One Parameter Composite Semigroups of Linear Bounded Operators in Strong Operator Topology of Schatten Class C_p

Dr.Samir Kasim Hassan*

Received on: 20/9/2010 Accepted on: 7/4/2011

Abstract

زمر مرکبة لمؤثرات خطیة مقیدة ذات معلمة واحدة لصف شاتین C_p , في فضاء تبولوجي مؤثر قوی

الخلاصة

0 < P ان دراسة الزمرة شبه الاولية لمؤثرات خطية مقيدة على فضاء هلبرت في الصف $C_p < \infty$ كثر أهمية من دراستها في أن تكون مرصوصة ولذلك طورت بعض النتائج الجديدة لزمرة شبه أولية مركبة $0 < t < \infty$, T(t) معرفة على فضاء بناخ لمؤثرات خطية مقيدة ومعرفة على فضاء تبولوجي مؤثر قوي.

1. Introduction

Let L(H) be a Banach space, a one-parameter family $\{T(t)\}_{t\geq 0} \subset L(L(H))$, $t \in [0,\infty)$ of bounded linear operators defined by:

 $\begin{array}{lll} T(t)X &=& T_1(t)XT_2(t) & , \ \ \text{for any} \\ X{\in}\,L(H) & \ \ \text{and} & \ \ t & \ \ \in [0,\!\infty). \\ \end{array}$

with generator \mathbb{A} is called composite semi group if:

- (i) T(0)X = IX, (I the identity operator of L(H)).
- (ii) T(t + s)X = T(t)T(s)X = T(s)T(t)X, for every $t, s \ge 0$.

Where $T_1(t)$, $T_2(t)$ are two semigroups defined from H into H for A_1 and A_2 generaters respectively, [1].

The infinitesimal generator \mathbb{A} of $\mathbb{T}(t)$ a strong operator topology defined as the limit:

$$A\:X = \overline{\varepsilon} - \lim_{t\downarrow 0} \left\{ \frac{\mathbb{T}(t)Xh - Xh}{\varepsilon} \right\} \; \in D\left(A\right),$$

Where $D(\mathbb{A}) \subset L(H)$ is the domain of \mathbb{A} defined as follows:

$$D(A) = \begin{cases} X \in L(H) : \tau - \\ \end{cases}$$

$$\lim_{t\downarrow 0} \left\{ \frac{\mathbb{T}(t)Xh - Xh}{t} \right\} \text{ exist in } \{L(H), t\}$$

where $\{L(H), \tau\}$ stands for L(H) equipped with the strong operator topology τ , i.e., topology induced by family of seminorms $\rho = \{\rho_h\}_{h\in H}$, where siminorms $\rho_h(X) = \|Xh\|_H$, X

^{*} College of Education, University of Al-Mustansirya/Baghdad

 \in L(H). T(t) \in L(L(H)) is a strongoperator and continuous at the origin, i.e.,

 $\tau - \lim_{t \downarrow 0} ||(T(t)X)h - (T(0)X)h||_{H} = 0, h$

 \in H, X \in L(H).

Remarks(1.1):

The different between the usual strongly continuous semigroups and the composite semigroups (1) follows from the fact that in general for $X \in L(H)$, the function $[0, \infty) \supseteq t \mapsto T(t)X$ \in L(H) is continuous in {L(H), τ }, and which cannot be continuous in $\{L(H), \|.\|\}$ unless semigroups $\{T_1(t)\}_{t\geq 0},$ $\{T_2(t)\}_{t\geq 0} \subset L(H)$ are uniformly continuous. However, this takes place case only if their generators A₁, A₂ are bounded operators on H.

b- The generator A is densely defined only in $\{L(H), \tau\}$ and does not in $\{L(H), \|.\|\}$. This implies that the closure of D(A) in L(H) is only a proper set and not the whole L(H).

