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Abstract

A nonlinear finite element model for geometrically large amplitude free
vibration analysis of laminated composite shallow cylindrical shell panel is presented
using high order shear deformation theory (HSDT). The nonlinearity is introduced in
the Green — Lagrange sense. The effects of different orthotropic ratios, thickness
ratio, curvature ratio and boundary condition are study also frequency ratio (nonlinear
frequency to linear frequency) of cylindrical shell are determined as function of shell
amplitude ratio.

Keywords: High order shear deformation, Shell, Free vibration, Nonlinear Finite
element Method.
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Notations
a,B,¢ : Curvilinear coordinate axes

u,v,w: Displacement along the
a,B,{

coordinate
u,v,w : The displacements of a
point on

the mid-plane
R.R, : Radii of curvature of shell
(m)
R
a and
[ direction respectively
W, W,,6,6,: High order terms of

Taylor
series expansion

{EL},{sNL}: Linear and nonlinear
strain

: The rotations with respect

vectors
[Q]: Transferred reduced elastic
constant
E : Young's modulus (GPa)
G : Shear modulus (GPa)
v : Poisson’s ratio
Whax : Maximum deflection (m)
h : thickness of laminated
shallow
cylindrical (m)
W, Linear natural frequency
(rad/sec)
wy, - Nonlinear natural frequency
(rad/sec)
on /oy : Frequency ratio
K . Damage ratio for linear
nonlinear

respectively
(a)lnt act a)delamenatbn) / a)lnt act)
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Introduction

aminated composite structures

are playing an imperative role

in different fields of ours life
like aerospace, automotive, naval,
mechanical and civil industries over
the past three decades. The main
reasons for this trend are outstanding
mechanical properties of composite,
such as high strength to weight ratio,
excellent corrosion resistance and
very good fatigue characteristics. Its
ability to allow the structural
properties to be tailored according to
requirements adds to the versatility of
composite for sensitivity application.
It can be seen from the literature that
the amount of work carried out on the
vibration characteristics of isotropic
plates, shells and composite
laminates are exhaustive. Some of
the important contributions are
briefly mentioned here.

A considerable literature s
available on the nonlinear free
vibration analysis of the laminated
composite shells in Von-Karman
sense with and without taking into
account the transverse shear effects.
Shin DK 1997, analyzed the large
amplitude vibration of symmetrically
laminated moderately thick shallow
doubly curved open shells with
simply supported sides, considering
the first order shear deformation
theory and nonlinearity in Von-
Karman sens. They obtained the
governing equations using the
Galerkin approximation and solved
them by a fourth order Runge Kutta
HAe integration procedure.Reddy
and Chao 1981 used the solution of
finite element methods to determine
the bending deflection, stress, and
natural frequency for large deflection
theory (Von Karman’s), including
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transverse shear,
moderately thick, laminated
anisotropic composite rectangular
plate subjected to various loading and
edge condition was presented. The
Navier type exact solution are
presented byReddy and Liu 1985
used the high order shear
deformation theory of elastic shells is
developed for shells laminated of
orthotropic layers. The theory is a
modification of the Sanders theory
and accounts for  parabolic
distribution of the transverse shear
strains through thickness of the shell
and tangential stress free boundary
conditions on the boundary surfaces
of the shell Shiau and Wu 1991can
obtain A high precision based on a
simplified  high  order  shear
deformation plate theory and used the
finite element formulation (72 degree
of freedom and triangular element) to
determine the natural frequency of
laminated plate for deferent type of
material and number of layers. The
Malekzadeh 2007studied the effect
of different parameters on the
convergence and accuracy of natural
vibration of the method a differential
quadrature for large amplitude free
vibration analysis of laminated
composite skew plates, the governing
equations are based on the thin plate
theory (classical linear theory) and
geometrical nonlinearity is modeled
using Green’s strain in conjunction
with Von Karman assumption. On
the other hand Th&anapathi, etal.
2009 investigated the free vibration
characteristics of simply supported
anisotropic composite  laminates
using analytical approach the
formulation is based on the first order
shear deformation theory, the
governing equation are obtained

