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Abstract 
A nonlinear finite element model for geometrically large amplitude free 

vibration analysis of laminated composite shallow cylindrical shell panel is presented 
using high order shear deformation theory (HSDT). The nonlinearity is introduced in 
the Green – Lagrange sense. The effects of different orthotropic ratios, thickness 
ratio, curvature ratio and boundary condition are study also frequency ratio (nonlinear 
frequency to linear frequency) of cylindrical shell are determined as function of shell 
amplitude ratio.   

Keywords: High order shear deformation, Shell, Free vibration, Nonlinear Finite 
 element Method. 

تحليل ا�ھتزازات الحرة ل�شكال الھندسية ال�خطية للرقائق ا�سطوانية وباستعمال 
 طريقة العناصر المحددة –نظريات القص عالية الرتبة 

  الخ�صة 
ا�ش�كال الھندس�ية ذات الس�عات ا�ھتزازي�ة الح�رة العالي�ة  طريقة العناصر المحددة ال�خطي�ة لتحلي�ل

تم . متعددة السطحية تم تقديمھا باستعمال صيغة نظرية القص العالية الرتبةلرقائق ا�سطوانية المركبة ال
ت��م دراس��ة ت��اثير تغيي��ر نس��بة الخ��واص المتعام��دة للم��واد . اعتم��اد ال�خطي��ة ف��ي اتج��اه الك��رين �ك��رانج

الت�ردد (المركبة، نسبة سمك ا�سطوانة، نسبة التقوس والش�روط الحدي�ة وك�ذلك ت�م دراس�ة نس�بة الت�ردد 
.لـ رقائق ا�سطوانية وتم حسابه نسبة الى نسبة السعات) ي الى التردد ال�خطيالخط
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Notations 
ζβα ,, : Curvilinear coordinate axes
wvu ,,  : Displacement along the 

ζβα ,,
 coordinate 

wvu ,,  : The displacements of a 
point on  

 the mid-plane 

21,RR  : Radii of curvature of shell 
(m) 

21,φφ  : The rotations with respect
α  and

β  direction respectively

2121 ,,, θθψψ : High order terms of
Taylor 

 series expansion 
{ } { }NLL εε , : Linear and nonlinear

strain 
 vectors 

[ ]Q : Transferred reduced elastic
constant 
E : Young’s modulus (GPa) 
G : Shear modulus (GPa) 
υ : Poisson’s ratio 
Wmax : Maximum deflection (m) 
h : thickness of laminated 
shallow 

 cylindrical (m) 

nLω : Linear natural frequency 

(rad/sec) 

NLω : Nonlinear natural frequency 

       (rad/sec)  
ωNL/ωnL : Frequency ratio 
κ : Damage ratio for linear and 
nonlinear 

 respectively 

actondelamenatiact intint /)( ωωω − )

Introduction 
aminated composite structures
are playing an imperative role
in different fields of ours life 

like aerospace, automotive, naval, 
mechanical and civil industries over 
the past three decades. The main 
reasons for this trend are outstanding 
mechanical properties of composite, 
such as high strength to weight ratio, 
excellent corrosion resistance and 
very good fatigue characteristics. Its 
ability to allow the structural 
properties to be tailored according to 
requirements adds to the versatility of 
composite for sensitivity application. 
It can be seen from the literature that 
the amount of work carried out on the 
vibration characteristics of isotropic 
plates, shells and composite 
laminates are exhaustive. Some of 
the important contributions are 
briefly mentioned here. 

A considerable literature is 
available on the nonlinear free 
vibration analysis of the laminated 
composite shells in Von-Karman 
sense with and without taking into 
account the transverse shear effects. 
Shin DK 1997, analyzed the large 
amplitude vibration of symmetrically 
laminated moderately thick shallow 
doubly curved open shells with 
simply supported sides, considering 
the first order shear deformation 
theory and nonlinearity in Von-
Karman sens. They obtained the 
governing equations using the 
Galerkin approximation and solved 
them by a fourth order Runge Kutta 
time integration procedure.  Reddy 
and Chao 1981 used the solution of 
finite element methods to determine 
the bending deflection, stress, and 
natural frequency for large deflection 
theory (Von Karman’s), including 

L



Eng. & Tech. Journal, Vol.29, No.11, 2011                        Geometrically Nonlinear Free Vibration    
                                      Analysis of Cylindrical Shells Using high Order Shear 

  Deformation Theory-A Finite Element Approach 
                                   

 
 

 
 