The problem of being in C_p is more interesting than of begin compact. This is due to the fact that for a C_o -semigroup $T(t)\!\!\in\! C_p$, $0\!\!<\!t<\!\!\infty$, $\!\!\left\{\!\left\|T(t)\right\|\!\!\right|\!\!,\!0<\!t\leq\!a\right\}\!\!$ is a bounded in H for every finite a. But if $T(t)\!\!\in\! C_p, 0<\!t<\!\!\infty$, then $\!\left\|T(t)\right\|_p$ need not to be bounded in any interval (0,a) for any finite a. For the basic theory of semigroups we refer to Pazy [5].

For $1 \le p < \infty$, set:

$$C_{p} = \left\{ T \in L(H) : \sup \sum_{n=1}^{\infty} \left| \left\langle Te_{n}, f_{n} \right\rangle \right|^{p} < \infty \right\}$$

Where the supremum is taken over all orthonormal bases (e_n) and (f_n) of H. For $T \in C_p$, one defines $\|T\|_p = \sup(\sum \left|\left\langle Te_n, f_n \right\rangle\right|^p)^{\frac{1}{p}}$. This defines a norm on C_p . With this norm, C_p is a two sided Banach ideal in L(H). For more on C_p we refer to KhaliL and Deeb[3].

Lemma(1.2),[3]:

Let $T_n(t) \in C_p$ such that $\sup_n \|T_n\|_p < \infty$ if $T_n \to T(n \to \infty)$ in the operator norm, then T $(t) \in C_p$

2. Main results:

The following results of compsite semigroups of Schatten Class Cp have been presented as follows:

Lemma (2.1):

Let $\mathbb{T}(t)\mathbb{X}=T_1(t)XT_2(t)$, t ≥ 0 be a C_0 -composite semigroup in $\{L(H), \tau\}$. If for some $t_0 > 0$, $T_1(t) \in C_p$ and $T_2(t) \in C_p$, for all $t > t_0$. Further there exists $M_1, M_2 \in [0, \infty)$ and $W_1, W_2 \in (0, \infty)$ such that $\|\mathbb{T}(t)\|_p$

$$\leq \left\| T_{1}(t) \right\|_{p} M_{1} M_{2} e^{(w_{1} + w_{2})(t - t_{0})} \left\| T_{2}(t) \right\|_{p}$$

Proof:

For the semigroup property, we have $\mathbb{T}(t) = T_1(t_0) T_1(t_0) . T_2(t_0)$ $t_0) T_2(t_0)$, for t, $t_0 \ge 0$

$$\begin{split} & \text{Since } C_p \text{ is a two sided ideal} \\ & \text{and } T_1(t) \in C_p \text{, it follows that} \\ & \mathbb{T}(t) \in C_p \text{, it follows that} \\ & \mathbb{T}(t) \in C_p \text{. Further Banach ideal} \\ & \text{property of } C_p \text{ gives } \| \| \mathbb{T}(t) \cdot \|_p \\ & = \\ & \| T_1(t_0) T_1(t - t_0) \cdot T_2(t - t_0) T_2(t_0) \|_p \\ & \leq \\ & \| T_1(t_0) \|_p \| T_1(t + t_0) \cdot T_2(t + t_0) \|_{L(H)} \| T_2(t_0) \|_p \|_{L(H)} \\ & \leq \| T_1(t) \|_p M_1 M_2 e^{(w_1 + w_2)(t - t_0)} \| T_2(t) \|_p \|_{L(H)} \end{split}$$

$$\begin{split} &||\mathbb{T}(t).||_{\mathbb{P}} \\ \leq &||T_{1}(t)||_{p} M_{1} M_{2} e^{(w_{1}+w_{2})(t-t_{0})} ||T_{2}(t)||_{p} ||.|_{L(H)} \\ &\text{for} \\ &M_{1}, M_{2} \geq 1, w_{1}, w_{2} \geq 0 \text{ and} \end{split}$$

Theorem (2.1):

for $t \ge 0$.