governing
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using energy methodongwei and
Christian 2004 An analytical
solution to the free vibration of
composite beams with two non
overlapping delaminations is
presented, the Euler Bernoulli beams
used the delaminations as their
boundaries, the continuity and the
equilibrium conditions are satisfied
between adjoining beamé/ang and
Dong 2005used the energy method
to study hygrothermal effects on
local buckling for different
delaminated shapes near the surface
of cylindrical laminated shells, the
effect of non-linear obtained by
considered transverse displacements
of sub laminate shells and the
young's modulus, thermal and
humidity expansion coefficients of
material are treaded as functions of
temperature.Yang and Fu 2006
discuss the effects of delamination
sizes, depths, boundary conditions,
the material properties and the
laminate stacking sequences on
delamination growth for beams, and
used classical theory for cylindrical
shells. In this work, an effort has
been made to predict such a complex
problem. All the higher order terms
of curvature have been included in
the formulation. A nonlinear finite
element method is proposed for this
nonlinear model. The nonlinear
fundamental frequencies are obtained
for different orthotropicity ratios the
stacking sequences, the thickness
ratios, the amplitude ratios and
boundary condition.
Mathematical Model
Displacement field

A shell of length a, width b and
thickness h is composed of N number
of orthotropic layers of uniform
thickness. The o, B, () it was
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curvature coordinate . The following
displacement field for the laminated
shell based on the HSDT is
considered to derive the
mathematical model.

ul@,B.¢.t)=u+ g+, +°6,
V@, 8.8 t)=v+ g + Py, + %6,

wa,B.t)=w
1)

Where t is the time,[{,V,W ) are the
displacement along thea,( B, )
coordinates, u,v,w) are the
displacements of a point on the mid-

plane andg and ¢, are the rotations
at ({ =0) of normal to the mid-
plane respect to the and p-axes,
respectively, ¢,,¢,,6,,6, are high

order terms of Toyler series
expansion defined at the mid-plane.

Strain —displacement relation

The nonlinear Green
Lagrange stain displacement relation
for the laminated shell can be
expressed as follows.

Substituting equation (1) in
equation (2) (in Appendix A) the
strain — displacement relation of the
laminated shell is further expressed
as shown in equation (3) in Appendix
(A).

The value of individual terms of
above equation which are provided in
reference [Nabil Hassan Hadi and
Kayser Aziz Ameen].Hence the
above equation can be rearrangement
as shown in Appendix (A) equation

(4).
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Stress - strain relations

In the analysis of composite
laminated materials, the assumption
of plane stress is usually used for
each layer. This mainly because fiber
reinforced material are utilized in
beam, plate, cylinders, spherical and
other structural shapes which have at
least one characteristic geometric
dimension in an order of magnitude
less than the other two dimensions.
In this case the stress components

(0;,T,,T5)are set to zero. Then

The strain displacement relations, for
any general 'k orthotropic composite
lamina with an arbitrary fiber
orientation angle with reference to
the coordinate axeso( B, ) is
written as in equation (5)
Appendix (A).
Strain energy of the laminate
Energy and variational principle
offered great simplification to many
derivations of fundamental equations
in elasticity. Also have been used to
introduce and implement
approximation techniques for
structural systems. Strain energy is
defined as the work done by the
internal  stresses which caused
elongation or shear strains. The strain
energy of the plate can be expressed

-1 fo)av

in

(6)

By substituting the strains
from equation (2) and stresses from
equation (5) (in Appendix A) into
equation (6) the strain energy can be
expressed in equation (7) in
Appendix (A).
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Kinetic energy of the vibrating
shell

The kinetic energy
expression of a vibrated shell can be
expressed as

T :%\'[p{g}T{cY}dV ®)

Where, p and 5 are the density,

displacement vector which differentia
the first order of displacement with
respect to time, respectively. The
global displacement vector can be
expressed in appendix A.

Then the kinetic energy for
‘N’ number of orthotropic layered
composite  plate  obtained by
substituting the equation (9) into
equation (8) obtain.

