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Abstract 
The Randomness is one of the basic criterions to measure Key Generator 

Efficiency. The key generator depends basically on Linear FeedBack Shift 
Register which is considered as one of the basic units of Stream Cipher Systems. 
In this paper, the frequency postulate of Randomness criteria is calculated 
theoretically for non-linear key generator before it be implemented or constructed 
(software or hardware), this procedure save time and costs. Two non-linear key 
generators are chosen to apply the theoretical studies; these key generators are the 
Product and Brüer. 

Keywords: Key Generator, Randomness Criteria, Generator Efficiency, Stream 
Cipher Systems. 

جة من مولدات المفاتيح غير التخمين النظري لخاصية التردد للمتتابعات النات
 الخطي

 الخ�صة
المفاتيح  اتمولدا�ساسية لكفاءة من أھم مقاييس ال) Randomness  (وائية ـالعشتعتبر  

)Key Generator Efficiency (الخطية المتمثل بمنظومات المسج!ت الزاحفة )LFSR (
في ھذا البحث، تم حساب ). Stream Cipher Systems(م التشفير ا+نسيابي كونه أحد نظ

خاصية التردد احد أسس العشوائية لثنائيات المتتابعة المولدة من نظام مولد مفاتيح غير خطي
، وھذا ا�سلوب سوف يوفر الوقت والجھد )برمجيا أو مادياً (النظام عمليا  قبل تنفيذ نظرياً 

للبحث ھما  لتطبيق الدراسة النظرية ةخطيغير مفاتيح  يتم اختيار مولد. رةوالكلفة لمصمم الشف
 .المنظومة الضربية ومولد بريور

Introduction  
inear Feedback Shift Register
(LFSR) and Combining
Function (CF) are considered 

as basic units to construct key 
generator (KG) that used in stream 
cipher systems [1]. Any weakness in 
any one of these units means clear 
weakness in KG sequence, so there 
are some conditions must be available 
in KG before it is constructed; 

therefore the KG efficiency is 
concluded. 
In this paper,some studies are applied 
on the KG sequences to determine the 
sequence frequency. The Basic 
efficiency for KG can be defined as 
the ability of KG and its sequence to 
withstand the mathematical analytical 
which the cryptanalyst applied on 
them, this ability measured by some 
basic criterions, the most important 
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criterion is the randomness, one of 
the randomness postulates is the 
frequency postulate. 
As known, every system passes 
through collection of procedures. 
These procedures represent the 
system's life cycle. This cycle start 
with information collecting followed 
by designing, constructing, 
evaluation, maintaining and ending 
with developing. In this manner, 
since the KG is a system then it has a 
cycle life. The block diagram of the 
Classical KG Cycle Life is shown in 
figure (1). 
As shown in figure (1) ,the repeating 
of the design, constructing and 
evaluating for many times will cause 
a large cost in time and resources 
because of constructing procedure 
every time. 
In the next part of this paper, the 
frequency postulate of randomness 
criterion will be discussed in details 
and introduce the basic conditions to 
obtain efficient KG specially those 
related to frequency.  It’s important to 
mention that the zero input sequences 
must be avoided, this done when the 
non-all zeros initial values for 
LFSR’s are chosen. 
Let KG consist of n-LFSR’s have 
lengths r1,r2,..,rn respectively with 
CF=Fn(x1,x2,…,xn), s.t. xi∈{0,1} 
1≤i≤n, represents the output of 
LFSRi, let S={s0,s1,…} be the 
sequence product from KG and sj, 
j=0,1,… represents elements of S. let 
Si be the sequence i product from 
LFSRi with aij elements 1≤i≤n, 
j=0,1,…,. 

2. Conditions of the Theoretical

Estimation 

Definition (1) [3] : Let GCD2= 

gcd(
∏∏∏∏

====

1

1i
im
,m2.GCD1)=gcd(m1,m2), 

for convenient let GCD1=1 and so on 
the general form of the recursion 
equation will be: 

GCDn=gcd(
∏∏∏∏

−−−−

====

1

1

n

i
im
,mn.GCDn-1) …(1) 

where n≥2 s.t mi are positive integers, 
∀1≤i≤n. 
Let the sequence S has period P(S), 
the period of LFSRi denotes by P(Si), 
P(S) and P(Si) are least possible 
positive integers, so 
P(S)=lcm(P(S1),P(S2),…,P(Sn))…(2) 

P(S)= ))((

)(
1

in

n

i
i

SPGCD

SP∏∏∏∏
====

 …(3) 

s.t.GCDn(P(Si))=








 ⋅⋅⋅⋅ −−−−

−−−−

====
∏∏∏∏ ))(()(,)(gcd 1

1

1
inn

n

i
i SPGCDSPSP

If P(Si) are relatively prime with each 
other this mean GCDn(P(Si))=1 this 
implies [3]: 