2158 

 

transverse shear, governing 
moderately thick, laminated 
anisotropic composite rectangular 
plate subjected to various loading and 
edge condition was presented. The 
Navier type exact solution are 
presented by Reddy and Liu 1985 
used the high order shear 
deformation theory of elastic shells is 
developed for shells laminated of 
orthotropic layers. The theory is a 
modification of the Sanders theory 
and accounts for parabolic 
distribution of the transverse shear 
strains through thickness of the shell 
and tangential stress free boundary 
conditions on the boundary surfaces 
of the shell. Shiau and Wu 1991 can 
obtain A high precision based on a 
simplified high order shear 
deformation plate theory and used the 
finite element formulation (72 degree 
of freedom and triangular element) to 
determine the natural frequency of 
laminated plate for deferent type of 
material and number of layers. The 
Malekzadeh 2007 studied the effect 
of different parameters on the 
convergence and accuracy of natural 
vibration of the method a differential 
quadrature for large amplitude free 
vibration analysis of laminated 
composite skew plates, the governing 
equations are based on the thin plate 
theory (classical linear theory) and 
geometrical nonlinearity is modeled 
using Green’s strain in conjunction 
with Von Karman assumption. On 
the other hand The Ganapathi, etal. 
2009 investigated the free vibration 
characteristics of simply supported 
anisotropic composite laminates 
using analytical approach the 
formulation is based on the first order 
shear deformation theory, the 
governing equation are obtained 

using energy method. Dongwei and 
Christian 2004 An analytical 
solution to the free vibration of  
composite beams with two non 
overlapping delaminations is 
presented, the Euler Bernoulli beams 
used the delaminations as their 
boundaries, the continuity and the 
equilibrium conditions are satisfied 
between adjoining beams. Wang and 
Dong 2005 used the energy method 
to study hygrothermal effects on 
local buckling for different 
delaminated shapes near the surface 
of cylindrical laminated shells, the 
effect of non-linear obtained by 
considered transverse displacements 
of sub laminate shells and the 
young’s modulus, thermal and 
humidity expansion coefficients of 
material are treaded as functions of 
temperature. Yang and Fu 2006 
discuss the effects of delamination 
sizes, depths, boundary conditions, 
the material properties and the 
laminate stacking sequences on 
delamination growth for beams, and 
used classical theory for cylindrical 
shells. In this work, an effort has 
been made to predict such a complex 
problem. All the higher order terms 
of curvature have been included in 
the formulation. A nonlinear finite 
element method is proposed for this 
nonlinear model. The nonlinear 
fundamental frequencies are obtained 
for different orthotropicity ratios the 
stacking sequences, the thickness 
ratios, the amplitude ratios and 
boundary condition.  
Mathematical Model 
Displacement field 

A shell of length a, width b and 
thickness h is composed of N number 
of orthotropic layers of uniform 
thickness. The (α, β, ζ) it was 
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curvature coordinate . The following 
displacement field for the laminated 
shell based on the HSDT is 
considered to derive the 
mathematical model.  
 

( ) 1
3

1
2

1,,, θζψζζφζβα +++= utu
 

( ) 2
3

2
2

2,,, θζψζζφζβα +++= vtv
                                                                           

( ) wtw =,,βα  
                                                             

(1) 
Where t is the time, ( wvu ,, ) are the 

displacement along the (α, β, ζ) 
coordinates, (u,v,w) are the 
displacements of a point on the mid-
plane and 1φ  and 2φ  are the rotations 

at ( 0=ζ ) of normal to the mid-
plane respect to the α and  β-axes, 
respectively,  2121 ,,, θθψψ  are high 
order terms of Toyler series 
expansion defined at the mid-plane. 
 
Strain –displacement relation 

The nonlinear Green 
Lagrange stain displacement relation 
for the laminated shell can be 
expressed as follows. 

Substituting equation (1) in 
equation (2) (in Appendix A) the 
strain – displacement relation of the 
laminated shell is further expressed 
as shown in equation (3) in Appendix 
(A).  
The value of individual terms of 
above equation which are provided in 
reference [Nabil Hassan Hadi and 
Kayser Aziz Ameen].Hence the 
above equation can be rearrangement 
as shown in Appendix (A) equation 
(4).  
 