T2 (3 T o rldoc er )

2A
T = %{{J}T [m]{5}da
Where,
[ml= 3. [ (1] p*[1])ac is the

inertia matrix.
Solution Technique

In the case of the shell element the
external and inner face are curved,
and each point on the surface are
given by Cartesian coordinate as
shown in the Figure (1).

Let the (@, 8) be two curvilinear
coordinate in the middle plane of the
shell and ¢ ) a linear coordinate in
the thickness direction. If further we
assume that ¢, and {) vary
between (-1 and 1) on the respective
faces of the element we can write a
relationship between the Cartesian
coordinate of any point of the shell
and the curvilinear coordinates in the
form

2160

It is convenient to rewrite
relationship (11) in a form specified
by the vector connecting the upper
and lower points (i.e a vector of
length equal to the shell thickness)
and the mid surface coordinates.

X X
y :ZNi(arIB) Yi +2Ni(a,,8)%\73i
z Z mid
Where :-
X; X,
Vi =1V 1Y
Z Z

i) Top i J Bottom
The displacement vector can be
conceded to the form by employing

the FEM

{5} :[Ni]{a_i}

Where :

(12)

T

{al=u v w 9 @ v v 4 6]

The equations of strain for linear
and nonlinear are studied of large
deflections, as in equation (4) and
nonlinear displacement in equation
(1), when substituted into equation
(7), the strain energy can be written
as in appendix A.

The value of individual terms

of [BNL] which are provided in

reference [Nabil Hassan Hadi and
Kayser Aziz Ameen].

The final form of governing
equation for the nonlinear free
vibration laminated plate panel is
obtained by using Hamilton’s
principle. It can be viewed and
axiom, from which other axioms like
Newton’s second law, Let us define
the potential energy to be
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(M =U -W), which U is the strain
energy andW is the work done and
the Lagrangian as the functiob
where( L = (T — U+W)).

Hamilton’s principle states
that the actual displacement that the
body actually goes through from
instant () to instant {,) out of many
possible paths, is that which achieves
an extremum of the line integral
of the Lagrangian function. This is
achieved if the variation of the time
integral of the Lagrangian is set to
zero:

5TLdt=O

4

(14)

Hamilton’s principle can be used to
find the compatible set of equations
of motion and boundary conditions
for given stresses and strains. This is
done by substituting the equations for
strain energy equation (13) and
kinetic energy equation (10) into the
equation (14), performing the
integration by parts, and setting the
coefficients of the displacement
variations (also called virtual
displacement) equal to

zero. The Lagrangian becomes
(Marco, 2008).

[M ]{5}+ ([KL] +[KNL]){5} =0

(15)

Where {o} is the

displacement vectofM], [K.] and
[Knl] are the global mass matrix and
global linear stiffness matrix and
nonlinear stiffness matrix that depend
on the displacement vector
respectively.
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Numerical results and discussion

A nonlinear finite element code is
developed in MATLAB 8.0 using the
present displacement field shell
model in Green-Lagrange sense in
the framework of the HSDT. The
validation and accuracy of the
present algorithm are examined by
comparing the results with those
available in the literature. The effect
of different combinations of the
material orthotropy, amplitude ratio
(Wma/h).

The following sets of

boundary conditions are used for the
present analyses

a-Simply support boundary
conditions (S):

v=w=@ =¢,=6,=0 at
x=0,a

u=w=g =¢,=6 =0 at
y=0,b

b-Clamped supported boundary

condition (C)
UsVv=w=g¢ =¢ =¢,=¢,=6,=6,=0

at
x=0,a

U=v=w=¢g =¢ :wl:w2:91:02:0

at

y=0,b

A convergence of the mathematical
model developed for laminated shell
is presented Figure (2). are shown the
nondimensional fundamental
= an(@)[[2)),
against mesh division respectively
for simply support boundary
condition and for different stacking
sequences, The results are plotted
using the material properties;£181
GPa, B=7.17GPa, Gz=6.71GPa,
01~0.28, and the geometry
parameters ara/b=1, a/h=10. From
the figures shown that the

frequency
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convergence is a (5X5) mesh, then
its used to compute the results
throughout the study.