Thus

$$\begin{split} & \text{Let} \quad T_{l,n}(t), T_{2,n}(t) \! \in C_p \quad \text{such} \\ & \text{that} \quad \sup_n \left\| T_{l,n}(t) \right\| \! < \! \infty, \quad \text{for} \quad \text{and} \\ & \sup_n \left\| T_{2,n}(t) \right\| \! < \! \infty \\ & \text{and} \quad \sup_n \left\| T_{2,n}(t) \right\| \! < \! \infty. \text{If} \quad \mathbb{T}_n(t) X \\ &= \\ & T_{l,n}(t) X T_{2,n}(t) \to T_l(t) X T_2(t) \\ & \text{in} \quad \{ L(H), \quad \tau \} \quad \text{as} \quad n \to \! \infty, \text{then} \\ & T_l(t) X T_2(t) \! \in C_p \, . \end{split}$$

Proof:

Since $T_{l,n}(t), T_{2,n}(t) \in \mathbb{C}_p$, each one of $T_{l,n}(t), T_{2,n}(t)$ is compact ,see [2]. Hence $\mathbb{T}_n(t)X=$

$$\begin{split} &T_{l,n}(t)XT_{2,n}(t) = \sum_{k=l}^{\infty} \sigma_{nk}(t) e_{nk} \otimes f_{nk} X \sum_{k=l}^{\infty} \delta_{nk}(t) e_{nk} \otimes f_{nk} \\ &\text{, for } t \geq 0 \end{split}$$

, for $t \ge 0$ where

$$\sum_{k=1}^{\infty} \left| \sigma_{nk}(t) \right|^p \le \lambda_1 < \infty, \sum_{k=1}^{\infty} \left| \delta_{nk}(t) \right|^p \le \lambda_2 < \infty$$

$$, t \ge 0$$

for all n, (e_n) and (f_n) are orthonormal sequences for each n. Since

$$\begin{split} & \left\| T_{l,n}(t) - T_l(t) \right\| \rightarrow 0, \left\| T_{2,n}(t) - T_2(t) \right\| \rightarrow 0 \\ \text{, as } & n \rightarrow \infty \text{, it follows that} \\ & T_1(t), T_2(t) \text{ are compact.} \end{split}$$

Let
$$T_1(t) = \sum_{k=1}^{\infty} \sigma_k(t) e_k \otimes f_k$$

$$T_2(t) = \sum_{k=1}^{\infty} \delta_k(t) e_k \otimes f_k.$$

Using Theorem 1.20[6], we get

$$\sigma_{nk}(t) \rightarrow \sigma_k(t)$$
 and $\delta_{nk}(t) \rightarrow \delta_k(t)$ as $n \rightarrow \infty_{for}$ all k. Since

$$\sum_{k=l}^{r} \left| \sigma_{k}(t) \right|^{p} = \sum_{k=l}^{r} \lim_{n} \left| \sigma_{nk}(t) \right|^{p} = \lim_{n} \sum_{k=l}^{r} \left| \sigma_{nk} \right|^{p} \le \lambda_{l}$$

$$, \text{ for } t \ge 0,$$
Also, we obtain

Also, we obtain

$$\sum_{k=1}^{r} \left| \delta_k(t) \right|^p \le \lambda_2 \quad \text{is true for every} \\ r \text{, it follows that,}$$

$$||\mathbb{T}(t)||_{n} =$$

One Parameter Composite Semigroups of Linear Bounded Operators in Strong Operator Topology of Schatten Class C_n

$$\begin{split} &(\sum_{k=1}^{\infty}\left|\sigma_{k}\left(t\right)\right|^{p})^{\frac{1}{p}}(\sum_{k=1}^{\infty}\left|\delta_{k}\right|^{p})^{\frac{1}{p}} \leq \lambda_{1}\lambda_{2}\\ &, \text{ for } t \geq 0 \text{ .}\\ &\text{Hence}\\ &\mathbb{T}(t)\textbf{\textit{X}} = T_{1}(t)XT_{2}(t) \in C_{p} \text{ .} \end{split}$$

$$\mathbf{1}_{1}(t)\mathbf{A} = \mathbf{1}_{1}(t)\mathbf{A}\mathbf{1}_{2}(t) \in \mathbb{C}_{\mathbf{p}}$$

Definition (2.2):

Let $T(t)Z=T_1(t)ZT_2(t)$, $t \ge 0$ be a C_0 -composite semigroup in {L(H), τ }. We say T(t) is of type P if:

- (i) $T(t) \in C_p$ for all $t \ge 0$.
- (ii) There exists an $\epsilon > 0$ and $\alpha > 0$ such that $||\mathbb{T}(t)||_p \leq \alpha$ for all $t \in (0, \epsilon)$.

