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Abstract

The Randomness is one of the basic criterions to measure Key Generator
Efficiency. The key generator depends basically on Linear FeedBack Shift
Register which is considered as one of the basic units of Stream Cipher Systems.
In this paper, the frequency postulate of Randomness criteria is calculated
theoretically for non-linear key generator before it be implemented or constructed
(software or hardware), this procedure save time and costs. Two non-linear key
generators are chosen to apply the theoretical studies; these key generators are the
Product and Briier.

Keywords: Key Generator, Randomness Criteria, Generator Efficiency, Stream
Cipher Systems.
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Introduction the KG efficiency is

I inear Feedback Shift Register

(LFSR) and  Combining

Function (CF) are considered
as basic units to construct key
generator (KG) that used in stream
cipher systems [1]. Any weakness in
any one of these units means clear
weakness in KG sequence, so there
are some conditions must be available
in KG before it is constructed;

concluded.

In this paper,some studies are applied
on the KG sequences to determine the
sequence frequency. The Basic
efficiency for KG can be defined as

the ability of KG and its sequence to

withstand the mathematical analytical

which the cryptanalyst applied on

them, this ability measured by some
basic criterions, the most important
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criterion is the randomness, one of
the randomness postulates is the
frequency postulate.

As known, every system passes
through collection of procedures.
These procedures represent the
system's life cycle. This cycle start
with information collecting followed
by designing, constructing,
evaluation, maintaining and ending
with developing. In this manner,
since the KG is a system then it has a
cycle life. The block diagram of the
Classical KG Cycle Life is shown in
figure (1).

As shown in figure (1) ,the repeating
of the design, constructing and
evaluating for many times will cause
a large cost in time and resources
because of constructing procedure
every time.

In the next part of this paper, the
frequency postulate of randomness
criterion will be discussed in details
and introduce the basic conditions to
obtain efficient KG specially those
related to frequency. It's important to
mention that the zero input sequences
must be avoided, this done when the
non-all zeros initial values for
LFSR’s are chosen.

Let KG consist of n-LFSR’s have
lengths rl,r2,...,rn respectively with

CF=Fn(x1,x2,...,xn), s.t. xi{0,1}
1<i<n, represents the output of
LFSRi, let S={s0,s1,...} be the

sequence product from KG and gsj,
j=0,1,... represents elements of S. let
Si be the sequence i product from
LFSRi with aij elements Il<n,
j=0,1,...,.

2. Conditions of the Theoretical

Estimation
Definition (1) [3] : Let GCD2=

gcd(ll " ,m2.GCD1)=gcd(m1,m2),
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for convenient let GCD1=1 and so on
the general form of the recursion
equation will be:

m.
GCDn=gcd(- ' ,mn.GCDn-1)...(1)
where n2 s.t mi are positive integers,
O1<i<n.
Let the sequence S has period P(S),
the period of LFSRi denotes by P(Si),
P(S) and P(Si) are least possible
positive integers, so
P(S)=lcm(P(S1),P(S2),...,P(Sn))...(2)

n

M P(sH

i=1

P(S)=5 . (P(5.) .(3)

s.t.GCDn(P(Si))=
gcd[ﬁ P(S,), P(S,) 0BCD ., (P(S, »]

If P(Si) are relatively prime with each
other this mean GCDn(P(Si))=1 this

implies [3]:
n
P(S)
P(S)='= ..(4)
It's known earlier that P(S&2" —1,
and if the LFSRi has maximum

period then P(S)2" —1 [4].
Theorem (1) [3]

pS)=ll ¥ it and only if the
following conditions are holds:
GCDn(P(Si))=1,.

the period of each LFSR has
maximum period (P(Si)2" —1).