In order to show the validation of
the present intact model, simply
supported square laminated
cylindrical shell panels of symmetric
angle ply lamination [+452] are
studied with the geometry cylindrical
shell @/b=1, a/h=10 and Rh=100).
The composite propertie€ & 181
GPa, E=10.3 GPa, G~=7.17 GPa,
Gy=6.21 GPa and v,,=0.28) are
used for the computation of the
result. The results in terms of the

frequency ratio(’j.—”t), ie., ratio of the

nonlinear frequency to linear
frequency are computed for different
amplitude ratios\Wna/h),(to find this
ratio first when the maximum
deflection (Wapequal to the
thickness Wha/h=1) such as h=
5mm then the W, = 5mm after that
we increase the ratio (h=5X
0.5,.8,1.1.2,1.5 which 05,...,1.5
were the ratio) then at each ratio find
the natural frequency when consider
the Von-Karmman and with out
consider) . The present results and
their differences with the existing
result (Shin DK) are depicted in
Table (1). The differences are more
pronounced because the present
study deals with all the higher order
terms of Green-Lagrange strains in
the framework of the high shear
order theory. Due to this, the stiffness
matrix becomes more flexure and
approaches towards the more general
case, ie., Green-Lagrange. However,
the published results (Shin DK) have
been obtained using the Von-Karman
strains in the framework of the first
shear order theory.

The effect of material orthotropy

the frequency ratio of the
2162

on

nonlinear free vibration of square
laminated cylindrical shell are
studied for four different modular
ratio (E/E; = 3, 5, 10 and 15) with
other parameters such as4&,=0.6,
G23/E2=0.5,U12:0.25, a/b:1, a/h=10,
R/a=5) for all sides simply supported
boundary condition (SSSS). The
results of the linear fundamental
frequency increase with increase in
modular ratio as shown in figure (3)

and the reduction in natural
frequency when considering the
nonlinearity (13.67% for

[0/90/0/90]s, 16.62% for [45/-45/45/-
45]s and 17.11% for[0/45/-45/90]s).
The frequency ratio decreases with
increase in modular ratio and diverge
in some results because the present
work used in the framework of the
high order shear theory and
geometrical nonlinearity modeled
using Green’s strain. as shown in
Table (2).

The effect of the thickness ratio
(a/h=10, 20, 50 and 100) on the
frequency ratio of a cylindrical shell
is analyzed. The material properties
are (B/E; 15, GJ/Ex=0.6,
G,4/E,=0.5, v1,=0.25, a/b=1, R/a=5)
for all sides simply supported
boundary condition (SSSS). The
results are depicted in Table (3) and

Figure (4), the frequency ratio
decreases with increase in the
thickness ratio and the non-
dimensional linear frequency

increase with increase the thickness
ratio.

The variation of the
frequency ratio for unlike stacking
sequences, the curvature ratio (R/a=
10, 20, 50 and 100)and different
amplitude ratio of cylindrical shell is
shown in Table (4) and in Figure (5).
The results are using the material
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properties and other parameters such
as (E/Ez 15, QQIEQ:O.G,
G23/E2=0.5,U12=0.25, a/b:]., a/h:].O)
From the table it is clear that as the
curvature ratio increases the
frequency ratio decreases. The linear
non-dimensional frequency is also
computed and presented in Figure (4)
which noted that decreasing in linear
non-dimensional frequency with
increasing the curvature ratio. The
results also shows that few diverge
because of severe nonlinearity.

The effect of number of layers and
the amplitude ratio on the frequency
ratio are summarized in Table (5) and
Figure (6) for lamination scheme
([0/90/0], [0/90/0/90/0], [0/90/0/90]s
and [0/90/0/90/0/90]s). The results
are using the material properties and
other parameters such as/f& = 15,
G12/E2=O.6, (323/E2=O.5, U12:0.25,
a/b=1, a/h=10, R/a=10) for all sides
simply supported boundary
condition. The frequency ratio
decreases with increase in number of
layers and the non-dimensional linear
frequency increase with increase in
number of layers.