P(S)=
∏∏∏∏

====

n

i
iSP

1

)(
 …(4) 

It’s known earlier that P(Si) ≤ 12 ir − ,
and if the LFSRi has maximum 

period then P(Si)= 12 −−−−ir  [4].
Theorem (1) [3] 

P(S)=
∏∏∏∏

====

−−−−
n

i

r i

1

)12(
if and only if the 

following conditions are holds: 
GCDn(P(Si))=1,. 
the period of each LFSR has 

maximum period (P(Si)= 12 −−−−ir ).

3. Randomness
  The sequence that is satisfied the 3-
randomness properties called Pseudo 
Random Sequence (PRS) [4]. The 
randomness criterion depends on 
LFSR’s and CF units, therefore from 
the important conditions to get 
PRSR’S, the sequence must be the 
maximum and CF must be balanced 
[5]. 
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To guarantee the KG to produce PRS, 
the sequence must pass randomness 
tests with complete period, these tests 
applied in two ways, on: [1] 

1. Global sequence for 
complete period and that is 
the right way (but it’s hard to 
applied for high periods). 

2. Local sequence for many 
times for various lengths less 
than the original length. 

In this part, the 1st way will be 
applied theoretically for any 
period. 
If GCDn(P(Si))=1 then, P(S)= 

++++⋅−+
∑ ++++ −= LL

LL nn

n

i
i

rrrr
r

2111 22()1(2   
nrrn n )1()22()1( 11 −+++⋅− −

L      …(5) 

Definition (2): Let t
mR denotes the 

combination to sum m of numbers ri 
from n of the numbers ri, Rm denotes 

the set of all possibilities of t
mR s.t. 

















====
∑∑∑∑

====

m

j
i

n

t
m

j
r

rrr

R

1

21 ,...,,

0≤m≤n, 1≤i≤n, 

t∈{1,2,…,Cm
n} 

define R0={R0
1}, R0

1=0. 
For instance let m=1 then 

n
nC rRrRRRRR

n

============ 11
1
11

2
1

1
11 ,...,},,...,,{ 1

If m=n then Rn={Rn
1}, Rn

1=∑∑∑∑
====

n

i
ir

1

 

So equation (5) can be written in 
compact formula: 

∑∑∑∑ ∑∑∑∑
==== ====

−−−−⋅⋅⋅⋅−−−−====
n

k

C

t

Rk

n
k

t
knSP

0 1

2)1()(  …(6) 

 
Golomb deduced three 

theorems about the maximal sequence 
generated from LFSR [4]. One of the 
three Golomb’s theorems deduced 
from the frequency postulate. the next 
sections will introduce new theorems, 

as Golomb did on LFSR, to prove the 
good frequency distribution of Bruer 
KG and the weak randomness of the 
product KG by applying the 
frequency postulates. 

1st Golomb’s theorem says that if 
LFSR with length r has maximal 
sequence then Nr(0)=2r-1-1 and 
Nr(1)=2r-1, where Nr(a) denotes the 
number of bit “a” in the maximal 
sequence s.t.: 

P(r)=2r-1=(2r-1-1)+2r-1=∑∑∑∑
====

1

0

)(
a

r aN  

Let NS(a) be the frequency of bit “a” 
in S which generates from KG then: 
P(S)= 

)1()0()0()0()(
11

1

0
nn rrrr

a
S NNNNaN LL +=∑

=

)1()1(
1 nrr NN LL ++   …(7) 

From this equation the act of CF 
will starts to distribute the ratio of “0” 
and “1” in S. If the terms of equation 
(7) rearranged s.t. 0=F(ai1,ai2,..,ain), 
1≤i≤m0 for the 1st m0 terms, and 
1=F(ai1,ai2,..,ain), 1≤i≤m1 for 2nd m1 
terms 2n=m0+m1 then, 

NS(a)=∑∑∑∑∏∏∏∏
==== ====

a

j

m

i

n

j
ijr aN

1 1

)(     …(8) 

subject to a=F(ai1,ai2,..,ain) s.t. 1≤i≤ma 
,a=0,1 
ma denotes the number of states 
which are subject to above condition. 
4. Product System (n-PKG) 

This system consists of n-LFSR's 
with different lengths. The product KG 
using the non-linear product CF s.t: 

Fn(x1,x2,..,xn)=∏∏∏∏
====

n

i
ix

1

             …(9) 

The product function is not balanced 
(which expects that the n-PKG will not 
produces pseudo random sequences). 

