ 0  (18) 

Consequently, if 𝑄 > 0 exists, that satisfies equ.10 

and equ.17, then, for every initial condition (0) , 

where equ.18 holds, the output peak signal is 

restricted by 𝛽.  

The input command 𝒖 and the output 𝑦 ensure [9] 

∀𝑡 ≥ 0, {
‖𝒖(𝑡)‖ <  𝜌𝑒−𝛼𝑡

‖𝑦(𝑡)‖ <  𝛽𝑒−𝛼𝑡 (19) 
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In summary, the controller designing the result of 

the following LMIaproblem [1]: 
min 𝜆 

𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 
(20) 

 [
(

−𝑄𝐴𝑇 − 𝑌𝑇𝐵𝑢
𝑇 −

𝐴𝑄 − 𝐵𝑢𝑌 − 𝐵𝑤𝐵𝑤
𝑇 ) −𝑄𝐶𝑇

−𝐶𝑄 𝐼

] > 0 (21) 

𝛽2𝐼 − 𝐶𝑄𝐶𝑇 > 0 (22) 

[
1 𝑋(0)𝑇

𝑋(0) 𝑄
] ≥ 0 (23) 

[
𝑄 𝑌

𝑌𝑇 𝜌2𝐼
] > 0 (24) 

𝑄 > 0 (25) 

(
𝜆𝑄 − (𝐴𝑄 + 𝑄𝐴𝑇

+𝐵𝑢𝑌 + 𝑌𝑇𝐵𝑢
𝑇)

) ≥ 0 (26) 

Where 𝑌 = 𝐺𝑓𝑏𝑄. The problem above solved by  

𝑡ℎ𝑜𝑑 𝑜𝑓 𝐶𝑒𝑛𝑡𝑒𝑟𝑠 𝐹𝑜𝑟 𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑖𝑛𝑔 𝑡ℎ𝑒 

𝐺𝑒𝑛𝑒𝑟𝑎𝑙𝑖𝑧𝑒𝑑  𝐸𝑖𝑔𝑒𝑛𝑣𝑎𝑙𝑢𝑒d𝑃𝑟𝑜𝑏𝑙𝑒𝑚𝑠. [11]. 

In this paper, the problem has been solved by using 

Matlab toolbox. The commands for solving the 

problem is described in[12]. 

 

4. Application Example 

In this study, a beam is chosen as an application 

example of (AVC) of structure. This beam is 

considered to be fixed-fixed configuration, the 

properties of the beam is described in Table.1. 

 
Table.1rBeammpropertiessandddimensions. 

Property Value 

Lengtha 

Widtha 

Thicknessa 

Young's modulus 

Densitya 

600 mm 

30 mm 

5 mm 

70 Gpa 

2710 kg.m−3 

 

By the (FEM), the beam is discretized 

mathematically into a finite number of rectangular 

elements with equally dimensions as shown in 

Figure 2, each element has 2_ nodes each node has 

three degrees of freedom: horizontal 

displacement(𝑢), vertical displacement(𝑣), and in 

plane rotation,𝜃. 

 

  
(a) 

 

 

 

 (b) 
Figure 2.a: Schematic diagram of the discretized 

beam b. The local coordinate of each node. 

 

The discretized beam consisting of a finite number 

of lumped elements had been described by 

ordinary differential equations equ.3 in which time  

is the independent variable. Several conditions had 

been taken for AVC as follows: 

 

Condition1 In this condition, one Pzt actuator, one 

Pzt disturbance, and one sensor is used as 

described in Figure 3. The actuator is driven out-

of-phase. It generate pair of moments one at node 

1, and the other at node 2. The Pzt-Disturbance 

will be driven out-of-phase. It will generate pair of 

moments one at node 4 and the other at node 5. The 

sensor measure the vertical displacement of the 

node 3. The vectors input, disturbance and the 

output will be as follows: 

 

𝐵𝑜𝑢
𝑇 = [0  0 − 1  0  0  1 0  0 0  0  0  0  0  0  0] (27) 

𝐵𝑜𝑤
𝑇 = [0  0  0  0  0  0 0  0  0  0  0 − 1  0  0  1]  (28) 

𝐶𝑜𝛿 = [0  0  0  0  0  0  0  1  0  0  0  0  0  0  0]  (29) 

𝑿(𝟎) = [0 0 0 0 0 0 0 0 0 0 0 − 1 0 0 1] (30) 

Figure 3 :Schematic picture showing the system of 

condition1 

 

 The impulse response in the time domain with 

controller off is shown in Figure 4, with the 

controller on for condition1 is shown in Figure 5, 

and in the frequency domain is shownninnFigire 6. 
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Figure 4: The impulse response in time domain for 

the condition1 without controller. 