3. Randomness

The sequence that is satisfied the 3-
randomness properties called Pseudo
Random Sequence (PRS) [4]. The
randomness criterion depends on
LFSR’s and CF units, therefore from
the important conditions to get
PRSR'’S, the sequence must be the
maximum and CF must be balanced

[5].
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To guarantee the KG to produce PRS,

the sequence must pass randomness

tests with complete period, these tests

applied in two ways, on: [1]

1. Global sequence for
complete period and that is
the right way (but it's hard to
applied for high periods).

2. Local sequence for many
times for various lengths less
than the original length.

In this part, the 3% way will be
applied theoretically for any
period.

If GCDy(P(S))=1 then, P(S)=

2;“ +(—:D Hzrl%“ﬂn’l +“.+2r2+.,,+rn Feet
A7+ +2) D (9)

Definition (2): Let R| denotes the

combination to sum m of numbers r
from n of the numbers, rR,, denotes

the set of all possibilities dR|_ s.t.

[P PR S

R =| & O<mgn,  I<i<n,
zrn
j=1

t{1,2,...,Cy}

define R={R,'}, Ro'=0.

For instance let m=1 then

R={R.R,..Ri}R=r,..R =r,
If m=n then R={R,}}, Rnl:Zn:ri

i=1
So equation (5) can be written in
compact formula:

n Cy )
P(S)=>.(-n D 2" ..(6)
k=0 t=1
Golomb deduced three

theorems about the maximal sequence
generated from LFSR [4]. One of the
three Golomb’s theorems deduced
from the frequency postulate. the next
sections will introduce new theorems,

1243

as Golomb did on LFSR, to prove the
good frequency distribution of Bruer
KG and the weak randomness of the
product KG by applying the
frequency postulates.

1st Golomb’s theorem says that if
LFSR with length r has maximal
sequence then {0)=2"-1 and
N/(1)=2", where Na) denotes the
number of bit “a” in the maximal
sequence S.t.:

1
P(=2-1=(21)+2=) "N, (a)

a=0
Let Ng(a) be the frequency of bit “a”
in S which generates from KG then:
P(S)=

le Ns(@) =N, (0)---N, (0)+N, (0)---N, ()

a=0
+.-+ N (@)--N @) ..(7)
From this equation the act of CF
will starts to distribute the ratio of “0”
and “1" in S. If the terms of equation
(7) rearranged s.t. O=FR{@,,..,an),
1<ism, for the £' m, terms, and
1=F(ay,a,..,a), l<ism, for 2% m,
terms 2=my+m; then,

N@=D [N, @) (®)
i=l j=

subject to a=F(ga,,..,a,) s.t. Kism,
,a=0,1
m, denotes the number of states
which are subject to above condition.
4. Product System (n-PKG)

This system consists of n-LFSR's
with different lengths. The product KG
using the non-linear product CF s.t:

..(9)

Fn(xl-xz---yxn): Xi

The product function is not balanced
(which expects that the n-PKG will not
produces pseudo random sequences).

In the next theorem the number of
ones (N(1)) of the sequence
generated from n-LFSR's can be
calculated.



Eng. & Tech. Journal, Vol.29, No.7, 20

The Frequency Theoretic Estimation of non-
Linear Key Generator Sequences

Theorem (2):

Let Ng(@) be the number of a-bit in
the sequence S generated from n-
PKG, d1{0,1}, which satisfies
theorem (1), then:

Zri -n
Ns(1)=2" ...(10)
Proof:

Recall equations (7) and (8).
P(S)=
N, O-N, O.N, 0 +..+N, Q.N, O.N, @)

NAD=[ N, @

N, @O.N_@--N (D)=

2!‘1—1 [2r2-1 . 2I’n—1=2|2=1r‘-n :2R,].,'—ﬂ

From the result of the above theorem:

Ng(0)=P(S)-2% " ..(11)

The proof of non-balance
frequency of 0s and 1's in S
generated from n-PKG is given in the
next lemma.

Lemma (1): In the n-PKG,
Lim (Ns@/P(S)) = zi 1<i<n.

[

Proof:

N 2B
P& A @ -y

As r-w, then 2" —1_ 2" (ignore

1), then P(@I—”l o .
ir‘—n
therefore Ns @) = 2= = 1
P(S) in 2"
2\:1

Example (1):
Table (1) shows the proportion of
Ns(1) to P(S) for various n-PKG.
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Table (1) the proportion of §ll) to
P(S) for various n-PKG.