In the next theorem the number of 
ones (NS(1)) of the sequence 
generated from n-LFSR's can be 
calculated. 
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Theorem (2):  

Let NS(a) be the number of a-bit in 
the sequence S generated from n-
PKG, a∈{0,1}, which satisfies 
theorem (1), then: 

NS(1)=
∑∑∑∑

====

−−−−
n

i
i nr

12                         …(10) 
 
Proof: 
Recall equations (7) and (8). 
P(S)=

)1().1().1(...)0().0().0(
321321 rrrrrr NNNNNN ++++++++  

NS(1)=∏
=

n

1i
r )1(N
i

=
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21 nrrr NNN L =

111 222 21 −−−−−−−−−−−− ⋅⋅⋅⋅ nrrr
L =

∑∑∑∑
====

−−−−
n

i
i nr

12  = nRn −−−−1

2  
 
From the result of the above theorem: 

NS(0)=P(S)- nRn −−−−1

2           …(11) 
The proof of non-balance 

frequency of 0's and 1's in S 
generated from n-PKG is given in the 
next lemma. 
 
Lemma (1): In the n-PKG, 

nS
r

SPNLim
i

2

1
))()1(( ====

∞∞∞∞→→→→

,1≤i≤n. 

Proof: 
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As ri→∞, then 12 ir − → ir2 (ignore 

1), then P(S)≈∏∏∏∏
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n

i
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1
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Example (1): 
Table (1) shows the proportion of 
NS(1) to P(S) for various n-PKG. 

Table (1) the proportion of NS(1) to 
P(S) for various n-PKG. 
As shown in table in table (1) ,if the 
length of combined LFSR's be as high 
as possible then the observed 
proportion of NS(1) to P(S) 
approximate 1/2n for different n. 
5. Brüer System (3-BKG) 

The Brüer system consists of odd 
number of LFSR's with different 
lengths, in this paper the proposed  
system will consist of three LFSR's. The 
Brüer KG [2] using the non-linear CF 
called Majority CF s.t: 
Fn(x1,x2,x3)=x1x2⊕ x1x3⊕ x2x3  …(12) 
 

The majority function is balance 
and symmetric (which expect that the 
3-BKG will produces PRS). 

In the next theorem the number of 1's 
in the sequence S generated from 3-BKG is 
calculated. 
 
Theorem (3): Let NS(a) be the 
number of a-bit in the sequence S 
generated from 3-BKG, a∈{0,1}, 
then: 
NS(1)= 

)222(2 2221 323121321 −−−−++++−−−−++++−−−−++++−−−−++++++++ ++++++++−−−− rrrrrrrrr

. 
Proof: 
Recall equations (7) and (8), and 
when n=3: 
P(S)=

)1().1().1(...)0().0().0(
321321 rrrrrr NNNNNN ++++++++

 
NS(1)=

++++++++ )1().0().1()1().1().0(
321321 rrrrrr NNNNNN

  
)1().1().1()0().1().1(

321321 rrrrrr NNNNNN ++++
=

+−+− −−−−−− 111111 321321 2)12(222)12( rrrrrr

111111 321321 222)12(22 −−−−−− +− rrrrrr

=
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The last formula can be viewed as the 
following formula: 

 NS(1)=∑∑∑∑ ∑∑∑∑
==== ====
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0 1
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From equation (13): 

NS(0)=P(S)-∑∑∑∑ ∑∑∑∑
==== ====

++++−−−−−−−−−−−−
1

0 1
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t
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The proof of the balance 
frequency of 0's and 1's in S 
generated from 3-BKG is given in the 
next lemma. 
 
Lemma (2): In the 3-BKG, 

5.0))()1(( ====
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As ri→∞, for 1≤i≤3, then 
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As ri→∞, then 22 ++++ir →∞, for 1≤i≤3, 
then: 

∴ 
2
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SP
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Example (2): 
Table (2) shows the proportion of 
NS(1) to P(S) for various 3-BKG. 
Table (2) The proportion of NS(1) to 
P(S) for various 3-BKG. 

As shown in table (2) if the 
length of combined LFSR's be as high 
as possible then the observed 
proportion of NS(1) to P(S) 
approximate 0.5 for different n. 
 
 6. Applying of Chi-Square Tests on 
Study Cases 

In this section we will apply chi-
square test on the results gotten from 
calculations of frequency postulates 
on two study cases. 