 

Figure 5: The impulse response in the time domain 

for condition1 with controller on. 

 

Condition2 In this condition, one actuator driven 

in-phase is used, it generates longitudinal forces at 

nodes 1 and 2, and an impulse hammer as a source 

of disturbance is used. The description of this 

condition is shown in Figure 7. 

The vectors input, disturbance, and the output will 

be as follows 

𝐵𝑜𝑢
𝑇 = [−1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 ] ( 3 1 ) 

𝐵𝑜𝑤
𝑇 = [0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 ] ( 3 2 ) 

𝐶𝑜𝛿 = [0 0 0 0 0 0 0 1 0 0 0 0 0 0 0] ( 3 3 ) 

𝑋(0) = [0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 ] ( 3 4 ) 

The impulse response in the time domain with 

controller off is shown in Figure 8, with the 

controller on is shown in Figure 9, and in the 

frequency domain is shown in Figure 10. 

 

Condition3 Inn this condition, two actuators 

driven in-phase is used, it generates longitudinal 

forces at nodes 1,2,4, and 5, and an impulse 

hammer is used as a source of disturbance. The 

description of this condition is shown in Figure 11. 

The vectors input, disturbance, and the output will 

be as follows: 

𝐵𝑜𝑢
𝑇 = [−1 0 0  1 0 0 0 0 0 − 1 0 0 1 0 0 ] (35) 

𝐵𝑜𝑤
𝑇 = [0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 ] (36) 

𝐶𝑜𝛿 = [0 0 0 0 0 0 0 1 0 0 0 0 0 0 0] (37) 

𝑿(𝟎) = [0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 ] (38) 

The impulse response in the time domain with 

controller off is shown in Figure 8, with the 

controller on is shown in Figure 12, and in the 

frequency domain is shown in Figure 13. 

 

Condition4 In this condition, two actuators driven 

out-of-phase is used, it generates moments at the 

end of the Pzt elements at nodes 1,2,4, and 5, and 

an impulse hammer is used as a source of 

disturbance. The description of this condition is 

shown in Fig.11.The vectors input, disturbance, 

and the output will be as follows: 

𝐵𝑜𝑢
𝑇 = [0 0 − 1  0 0 1 0 0 0 0 0 − 1 0 0 1 ] (39) 

𝐵𝑜𝑤
𝑇 = [0 0 0  0 0 0 0 1 0 0 00 0 0 0 ] (40) 

𝐶𝑜𝛿 = [0 0 0 0 0 0 0 10 0 0 0 0 0 0] (41) 

𝑿(𝟎) = [0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 ] (42) 

The impulse response in the time domain with 

controller off  is shown  in Fig.8, with the 

controller on is shown in Fig.14, and  in the 

frequency domain is shown in Fig.15.

 

Figure 6: The impulse response in frequency domain for the condition1 with controller and without 

controller.
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( Figure 7: Schematic picture for the condition2 

showing the actuator, sensor and the disturbance 

location. 

g actuator, sensor the location.   

Figure 8: The impulse response in time domain for 

the condition2, 3,4,5,6 without controller. 

 
Figure 9: The impulse response in time domain for 

the condition2 controlled. 

 

Condition5   In this condition, one actuator driven 

out-of-phase is used, it generates moments at the 

end of the Pzt elements at nodes 1 and 2, and an 

impulse hammer is used as a source of disturbance. 

The description of this condition is shown in 

Figure 7. The vectors input, disturbance, and the 

output will be as follows: 

𝐵𝑜𝑢
𝑇 = [0 0 − 1  0 0 1 0 0 0 0 0 0 0 0 0 ] (43) 

𝐵𝑜𝑤
𝑇 = [0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 ] (44) 

𝐶𝑜𝛿 = [0 0 0 0 0 0 0 1 0 0 0 0 0 0 0] (45) 

𝑿(𝟎) = [0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 ] (46) 

The impulse response in the time domain with 

controller off is shown in Figure 8, with the 

controller on is shown in Figure 16, and in the 

frequency domain is shown in Figure 17. 

 

Condition6 In this condition, two actuators will be 

used, one of them is driven out-of phase, it 

generates moments at the end of the Pzt elements 

at nodes 4 and 5, the other is driven in-phase, it 

generates longitudinal forces at the nodes 1 and 2. 