As shown in table in table (1) ,if the
length of combined LFSR's be as high
as possible then the observed
proportion of NS(1) to P(S)
approximate 1/2n for different n.

5. Brier System (3-BKG)

The Brier system consists of odd
number of LFSR's with different
lengths, in this paper the proposed
system will consist of three LFSR's. The
Briler KG [2] using the non-linear CF
called Majority CF s.t:
Fn(Xl,Xg,Xg):X]_XzD X1X3[| XoX3 (12)

The majority function is balance
and symmetric (which expect that the
3-BKG will produces PRS).

In the next theorem the number of 1's
in the sequence S generated from 3-BKG is
calculated.

Theorem (3): Let Ng(a) be the
number of a-bit in the sequence S
generated from 3-BKG, [#0,1},
then:

Ns(1)=

2r1+r2+r3-1 _ (2r1+r2-2 + 2r1+r3-2 + 2r2+r3-2)

i’roof:

Recall equations (7) and (8), and
when n=3:

P(S)=

N,ON,ON, O+.+N QN ON, @

Ns(l)z
N.ON, QN D+N QN ON, @D+

N, ON,ON, O+N, ON, QN @

(2r1—1 _ 1)2r2—12r3—1 + 2r1—1 (2r2—1 _ 1)2I‘3—1 +
2I’1 —12r2 -1 (2I’3 -1 _ 1) + 2I’1 —12r2 —12I’3 -1
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3 3

>r-3 r-3
i - 2"2”3_2 + i - 2"1*"'3_2 +

> >

r, -3 r,—3
2i:1 I _2"1+r2_2+2i:1 I
- 3
-1

2i=1 _ (2r1+r2—2 + 2r1+r3-2 + 2r2+r3—2)

:2R§—1 _ (2R§—2 + 2R22—2 + 2R§—2)
The last formula can be viewed as the
following formula:

1 cg

N(D)=3 (-1)* 3 280 ...(13)
k=0 t=1

From equation (13):

1 c
Ns(0)=P(S)-> (<13 2% ...(14)
k=0 t=1
The proof of the balance
frequency of Os and 1's in S
generated from 3-BKG is given in the
next lemma.

Lemma (2): In the 3-BKG,
Lim(Ns@®/P(S)) = 05,1<i<3.

ri_.oo

Proof:

3

-l
NS (1) _ 2i=t — (2r1+r2—2 + 2r1+r3—2 + 2r2+r3—2
P(S) l_J @ -1
As  f-w, for Isis3,  then
2" —=1. 2" (ignore 1), then
n
P(SF |‘j 2",
) r-1

NS (l) _ 2= _ (2r1+r2-2 + 2r1+r3-2 + 2r2+r3-2
P(S) z,

2\:1
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r=1
2i= 2r1+r2—2 + 2r1+r3—2 + 2r2+r3—2
3 i iri
2i=1 2i=1
1 1 1 1
= - +
2 (2I’3+2 2r2+2 2r1+2)

As I o0, then 27*? _ 00, for 1<i<3,
then:
Ne@ 1

=—-0=0.5
P(S) 2

Example (2):

Table (2) shows the proportion of
Ns(1) to P(S) for various 3-BKG.
Table (2) The proportion of L) to
P(S) for various 3-BKG.

As shown in table (2) if the
length of combined LFSR's be as high
as possible then the observed
proportion of N(1) to P(S)
approximate 0.5 for different n.

6. Applying of Chi-Square Tests on
Study Cases

In this section we will apply chi-
square test on the results gotten from
calculations of frequency postulates
on two study cases.