The variation of the frequency ratio
for different support conditions and
the amplitude ratios are analyze for
different lamination schemes. The
results are shown in Table (6) and
Figure (7). In this part of the study
the effects of three different support
conditions are examined on the
frequency ratio such as all sides
simply support (SSSS), all sides
clamped (CCCC) and two sides
simply support and two side clamped
(SCSC). The material properties and
other parameters such as/f& = 15,
G12/E2=O.6, (323/E2=O.5, U12:0.25,
a/b=1, a/h=10, R/a=10) used for the
computation of the result. The
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frequency ratio decrease in amplitude
ratio increase for all type of boundary
condition.

Conclusions
The geometrically nonlinear free

vibration analysis of composite plate
with and without containing the
delamination is investigated using
nonlinear finite element method in
the framework of a higher order
shear deformation theory in Green-
Lagrange sense. The frequency
amplitude relations for the nonlinear
free vibrated plate are computed
using eigenvalue formulation and are
solved employing a direct iterative
procedure. Based on the numerical
results the following conclusions are
drawn.

» The \validation shows the
necessities of taking into account
full nonlinearity.

e The finite element model
proposed can be predicted
accurately the dynamic behaviors
of a laminated composite plate with
internal delamination at arbitrary
location. Hence the discrepancy of
the results was (15.8022 % with
considering the nonlinearity).

* Local internal delamination has
slight effect on the natural
frequencies of the Ilaminated
composite plate although the extent
of the natural frequency variation
increases with both the
delamination dimension and the
order of the natural frequency.
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D

Table (1) Comparison of frequency ratio(—) of square angle [+459

@

laminated cylindrical shell for SSSS boundary condion

Wha/h Shin DK Present Work
0.2 1.0281 1.166719135
0.4 1.0957 1.019832623
0.6 1.2023 0.936271035
0.8 1.30368 0.99989171
average error (%)=16.45904

Table (2) Effect of material orthotropy on nonlinea free vibration
of laminated cylindrical shell

0/90/0/90/0/90/0/90

E./E;
Whax/h 3 5 10 15
0.5 1.672687559 1.427193335 1.175672797 | 1.117434145
1 1.553800821 1.301946392 1.062937543 | 1.043722707
15 1.515533463 1.272510906 1.040317693 | 1.029731976
2 1.501928192 1.26207732 1.032320108 | 1.024763747
45/-45/45/-45/45/-45/45/-45

E./E;
Wiax/h 3 5 10 15
0.5 1.674726071 1.410753328 1.099153078 | 0.953255327
1 1.549655278 1.310078295 1.032805693 | 0.896334061
15 1.513669461 1.29077769 1.020217106 | 0.885552051
2 1.500864133 1.283835712 1.015702084 | 0.881702682
0/45/-45/90/0/45/-45/90

E./E;
Wiax/h 3 5 10 15
0.5 1.672687557 1.415017862 1.083540855 | 0.949228308
1 1.553799051 1.300610542 1.013675441 | 0.88141936
15 1.515533463 1.278444234 1.000400976 | 0.868474041
2 1.501928192 1.270528361 0.995657977 | 0.863880487
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Table (3) Variation of frequency of laminated cylirdrical shell for different

th

ickness ratio

[0/90/0/90/0/90/0/90]

Thickness ratio (a/h)