An impulse hammer is used as a source of 

disturbance. The description of this condition is 

shown in Fig.11.The vectors input, disturbance, 

and the output will be as follows: 

𝐵𝑜𝑢
𝑇 = [−1 0 0 1 0 0 0 0 0 0 0 − 1  0  0 1 ] (46) 

𝐵𝑜𝑤
𝑇 = [0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 ] (48) 

𝐶𝑜𝛿 = [0 0 0 0 0 0 0 1 0 0 0 0 0 0 0] (49) 

𝑿(𝟎) = [0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 ] (50) 

The impulse response in the time domain with 

controller off  is shown in Fig.8, with the controller 

on is shown in Fig.18, and  in the frequency 

domain is shown in Fig.19.

 

Figure 10: The impulse response in frequency domain for the condition2 with controller and without 

controller

  



Engineering and Technology Journal                                                              Vol. 36, Part A, No. 10, 2018 

1111 

 

Figure 11: Schematic picture showing the actuator, 

sensor and the disturbance location. 

 

 
Figure 12: The impulse response in time 

domain for the condition3 controlled. 

 

 

 

 

 

 

 

 

 

 

Figure 13: The impulse response in frequency 

domain for the condition3 with controller and 

without controller 

 

Figure 14:  The impulse response in time domain for 

the condition4 controlled. 

 

 

 

Figure 15: The impulse response in frequency 

domain for the condition4 with controller and 

without controller 

 

Figure 16: The impulse response in time domain 

for the condition5 controlled. 

 

Figure 17: The impulse response in frequency 

domain for the condition5 with controller and 

without controller 

 

 

Figure 18: The impulse response in time domain for 

the condition6 controlled. 
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Figure 19: The impulse response in frequency 

domain for the condition6 with controller and 

without controller  

4. Discussion 

A state feedback controller designed to satisfy 

some requirements. The requirements are stability, 

input peak bound, output peak bound, and 

maximizing the decay rate, i.e. increasing the 

damping. These requirements have all been 

achieved using LMI. A set of LMIs are formulated. 

Then they had been solved by the Matlab program, 

the commands for using Matlab is described in 

[12]. In this program the feedback state vector had 

been found. This vector had been substituted in the 

state space representation described in equ.7 and 

equ.3. After that, the impulse response in the time 

domain and in frequency domain had been plotted. 

The plot of impulse response in the time domain 

gives an indication of the decay rate. Where the 

settling time will be found in this plot. As the 

settling time decreased, the decay rate is increased. 

In condition1, the settling time is reduced from 

(1.19s) to (0.286s) as shown in Fig.4 and Fig.5 so 

the ratio of reduction is (1.19/0.286=4.1608), this 

means that the damping had increased. The 

impulse response in the time domain gives also an 

indicator of stability by observing the response 

whether it converge to its equilibrium state or 

diverge to infinity. It is clear that in condition1 the 

system is stable as shown in Fig.5, i.e. the response 

in the time domain converge to zero. In the 

impulse response in frequency domain shown in 

Fig.6, some of  the peaks at the resonance 

frequencies are reduced for example in mode1 the 

amplitude is reduced from (5.493mm) to 

(1.272mm), and in mode3 the amplitude is 

attenuated by (2.907mm). The attenuation in other 

modes are described in Table 2. Nevertheless, 

some peaks have increased, for example, the 

amplitude at modes 7 and 9 increase by 0.4427 and 

0.0462, respectively. This occurred, because of 

phenomena called 𝑐𝑜𝑛𝑡𝑟𝑜𝑙𝑠𝑝𝑖𝑙𝑙𝑜𝑣𝑒𝑟. System 

vibrates in composite mode of vibration, when the 

system degree of freedom is reduced to specific 

No. of degree of freedom to be controlled, the 

effect of other mode of vibration is predominate 

and the 𝑐𝑜𝑛𝑡𝑟𝑜𝑙𝑠𝑝𝑖𝑙𝑙𝑜𝑣𝑒𝑟 phenomena appears. 

Therefore, the actuator placement is very 

important to choose which mode have to be 

controlled. For a small number of actuators a 

typical solution to the location problem is found 

through a search procedure. For large numbers of 

locations   there is a procedure for actuator 

placement as described in [10]. In this study 

several locations of actuator placement have been 

taken and described as conditions. In condition2 

and condition3, the settling time is increased, 

which means at the conditions the controller have 

not satisfying the requirement, i.e. control 

spillover phenomena have been occurred. So this 

kind of actuator at this placement is not useful for 

(AVC) for the beam. In condition4, the settling 

time is reduced from (2.63s) to (0.142s) so the ratio 

of reduction is (2.63/0.142=18.52), this means that 

the damping have increased more than those in 

condition1, because in condition 4 two actuators 

have been used while in condition 1 one actuator 

have been used. In the impulse response in the 

frequency domain, all of the peaks at the resonance 

frequencies are reduced for example in mode1 the 

amplitude are reduced from (7.968mm) to 

(0.8002mm), and in mode3 the amplitude are 

reduced from (0.1562) to (0.004701). The 

attenuation in other modes are described in Table 

3. In this condition there is no peak increased 

which means there no control spillover effect. 
 