Let $T(t)X = T_1(t)XT_2(t)$, $t \ge 0$ be a C_0 -composite semigroup of operators with generator $A = A_1 + A_2$.

Let $\lambda \in \rho$ (A) such that the real part Re(λ) > $w_1 + w_2$, where

 $\|\mathbb{T}(t)\| \le M_1 M_2 e^{(w_1 + w_2)t}$. We define a family of operators $\{R_t(\lambda, \mathbb{A})\}$, where

$$R_t(\lambda, A)X = \int_{t}^{\infty} e^{-\lambda s} T(t)X ds.$$

$$= \int_{1}^{\infty} e^{-\lambda s} T_1(s) X T_2(s) ds \cdot$$

We say $\{R_t(\lambda, A)\}$ is of type p if

(i) $R_t(\lambda, A) \in C_p$ for all t ≥ 0 and $\lambda \in \rho(A)$ such that $Re(\lambda) > w_1 + w_2$. (ii) There exists an $\beta > 0$ such that $\|\lambda R_t(\lambda, A)\|_p \le \beta$ for all $t \in (0, \infty)$ and $\lambda \in \rho(A)$, Re $(\lambda) > a > w_1 + w_2$, where a is positive constant. Now we prove the following results.

Theorem (2.2):

Let $T(t)Z=T_1(t)ZT_2(t)$, $t\geq 0$ be a C_0 - composite semigroup of operators in $\{L(H),\ \tau\}$ with generator $A=A_1$.+. A_2 . Then the following are equivalent

- (i) $T_1(t)$ is of type p.
- (ii) $\{R_t(\lambda, A)\}$ is of type p and T(t) is uniformly continuous on $(0, \infty)$.

Proof:

$$(i) \rightarrow (ii)$$
, we have

$$R(\lambda, A)X$$

$$= \int_{0}^{\infty} e^{-\lambda s} T_1(s) X T_2(s) ds$$

$$= \tau - \lim_{t \to 0} \int_{t}^{\infty} e^{-\lambda s} T_{1}(s) X T_{2}(s) ds$$

$$=\tau$$
- $\lim_{t\to 0} R_t(\lambda, A)$.

where the above limit is uniform limit.

Now,

$$R_t(\lambda, A)X$$

$$= \int_{t}^{\infty} e^{-\lambda s} T_{1}(s) X T_{2}(s) ds$$

=

$$T_1(t) \big[\int\limits_t^\infty e^{-\lambda s} T_1(s-t) X T_2(s-t) ds \big] T_2(t)$$

Since $T_1(t) \in C_{\boldsymbol{p}}$, it follows that $R_t(\lambda, \ A) \in C_p \ .$

Furthermore,

$$\begin{aligned} & \left\| \lambda \, R_t \left(\lambda, \, A \right) \, \, \right\|_p = \\ & \left\| \lambda T_l(t) \int\limits_t^\infty e^{-\lambda s} T_l(s-t) X T_2(s-t) ds T_2(t) \right\|_F \end{aligned}$$

Since

$$\|T_2(t)\|_{L(H)} \le M_1 e^{w_1 t}$$
, so

$$\|\lambda R_t(\lambda,$$

A)
$$\|_{p}$$

$$\leq |\lambda| ||T_1(t)||_p \frac{1}{|(w_1 + w_2) - \lambda|} \xi ||X||_{L(H)}$$

if $t \in (0, \delta), \delta \leq \varepsilon$, we get $\left\| \lambda R_{t}(\lambda, A) \right\|_{p} \leq \beta.$