 

Stress - strain relations 
 In the analysis of composite 
laminated materials, the assumption 
of plane stress is usually used for 
each layer. This mainly because fiber 
reinforced material are utilized in 
beam, plate, cylinders, spherical and 
other structural shapes which have at 
least one characteristic geometric 
dimension in an order of magnitude 
less than the other two dimensions. 
In this case the stress components 
( 13233 ,, ττσ )are set to zero. Then 

The strain displacement relations, for 
any general kth orthotropic composite 
lamina with an arbitrary fiber 
orientation angle with reference to 
the coordinate axes (α, β, ζ) is 
written as in equation (5) in 
Appendix (A). 
Strain energy of the laminate 

Energy and variational principle 
offered great simplification to many 
derivations of fundamental equations 
in elasticity. Also have been used to 
introduce and implement 
approximation techniques for 
structural systems. Strain energy is 
defined as the work done by the 
internal stresses which caused 
elongation or shear strains. The strain 
energy of the plate can be expressed 
as : 

{ } { }∫ ⋅=
V

i
T
i dVU σε

2

1
                  (6) 

                           
By substituting the strains 

from equation (2) and stresses from 
equation (5) (in Appendix A) into 
equation (6) the strain energy can be 
expressed in equation (7) in 
Appendix (A). 
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Kinetic energy of the vibrating 
shell 
 The kinetic energy 
expression of a vibrated shell can be 
expressed as  

{ } { }∫=
V

T

dVT  
2

1 δδρ &&                  (8) 

                           

Where, ρ  and δ&  are the density, 
displacement vector which differentia 
the first order of displacement with 
respect to time, respectively. The 
global displacement vector can be 
expressed in appendix A. 

Then the kinetic energy for 
‘N’ number of orthotropic layered 
composite plate obtained by 
substituting the equation (9) into 
equation (8) obtain. 
 { } [ ] [ ]{ }∫ ∑∫ 







=
= −

A

N

k

kTTk

k

ffT dA d 
2

1

1 1

ζ

ζ
ζδρδ && (10) 

{ } [ ]{ }∫=
A

dA  
2

1 δδ && mT
T                          

Where, 

[ ] [ ] [ ]( )∑ ∫
=

=
N

k

kT ffm
1

k

1-k

d 
ζ

ζ
ζρ  is the 

inertia matrix.  
Solution Technique 

In the case of the shell element the 
external and inner face are curved, 
and each point on the surface are 
given by Cartesian coordinate as 
shown in the Figure (1). 

Let the ( βα , ) be two curvilinear 
coordinate in the middle plane of the 
shell and (ζ )  a linear coordinate in 
the thickness direction. If further we 
assume that ( βα ,  and ζ ) vary 
between (-1 and 1) on the respective 
faces of the element we can write a 
relationship between the Cartesian 
coordinate of any point of the shell 
and the curvilinear coordinates in the 
form 

It is convenient to rewrite 
relationship (11) in a form specified 
by the vector connecting the upper 
and lower points (i.e a vector of 
length equal to the shell thickness) 
and the mid surface coordinates. 

  

( ) ( )∑∑ +
















=
















ii

midi

i

i

i VN

z

y

x

N

z

y

x

3
2

,,
ζβαβα

                                            
Where :- 
 

 

Bottomi

i

i

Topi

i

i

i

z

y

x

z

y

x

V
















−
















=3
 

The displacement vector can be 
conceded to the form by employing 
the FEM  
{ } [ ]{ }iiN δδ =                       (12) 

Where :  
 

{ } [ ]Tiiii wvu 212121 θθψψφφδ =
  

The equations of strain for linear 
and nonlinear are studied of large 
deflections, as in equation (4) and 
nonlinear displacement in equation 
(1), when substituted into equation 
(7), the strain energy can be written 
as in appendix A. 

The value of individual terms 
of [ ]NLB  which are provided in 

reference [Nabil Hassan Hadi and 
Kayser Aziz Ameen].  
  The final form of governing 
equation for the nonlinear free 
vibration laminated plate panel is 
obtained by using Hamilton’s 
principle. It can be viewed and 
axiom, from which other axioms like 
Newton’s second law, Let us define 
the potential energy to be 
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( )WU −=Π , which U is the strain 
energy and W is the work done and 
the Lagrangian as the function L 
where ( L = (T – U+W)).  

Hamilton’s principle states 
that the actual displacement that the 
body actually goes through from 
instant (t1) to instant (t2) out of many 
possible paths, is that which achieves 
an extremum of the line integral 
of the Lagrangian function. This is 
achieved if the variation of the time 
integral of the Lagrangian is set to 
zero: 

∫ =
2

1

0 
t

t

dtLδ          (14) 

                                 
Hamilton’s principle can be used to 

find the compatible set of equations 
of motion and boundary conditions 
for given stresses and strains. This is 
done by substituting the equations for 
strain energy equation (13) and 
kinetic energy equation (10) into the 
equation (14), performing the 
integration by parts, and setting the 
coefficients of the displacement 
variations (also called virtual 
displacement) equal to  

zero. The Lagrangian becomes 

(Marco, 2008). 
 