Let M be the number of
categories in the sequence She the
category i, N() be the observed
frequency of the category, Pr the
probability of occurs of the category
G, then the expected frequency dt
the category icis E=P(SYPr, the T
(chi-square value) can be calculated
as follows:

K (N(c)-E)?
i=1 i
Assuming that T distributed

according to chi-square distribution
by uv=M-1 freedom degree bg as
significance  level (as  usual
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0=0.05%), which it has gfas a
pass mark. If ¥T, then the
hypothesis accepted and the
sequence pass the test, else we
reject the hypothesis and the

sequence fails to pass the test, this
mean that T not distributed
according to chi-square

distribution (for more information
about chi-square see [6] or any
book in statistics and probability).

In order to test our results we
have to suggest an example suitable
to our three studied cases. Let n=3,
rn=7, =9 and §=11. P(S)=
132844159, E66422079.5.

In Frequency test v= 1, with

0=0.05%, then {§=3.84 (see chi-
square table).
Before we discuss this postulate,
Since E=P(S)/2, then we can
conclude from equation (15) the
following result:

T=(NO-P(9)/2)* , (ND-P(S)/2)’
P(S)/2 P(S)/2
_ (N© - N@)* -.16)
P(S)

1. 3-PKG: from equation (9) we get
Ns(1)=16777216, then:
Ns(0)=P(S)-N(1)= 116066943.
By using equation (15), we get:
T=74210638.706>>F3.85, then
S generated from n-PK@ils to
pass this test.

2. 3-BKG: from equation
Ns(1)=66424800, then:
Ns(0)=P(S)-Ny(1)= 66419359. By
using equation (16), we get:

T=0.223<T=3.85, then S generated

from 3-BKG passes this test. Notice

that proportion of (1)=0.50002%.

In this section, we focus in
three important procedures which are
considered as the main procedures of
cycle life. These three procedures are
designing, constructing and

(11),
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evaluating. Figure (2) shows the
proposed modern key generator’s life
cycle.

As shown in figure (2) ,this
diagram is more saver in time and the
resources from classical method
(showed in figure (1)) since we repeat
just the design and theoretical
evaluation procedures without any
constructing for the key generator
when the key generator fail in pass
the frequency criterion. After
applying the practical evaluating then
repeat the previous step unless the
results of evaluation are success.

7. Conclusions
1. the proposed system proves that
the product cryptosystem has
weak statistical frequency
properties, this done in
deterministically by using theorem
(1) which is found to calculate
Ns(1) of sequence generated from
n-PKG.

. The proof of non-balance
frequency of O's and 1's in the
sequence generated from n-PKG
given in the lemma (1).

3. The Brier has good statistical
frequency properties, this done in
deterministically by using theorem
(2) which is found to calculate
Ns(1) of sequence generated from
3-BKG.

N

4. The proof of the balance
frequency of O's and 1's in the
sequence generated from 3-BKG
given in lemma (2).

5.In this paper we introduce
theoretical and practical
evaluation for non-linear key
generator before the practical

constriction of the key generator,
while before this paper all this
work done statistically and after
the practical constriction of the
key generator.
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. Future Work

. As future work the proposed
system suggests applying another
properties of randomness criterion
such as, run and autocorrelation on
linear or non-linear KG.

. These theoretical studies can be
applied on other kind of KG,s to
calculate the frequency of these
KG,s which are use combining
functions with some combinations
of variables.
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Table (1) the proportion of Ns (1) to P(S) for various n-PKG.

Proportion

Expected Observed

8 21
32 93
1024 3937
65536 25996
128 651
512 3255
8192 59055
131855 | 951855
8192 82766
32768 413385

Table (2) the proportion of Ns (1) to P(S) for various 3-BKG.

Proportion
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Test the P(S), LC(S), CI(S ": deterministically :

Is System
Pacees the

Constructing the Systen

=)

v r—-——""""="—"""""= a

! The Testis |
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Figure (1) the classical key generator’s life cycle
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Repeat Design of System

|
Y : The Test done ini

Test frequency 4: deterministically :

Is SystenPasses the
freauenc Criteriz

YES

Practical Evaluating (PE)

Figure (2) the proposed modern key generator’s lifeycle
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