Conversely, $(ii) \rightarrow (i)$

Since $T_1(t)$, $T_2(t)$ are uniformly continuous, it follows that

$$R_t(\lambda, A) \rightarrow R(\lambda, A) =$$

$$\int_{0}^{\infty} e^{-\lambda s} T_{1}(s).T_{2}(s) ds \text{ convergent}$$

uniformly, as $t \rightarrow 0$. By the assumption,

$$\|\lambda R (\lambda, A)\|_{p}$$

$$\leq \lim_{t \to 0} \|\lambda R_{t}(\lambda, A)\|_{p} \leq \beta$$

$$\forall t \in (0, \delta)$$

Further it follows from [4] that $\lambda R(\lambda, \ A) \ T_1(t) \to T_1(t) \ \text{as}$ $\lambda \to \infty \ \text{uniformly,}$

 $\|\lambda R\|$ $(\lambda,$

A) $T_1(t) \Big|_p \le \beta \Big| T_1(t) \Big|_{,\text{ from the semigroup property,[4],}}$

Since $\|T_1(t)\| \le M_1 e^{w_1 t}$, so as $t \in (0, \delta)$, we obtain

 $\|T_1(t)\| \le \eta$, for some $\eta > 0$. Thus

 $\begin{array}{lll} \lambda R(\lambda, \textbf{A}) & T_1(t) & \text{ is uniformly} \\ \text{bounded in } C_p \, . & \end{array}$

 $\|\lambda R_t(\lambda,$

$$A)T_1(t)\Big\|_p \le \beta \Big\|T_1(t)\Big\| \le \beta \eta.$$

Consequently,[7], $T_1(t) \in C_p$ for all $t \in (0, \varepsilon]$.

from the semigroup property that $T_1(t) \in C_p$ for all t>0. Further;

One Parameter Composite Semigroups of Linear Bounded Operators in Strong Operator Topology of Schatten Class C_n

$$\begin{split} & \left\| T_1(t) \right\| \leq \left\| \lim_{\lambda \to \infty} \lambda R(\lambda, \, \mathbf{A}) \right. \\ & \left. T_1(t) \right\|_p \leq \left\| \lim_{\lambda \to \infty} \lambda R(\lambda, \, \mathbf{A}) \right. \\ & \left. \left\| \mathbf{T}_1(t) \right\| \right. \\ & \leq \beta \eta \,, \, \, \text{for} \, \, t \in (0, \epsilon]. \end{split}$$

Remark(2.3)

- (i) $T_1(t) \in C_p$ and $T_2(t) \in C_p$ then $T(t) \in C_p$ for all p and $t \in (0, \infty)$.
- (ii) There exts a C_0 semigroup of operators T(t) such that $T(t) \in C_p$ for all $t \in (0,\infty)$, but $||\mathbb{T}(t)||_p \le \infty$ as $t \to 0$ as the following example.

Example(2.4)

Let A_1 and A_2 are a positive compact operators which are not of finite ranks and $\|A_1\|, \|A_2\| \le 1$. So

$$A_{l} = \sum_{n=l}^{\infty} \lambda_{n} e_{n} \otimes e_{n}, A_{2} = \sum_{n=l}^{\infty} \sigma_{n} e_{n} \otimes e_{n}$$

for some $0 < \lambda_n$, $\sigma_n < 1$ and decreasing, and (e_n) is some orthonormal basis .Define a one parameter family of composite operators as follows:

$$T(t)X = T_1(t)XT_2(t)$$

$$(\sum_{n=l}^{\infty} \lambda_n^t \boldsymbol{e}_n \otimes \boldsymbol{e}_n) X (\sum_{n=l}^{\infty} \sigma_n^t \boldsymbol{e}_n \otimes \boldsymbol{e}_n)$$

It is easily seen that $T_1(t)$, $T_2(t)$ are C_0 - semigroups of operators on H, see [4].

$$Choose(\lambda_n), (\sigma_n) \in \bigcap_{p>0} \ell^p$$

where ℓ^p is the space of p-summable sequences. Then $T_1(t), T_2(t) \in C_p$ for all p and all t and also from Remark(2.3)(i), we have that $T(t) \in C_p$.