[ ]{ } [ ] [ ]( ){ } 0=++ δδ NLL KKM &&                                                                                    

(15) 
 
Where { }δ  is the 

displacement vector, [M] , [K L]  and 
[KNL]  are the global mass matrix and 
global linear stiffness matrix and 
nonlinear stiffness matrix that depend 
on the displacement vector 
respectively.  

 
 

Numerical results and discussion 
   A nonlinear finite element code is 
developed in MATLAB 8.0 using the 
present displacement field shell 
model in Green-Lagrange sense in 
the framework of the HSDT. The 
validation and accuracy of the 
present algorithm are examined by 
comparing the results with those 
available in the literature. The effect 
of different combinations of the 
material orthotropy, amplitude ratio 
(Wmax/h).  
 The following sets of 
boundary conditions are used for the 
present analyses 
a-Simply support boundary 
conditions (S): 

0222 ===== θψφwv            at 
x=0,a 

0111 ===== θψφwu             at 
y=0,b 
b-Clamped supported boundary 
condition (C) 

0212121 ========= θθψψφφwvu  
                                                    at 
x=0,a 

0212121 ========= θθψψφφwvu
                                                 at 
y=0,b 
   A convergence of the mathematical 
model developed for laminated shell 
is presented Figure (2). are shown the 
nondimensional fundamental 

frequency ( ( ) ( )
2

2

Eh
an ρωϖ = ), 

against mesh division respectively 
for simply support boundary 
condition and for different stacking 
sequences,  The results are plotted 
using the material properties (E1=181 
GPa, E2=7.17GPa, G23=6.71GPa, 
υ12=0.28, and the geometry 
parameters are a/b=1, a/h=10). From 
the figures shown that the 
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convergence is a (5X5) mesh, then 
it’s used to compute the results 
throughout the study.  

In order to show the validation of 
the present intact model, simply 
supported square laminated 
cylindrical shell panels of symmetric 
angle ply lamination [±45º]s are 
studied with the geometry cylindrical 
shell (a/b=1, a/h=10 and R1/h=100). 
The composite properties (E1= 181 
GPa, E2=10.3 GPa, G12=7.17 GPa, 
G23=6.21 GPa and υ12=0.28) are 
used for the computation of the 
result. The results in terms of the 

frequency ratio ( )
L

NL

ϖ
ϖ , ie., ratio of the 

nonlinear frequency to linear 
frequency are computed for different 
amplitude ratios (Wmax/h),(to find this 
ratio first when the maximum 
deflection (Wmax)equal to the 
thickness (Wmax/h=1) such as h= 
5mm then the Wmax = 5mm after that 
we increase the ratio (h=5X 
0.5,.8,1.1.2,1.5 which 0.5,…,1.5 
were the ratio) then at each ratio find 
the natural frequency when consider 
the Von-Karmman and with out 
consider) . The present results and 
their differences with the existing 
result (Shin DK) are depicted in 
Table (1). The differences are more 
pronounced because the present 
study deals with all the higher order 
terms of Green-Lagrange strains in 
the framework of the high shear 
order theory. Due to this, the stiffness 
matrix becomes more flexure and 
approaches towards the more general 
case, ie., Green-Lagrange. However, 
the published results (Shin DK) have 
been obtained using the Von-Karman 
strains in the framework of the first 
shear order theory.  
     The effect of material orthotropy 
on the frequency ratio of the 

nonlinear free vibration of square 
laminated cylindrical shell are 
studied for four different modular 
ratio (E1/E2 = 3, 5, 10 and 15) with 
other parameters such as (G12/E2=0.6, 
G23/E2=0.5, υ12=0.25, a/b=1, a/h=10, 
R/a=5) for all sides simply supported 
boundary condition (SSSS). The 
results of the linear fundamental 
frequency increase with increase in 
modular ratio as shown in figure (3) 
and the reduction in natural 
frequency when considering the 
nonlinearity (13.67% for 
[0/90/0/90]s, 16.62% for [45/-45/45/-
45]s and 17.11% for[0/45/-45/90]s). 
The frequency ratio decreases with 
increase in modular ratio and diverge 
in some results because the present 
work used in the framework of the 
high order shear theory and 
geometrical nonlinearity modeled 
using Green’s strain. as shown in 
Table (2).    
    The effect of the thickness ratio 
(a/h=10, 20, 50 and 100) on the 
frequency ratio of a cylindrical shell 
is analyzed. The material properties 
are (E1/E2 = 15, G12/E2=0.6, 
G23/E2=0.5, υ12=0.25, a/b=1, R/a=5) 
for all sides simply supported 
boundary condition (SSSS). The 
results are depicted in Table (3) and 
Figure (4), the frequency ratio 
decreases with increase in the 
thickness ratio and the non-
dimensional linear frequency 
increase with increase the thickness 
ratio.  
 The variation of the 
frequency ratio for unlike stacking 
sequences, the curvature ratio (R/a= 
10, 20, 50 and 100)and different 
amplitude ratio  of cylindrical shell is 
shown in Table (4) and in Figure (5). 
The results are using the material 
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properties and other parameters such 
as (E1/E2 = 15, G12/E2=0.6, 
G23/E2=0.5, υ12=0.25, a/b=1, a/h=10). 
From the table it is clear that as the 
curvature ratio increases the 
frequency ratio decreases. The linear 
non-dimensional frequency is also 
computed and presented in Figure (4)  
which noted that decreasing in linear 
non-dimensional frequency with 
increasing the curvature ratio. The 
results also shows that few diverge 
because of severe nonlinearity. 