Wiax/N 10 20 50 100
0.5 0.995163672 0.995989891 | 0.945902172 | 0.968499531
1 0.982261225 0.98253814 | 0.93691108 | 0.961663992
15 0.965647406 0.965346216 | 0.924716796 | 0.952000054
2 0.947767427 0.950245124 | 0.91104925 | 0.940762715
[45/-45/45/-45/45/-45/45/-45]
Thickness ratio (a/h)
Wiax/h 10 20 50 100
0.5 1.211084329 1.186263118 | 0.870931957 | 0.774350296
1 1.19328851 1.166592484 | 0.860495641 | 0.768023597
15 1.171269981 1.142842444 | 0.847063366 | 0.759333344
2 1.148072284 1.118127394 | 0.832583126 | 0.749516914
[0/45/-45/90/0/45/-45/90]
Thickness ratio (a/h)
Wiax/h 10 20 50 100
0.5 0.994880536 0.994910849 | 0.851931981 | 1.003496992
1 0.981248996 0.982588223 | 0.84295392 | 0.995971013
15 0.964004368 0.964191207 | 0.831040971 | 0.985446734
2 0.945633912 0.944770372 | 0.817932604 | 0.97336475

Table (4) Frequency ratios of laminated cylindricalshell for different curvature
ratios, lamination schemes and amplitude ratios.

[0/90/0/90/0/90/0/90]

R/a
Wmax/h 10 20 50 100
0.5 0.995163672 | 0.995989891 | 0.945902172 | 0.968499531
1 0.982261225 | 0.98253814 | 0.93691108 | 0.961663992
1.5 0.965647406 | 0.965346216 | 0.924716796 | 0.952000054
2 0.947767427 | 0.950245124 | 0.91104925 | 0.940762715
[45/-45/45/-45/45/-45/45/-45]
R/a
Wpadh 10 20 50 100
0.5 1.211084329 [ 1.186263118 | 0.870931957 | 0.774350296
1 1.19328851 1.166592484 | 0.860495641 | 0.768023597
1.5 1.171269981 | 1.142842444 | 0.847063366 | 0.759333344
2 1.148072284 [ 1.118127394 | 0.832583126 | 0.749516914
[0/45/-45/90/0/45/-45/90]
R/a
Wiadh 10 | 20 | 50 | 100
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0.5 0.994880536 0.994910849 | 0.851931981 | 1.003496992
1 0.981248996 0.982588223 | 0.84295392 | 0.995971013
15 0.964004368 0.964191207 | 0.831040971 | 0.985446734
2 0.945633912 0.944770372 | 0.817932604 | 0.97336475

Table (5) Effect of number of layers on the frequeey ratio and amplitude ratio

[0/90/0] | [0/90/0/90/0] | [0/90/0/90]s | [0/90/0/90/0/90]s
W a/h Amplitude Ratio
0.5 0.994126671 | 0.993479344 | 0.995163672 | 0.994617709
1 0.979183295 | 0.977133428 | 0.982261225 | 0.98058019
15 0.960576377 | 0.957068515 | 0.965647406 | 0.962787474
2 0.940910088 | 0.936105529 | 0.947767427 | 0.943848581
Table (6) Effect of various boundary conditions orrequency ratios of
cylindrical

[0/90/0/90/0/90/0/90]
Wha/h Boundary Condition

SSSS SCSC CCcCC
0.5 1.117122228 1.144280709 1.247976244
1 1.117122228 1.03659193 1.058801939
15 1.029696605 1.015228814 1.007639366
2 1.024744024 1.00768562 0.98543487

[45/-45/45/-45/45/-45/45/-45]
Whad/h Boundary Condition

SSSS SCSC CCCC
0.5 1.017880288 0.719815501 1.392439
1 0.914623179 0.637949266 1.097554057
15 0.8937672 0.620350335 1.025412022
2 0.886401958 0.614124014 0.992703752

[0/45/-45/90/0/45/-45/90]
Wha/h Boundary Condition

SSSS SCSC CCcCC
0.5 0.949228308 0.857224276 1.262529587
1 0.881421544 0.761390319 1.053566689
1.5 0.868473041 0.740984643 1.000178638
2 0.863880721 0.733772977 0.975261178