Table 2:  Control performance for the condition1 

Mode  Uncon.  

Amp. 

(mm)  

Con.  

Amp. 

(mm)  

Attenuation  

1  5.493  1.272  -4.221  

2  0.03  0.05  0.02  

3  3.937  1.03  -2.907  

4  0.0156  0.0135  -2.09e-3  

5  2.013  1.116  -0.897  

6  0.0124  0.0228  0.01038  

7  0.204  0.6467  0.4427  

8  0.0024  0.0038  1.47e-3  

9  0.0060  0.0523  0.0462  

 

In condition5, the settling time are reduced from 

(2.63s) to (0.307s) so the ratio of reduction is 

(2.63/0.307=8.566), this means that the damping 

have increased relative to the uncontrolled 

condition. In the impulse response in the frequency 

domain, all of the peaks at the resonance 

frequencies are reduced, the attenuation is shown 

in Table 4. In condition6, the settling time is 
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reduced from (2.63s) to (0.314s) so the ratio of 

reduction is (2.63/0.314=8.375), this means that 

the damping have been increased relative to the 

uncontrolled condition. In the impulse response in 

the frequency domain, all of the peaks at the 

resonance frequencies are reduced, the attenuation 

is shown in Table 5. 

 
Table 3:  Control performance for the condition4 

Mode  Uncon. 

Amp. 

(mm)  

Con. Amp. 

(mm)  

Attenuation  

1  7.968  0.8002  -7.1678  

2  0.0053  0.00537  0.000  

3  0.1562  0.00470  -0.151499  

4  0.87e-3  0.87e-3  0.000  

5  9.40e-3  0.41e-3  -8.99e-3  

6  0.27e-3  0.273e-3  0.000  

7  1.90e-3  0.277e-3  -1.626e-3  

8  0.11e-3  0.113e-3  0.000  

9  0.27e-3  0.155e-3  -0.120e-3 

 
Table 4: Control performance for the condition5 

 Mode Uncon. 

Amp. 

(mm) 

Con. 

Amp. 

(mm) 

Attenuation 1 7.968 0.9326 -7.0354 2 0.0053 0.0053 0.000 

3 0.1562 0.0031 -0.153033 

4 0.87e-3 0.87e-3 0.000 

5 9.40e-3 0.48e-3 -8.9264e-3 

6 0.27e-3 0.27e-3 0.000 

7 1.90e-3 0.27e-3 -1.628e-3 

8 0.11e-3 0.11e-3 0.000 

9 0.27e-3 0.15e-3 -0.1262e-3 

 

Table 5:  Control performance for the condition6 

Mode  Uncon. 

Amp. 

(mm)  

Con. 

Amp. 

(mm)  

Attenuation  

1  7.968  0.8014  -7.1666  

2  0.0053  0.0053  0.000  

3  0.1562  4.67e-3  -0.151524  

4  0.87e-3  0.87e-3  0.000  

5  9.40e-3  4.10e-3  -5.303e-3  

6  0.27e-3  0.27e-3  0.000  

7  1.90e-3  0.27e-3  -1.6234e-3  

8  0.11e-3  0.11e-3  0.000  

9  0.27e-3  0.15e-3  -0.1218e-3  

5. Conclusion 

Table 6  shows the ratio of the settling time, this 

ratio is determined by dividing the settling time of 

uncontrolled system over the settling time of 

controlled system,. This table gives the best 

condition for maximizing the decay rate. It can be 

noted that the best of them is condition4, because 

in this condition two actuators have been used each 

of them gives two moments at the ends of it. From 

the impulse response in the frequency of this 

condition, it can be noted that all modes have been 

controlled otherwise for the condition1 where the 

first five modes have been controlled. This gives 

an implantation that if it is required to control the 

first five modes, then it will convenient to use 

conditio1 for control. In addition, if it is required 

to control on all modes, then it will be convenient 

to use condition4.  

 

Table 6:  Settling time ratio for each condition  

Condition 

Settling 

time 

ratio 

Percentage of 

decreasing the 

settling time 

1 4.1608 75% 

4 18.52 94% 

5 8.566 88.32% 

6 8.3757 88.06% 
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