Let M be the number of 
categories in the sequence S, ci be the 
category i, N(ci) be the observed 
frequency of the category ci, Pri the 
probability of occurs of the category 
ci, then the expected frequency Ei of 
the category ci is Ei=P(S)⋅⋅⋅⋅Pri, the T 
(chi-square value) can be calculated 
as follows: 

T=∑∑∑∑
====

−−−−K

i i

ii

E

EcN

1

2))((
           …(15) 

Assuming that T distributed 
according to chi-square distribution 
by υ=M-1 freedom degree by α as 
significance level (as usual 
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α=0.05%), which it has T0 as a 
pass mark. If T≤T0 then the 
hypothesis accepted and the 
sequence pass the test, else we 
reject the hypothesis and the 
sequence fails to pass the test, this 
mean that T not distributed 
according to chi-square 
distribution (for more information 
about chi-square see [6] or any 
book in statistics and probability). 

In order to test our results we 
have to suggest an example suitable 
to our three studied cases. Let n=3, 
r1=7, r2=9 and r3=11. P(S)= 
132844159, Ei=66422079.5. 

In Frequency test υ= 1, with 
α=0.05%, then T0=3.84 (see chi-
square table). 
Before we discuss this postulate, 
Since Ei=P(S)/2, then we can 
conclude from equation (15) the 
following result: 

T=
2/)(

)2/)()1((

2/)(

)2/)()0(( 22

SP

SPN

SP

SPN −+−

)(

))1()0(( 2

SP

NN −=               …(16) 

1. 3-PKG: from equation (9) we get 
NS(1)=16777216, then: 
NS(0)=P(S)-NS(1)= 116066943. 

By using equation (15), we get: 
T=74210638.706>>T0=3.85, then 
S generated from n-PKG fails to 
pass this test. 

2. 3-BKG: from equation (11), 
NS(1)=66424800, then: 
NS(0)=P(S)-NS(1)= 66419359. By 
using equation (16), we get: 

T=0.223<T0=3.85, then S generated 
from 3-BKG passes this test. Notice 
that proportion of NS(1)=0.50002%. 
 In this section, we focus in 
three important procedures which are 
considered as the main procedures of 
cycle life. These three procedures are 
designing, constructing and 

evaluating. Figure (2) shows the 
proposed modern key generator’s life 
cycle.  

As shown in figure (2) ,this 
diagram is more saver in time and the 
resources from classical method 
(showed in figure (1)) since we repeat 
just the design and theoretical 
evaluation procedures without any 
constructing for the key generator 
when the key generator fail in pass 
the frequency criterion. After 
applying the practical evaluating then 
repeat the previous step unless the 
results of evaluation are success. 
7. Conclusions  
1. the proposed system proves that 

the product cryptosystem has 
weak statistical frequency 
properties, this done in 
deterministically by using theorem 
(1) which is found to calculate 
NS(1) of sequence generated from 
n-PKG. 

2. The proof of non-balance 
frequency of 0's and 1's in the 
sequence generated from n-PKG 
given in the lemma (1). 

3. The Brüer has good statistical 
frequency properties, this done in 
deterministically by using theorem 
(2) which is found to calculate 
NS(1) of sequence generated from 
3-BKG. 

4. The proof of the balance 
frequency of 0's and 1's in the 
sequence generated from 3-BKG 
given in lemma (2). 

5. In this paper we introduce 
theoretical and practical 
evaluation for non-linear key 
generator before the practical 
constriction of the key generator, 
while before this paper all this 
work done statistically and after 
the practical constriction of the 
key generator.    
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8. Future Work  
1. As future work the proposed 

system suggests applying another 
properties of randomness criterion 
such as, run and autocorrelation on 
linear or non-linear KG. 

2. These theoretical studies can be 
applied on other kind of KG,s to 
calculate the frequency of these 
KG,s which are use combining 
functions with some combinations 
of variables. 
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Table (1) the proportion of NS (1) to P(S) for various n-PKG. 

 
 

 

Table (2) the proportion of NS (1) to P(S) for various 3-BKG. 

r1 r2 r3 NS(1) P(S) Proportion 

2 3 5 408 651 0.62 

3 4 5 824 3255 0.56 

3 5 7 15040 27559 0.54 

 
 
 
 

 

n r i NS(1) P(S) 
Proportion 

Expected Observed 

2 

2,3 

2,5 

5,7 

7,11 

8 

32 

1024 

65536 

21 

93 

3937 

25996 

0.25 

0.38 

0.34 

0.26 

0.25 

3 

2,3,5 

3,4,5 

4,5,7 

4,5,11 

128 

512 

8192 

131855 

651 

3255 

59055 

951855 

0.125 

0.197 

0.157 

0.139 

0.131 

4 
2,3,5,7 

3,4,5,7 

8192 

32768 

82766 

413385 
0.0625 

0.099 

0.079 
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Figure (2) the proposed modern key generator’s life cycle 
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