Jg;l \%;r ,fq,\rff

F|gure (1) General curved shell elements
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Figure (2) Convergence study of non-dimensional foruency for square shell
having SSSS boundary condition with different stacing sequences
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Figure (3) Effect of material orthotropy on linear free vibration
of laminated cylindrical shell
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Figure (4) Effect of different thickness ratio on fequency
ratio of laminated cylindrical shell
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Figure (5) The effect of curvature ratios with the
non-dimensional linear frequency
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Figure (7) Effect on variable boundary conditions a the
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Appendix (A)
i (&5 (&) & 5)
da R :aa R oa da R |
c v, w (@J Z{G_GJZ +(@_if
ool | LR ' R) \o8) 05 R) |
vl (2,00} L3 a i an) (v, wYav) (ow_u(ow_v
V.. \98 9a) | 21990 R)08) \da R \oa) \da R )38 R
b |o{ees] | (o), vy ov), fom_o Yoaw]
‘2525’5 o R3¢ \oa)\oz) \oa R |ac
—+—W—l] (v _wYov) (auYou) (ow v Yow)
o ilaaw L% el 3 o)

Or , {et={e.}+{ew)
2)

Where{sL} and {SNL} are the linear and nonlinear strain vectors respdy.

& &' Xi X X: Xi

£ . £ X L X X3 L Xz
{gL}+{€NL}= 52 +§ 252 +{ )(51; +§ 2)((!55 +7 )(g +§ 2)(((55

& 2¢; Xs 2)s X: 2)x¢

£, 2e5) | xa 2xz)| L 24 )|
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Xi Xt Xi Xt X
Xs . X, . Xs . Xz . X
X o 20 | FE 126 1| HET 512X 1|7 5126
Xs| |2 2x 2x: 0

e 2.0 | 2] | 2y | Lo ]

(3)

b=l e = {eh + 5[0 feh
(4)

Where
0 0 1

{E}L S N N D D 7 I SRS S A VA Vv

9

X. Xo Xe Xo Xa X2 Xo Xo Xe Xa X0 Xo Xo Xe Xd

2 §11 §1z §1e o o |[a)

Op 912 922 926 0 0 &,

Oap = Q16 Q26 Qee 70 70 &g

Ua( 0 0 0 955 945 s

T L 0 0 0 Qu Q44_ L &4 |
®)

Where :

Q,, =Q, [B0os'F+2(Q,, + 2Q,,) [8in’ F [E0S I+ Q,, [$in* F

Q,, =(Q, +Q,, —4Q,,) Bin* S [tos’ I+ Q,,(cos' & +sin* I)

Q,, =Q,,sin* 9 +2(Q,, +2Q,,)sin*I ko & +Q,,cos' I

Q, =(Q,-Q,, —2Q,;)sind [0S I +(Q,, — Q,, + 2Q;) sin° I [tosd

626 =(Qu-Qy - 2Qee)3in3 JLeos? +(Q,, — Q,, +2Q,,) SinG [0S 3
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666 =(Qu +Qxp = 2Q;, —2Q¢) sin® #[tos I + Qs (Sin4 J+cos' )
Q,, =Q,,c08 I +Q,sin’ I
645 = (Q55 - Q44) cos?$ind

655 = Q55 COos, I+ Q44 Sin2 %4

U =2 [l +euli [ofle +auhav

\

=2iledioled ) oded + e ked + Ha P feu) joa

Where : @
)-3: [ifelol o¢
p.J=3. Jioklol o6
=3 Ji ool o¢
=3 Jioh el

Where : N is the numbers of layers
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u
%
W
ul |1 00 ¢ 0<% 0 ¢ 0Oflg
Bl =lvl=lo100¢ 0 ¢ 0 llal =[]
W/ |001 00 0 O 0 Oy
W,
&,
0,
9)
Where, f] is the function of the thickness coordinate.
X X; X;
y :ZNi(a’lB)@ Yi +ZNi(a’ﬂ)(l_—2Z) Yi
z Z ) vop Z J botiom
(11)

Where (N) is the Lagrangian interpolation functamd () is the node number.

(G OHCA CRIE R I EHCY CRIC RS CHAE ACR CHIL!

" 2
eI jon

(13)
Where[BNL]i :[A]i [G]i » [Alsax27is function to the displacements and 4] is the

product form of differential operator and shapection in the nonlinear strain terms.
[BL]2oxg is the product form of the differential operatandanodal interpolation
function in the linear terms.
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