Now,

$$\|T_1(t)\|_p = (\sum_{n=1}^{\infty} \lambda_n^{tp})^{\frac{1}{p}}, \text{ and } \|T_2(t)\|_p = (\sum_{n=1}^{\infty} \sigma_n^{tp})^{\frac{1}{p}}$$

Further

$$||T_1(t)||_p \le ||T_1(s)||_p, ||T_2(t)||_p \le ||T_2(s)||_p$$
 for $t > s$.

The Monotone Convergence Theorem implies that $\|T_1(t)\|_p \to \infty$ and

$$\|T_2(t)\|_p \to \infty$$
, as $t \to 0$

Since

$$||T(t)||_{p} \le ||T_{1}(t)||_{p} ||T_{2}(t)||_{p}$$
, we

have that

lim

$$\|T(t)\|_{p} \le \lim_{t \to 0} \|T_{1}(t)\|_{p} \|T_{2}(t)\|_{p}$$

Thus

$$\lim_{t\to 0} ||\mathbb{T}(t)||_{p} \le \infty$$
 and this

completes the proof.

Theorem(2.3):

Let $T(t)Z=T_1(t)ZT_2(t)$, $t \ge 0$ be a C_0 -composite semigroup of operators in

 $\{L(H),\,\tau\}$ with generator A then the following are equivalent =A $_1$.+. A_2

. If
$$W \in (0, \infty)$$
 such that $T(t)$

$$< e^{(w_1 + w_2)t}$$

(i)

(t)
$$\in C_p$$
 for $t \in (0, \infty)$ and if

$$\begin{split} & \left\| \mathbb{T} \left(\frac{t}{n} \right) \, \right\|_p \\ & \leq & \left\| T_1 \left(\frac{1}{n} \right) \right\|_p \left\| T_2 \left(\frac{1}{n} \right) \right\|_p \leq \gamma_1 \gamma_2 \end{split}$$

for $n \ge n_0$, for some n_0 and some $\gamma_1, \gamma_2 > 0$.

(ii)
$$R(\lambda, A) \in C_p$$
 and $\|\lambda R(\lambda, A)\|$

A)
$$\Big\|_{p} \le \frac{\gamma_1 \gamma_2}{\Big|(w_1 + w_2) - \lambda\Big|}$$

for some $\gamma_1, \gamma_2 > 0$, and all $\lambda > 0$.

Proof:

(i)
$$\rightarrow$$
 (ii), set

$$R_n(\lambda, A)$$

$$X = \int_{\frac{1}{n}}^{\infty} e^{-\lambda s} T_1(s) X T_2(s) ds$$

$$= T_1(\frac{1}{n}) \left[\begin{array}{c} \int\limits_{\frac{1}{n}}^{\infty} e^{-\lambda s} T_1(s-\frac{1}{n}) X T_2(s-\frac{1}{n}) ds \end{array} \right] T_2(\frac{1}{n}) ds$$

Since (i) is satisfied, we have that

$$T_1(\frac{1}{n}), T_2(\frac{1}{n}) \in C_p$$
 and from

theorem(2.2) that $R_n(\lambda, A)$

 $\in C_p$, and also implies that

$$\| R_n(\lambda,$$

A)
$$X \Big|_{p} =$$

$$\left\|T_{l}(\frac{1}{n})\right\|_{p}\int_{\frac{1}{n}}^{\infty}e^{-\lambda s}T_{l}(s-\frac{1}{n})XT_{l}(s-\frac{1}{n})ds\left\|T_{2}(\frac{1}{n})\right\|_{p}$$

$$\leq \gamma_1 \gamma_2 \frac{1}{\left| (w_1 + w_2) - \lambda \right|}, \text{ for }$$

 $n > n_0$ for large value of n. But
$$\begin{split} R_n(\lambda,\,\mathbf{A})\mathbf{X} &\to R(\lambda,\,\mathbf{A})\mathbf{X}\\ \text{for all } &\,X\!\in L(H)\,\text{, as }\,\mathbf{n}\!\to\!\infty\;.\\ \text{Consequently, lemma}(1.2), implies\\ \text{that } &\,R(\lambda,\,\mathbf{A})\!\in C_p\,\text{, and} \end{split}$$

$$\| R(\lambda, A) \|_{p}$$

$$\leq \gamma_{1} \gamma_{2} \frac{1}{|(w_{1} + w_{2}) - \lambda|}, \text{ for }$$

$$\lambda > (\mathbf{w}_1 + \mathbf{w}_2).$$

(ii) \rightarrow (i) by expansion formulation of any semigroup, see [4] we have that

T(t)X =

$$\lim_{\lambda \to \infty} e^{-\lambda t} \sum_{n=0}^{\infty} \frac{(\lambda^n t^n)}{n!} [\lambda R (\lambda,$$

A)
$$]^n X$$
, for $(w_1 + w_2) > \lambda$

where W_1, W_2 is as given in the assumption. Then

 $||\mathbb{T}(t)||_{p}$

$$\leq \lim_{\lambda \to \infty} e^{-\lambda t} \sum_{n=0}^{\infty} \frac{(\lambda^n t^n)}{n!} \lambda^n \| R(\lambda, t) \|_{L^{\infty}(\Omega_n)}^{2}$$

$$\mathbb{A}) \|^{n-1} \| R(\lambda, \mathbb{A}) \|_{p}$$

But

$$\| R (\lambda, \mathbb{A})$$

$$\|_{L(L(H))} \le \frac{M_1 M_2}{\lambda - (w_1 + w_2)}$$
.

Since

$$\lambda - (w_1 + w_2) > 0 \Rightarrow \lambda - (w_1 + w_2) > 0 \Rightarrow (w_1 + w_2) - \lambda > 0$$
Thus

 $\| R (\lambda, A)$

One Parameter Composite Semigroups of Linear Bounded Operators in Strong Operator Topology of Schatten Class $C_{\rm D}$

$$\Big\|_{L(L(H))} \le \frac{M_1 M_2}{\left|\lambda - (w_1 + w_2)\right|}.$$

Hence $||\mathbb{T}(t)||_v$

$$\leq \! \lim_{\lambda \to \infty} \! \sum_{n=0}^{\infty} \! \frac{(\lambda^n t^n)}{n! (w_1\!+\!w_2)\!-\!\lambda\! |^{n\!-\!1}} \frac{\gamma_1 \gamma_2}{\big| (w_1\!+\!w_2)\!-\!\lambda\! \big|}$$

$$\leq \lim_{\lambda \to \infty} \gamma_1 \gamma_2 \left| \frac{\lambda}{(w_1 + w_2) - \lambda)} \right| \leq \gamma_1 \gamma_2 K, \quad \text{for } K \geq 1.$$

Consequently $\mathbb{T}(t) \in \mathbb{C}_p$.

References:

[1]Emirsajlow, Z., "A composite semigroup for the infinitedimensional differential Sylvester equation", Proceedings of 7th Mediterranean Conference on Control and Automation, Haifa, Jun 28-30, 1999.

[2]Erwin, K., "Introduction functional analysis with application", by John Wiley an sons, 1978.

[3]KhaliL, R. and Deeb, W., "One parameter semigroups of operators of Schatten Class C_p, Funkcialaj Ekvacioj, 32(1989)389-394.

[4]Klaus, J. E and Rainer N., "One-parameter semigroup for linear evolution equation", by springer-verlag, New York, Inc., 2000.

[5]Pazy, A.," Semigroups of linear operators and applications to partial differential equations", Berlin, springer Verlag, 1983.

[6]Simon, B., Trace ideals and their applications", London. Math. Soc. Lecture Notes series 35,1997.

[7]Weidmann, J., "linear operator in Hilbert spaces", springer verlg, newyork, 1980.