The effect of number of  layers and 
the amplitude ratio on the frequency 
ratio are summarized in Table (5) and 
Figure (6) for lamination scheme 
([0/90/0], [0/90/0/90/0], [0/90/0/90]s 
and [0/90/0/90/0/90]s). The results 
are using the material properties and 
other parameters such as (E1/E2 = 15, 
G12/E2=0.6, G23/E2=0.5, υ12=0.25, 
a/b=1, a/h=10, R/a=10) for all sides 
simply supported boundary 
condition. The frequency ratio 
decreases with increase in number of 
layers and the non-dimensional linear 
frequency increase with increase in 
number of layers. 
   The variation of the frequency ratio 
for different support conditions and 
the amplitude ratios are analyze for 
different lamination schemes. The 
results are shown in Table (6) and 
Figure (7). In this part of the study 
the effects of three different support 
conditions are examined on the 
frequency ratio such as all sides  
simply support (SSSS), all sides 
clamped (CCCC) and two sides 
simply support and two side clamped 
(SCSC). The material properties and 
other parameters such as (E1/E2 = 15, 
G12/E2=0.6, G23/E2=0.5, υ12=0.25, 
a/b=1, a/h=10, R/a=10) used for the 
computation of the result. The 

frequency ratio decrease in amplitude 
ratio increase for all type of boundary 
condition. 
 
 
Conclusions 
    The geometrically nonlinear free 
vibration analysis of  composite plate 
with and without containing the 
delamination is investigated using 
nonlinear finite element method in 
the framework of a higher order 
shear deformation theory in Green-
Lagrange sense. The frequency 
amplitude relations for the nonlinear 
free vibrated plate are computed 
using eigenvalue formulation and are 
solved employing a direct iterative 
procedure. Based on the numerical 
results the following conclusions are 
drawn. 
• The validation shows the 

necessities of taking into account 
full nonlinearity. 

• The finite element model 
proposed can be predicted 
accurately the dynamic behaviors 
of a laminated composite plate with 
internal delamination at arbitrary 
location. Hence the discrepancy of 
the results was (15.8022 % with 
considering the nonlinearity). 

• Local internal delamination has 
slight effect on the natural 
frequencies of the laminated 
composite plate although the extent 
of the natural frequency variation 
increases with both the 
delamination dimension and the 
order of the natural frequency. 
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Table (1) Comparison of frequency ratio ( )
L

NL

ϖ
ϖ  of square angle [±45º]s 

laminated cylindrical shell for SSSS boundary condition 
Wmax/h Shin DK Present Work 
0.2 1.0281 1.166719135 
0.4 1.0957 1.019832623 
0.6 1.2023 0.936271035 
0.8 1.30368 0.99989171 
average error (%)=16.45904 
 
 
 
 

Table (2) Effect of material orthotropy on nonlinear free vibration  
of laminated cylindrical shell 

0/90/0/90/0/90/0/90 

Wmax/h 
E1/E2 
3 5 10 15 

0.5 1.672687559 1.427193335 1.175672797 1.117434145 
1 1.553800821 1.301946392 1.062937543 1.043722707 
1.5 1.515533463 1.272510906 1.040317693 1.029731976 
2 1.501928192 1.26207732 1.032320108 1.024763747 
         
45/-45/45/-45/45/-45/45/-45 

Wmax/h 
E1/E2 
3 5 10 15 

0.5 1.674726071 1.410753328 1.099153078 0.953255327 
1 1.549655278 1.310078295 1.032805693 0.896334061 
1.5 1.513669461 1.29077769 1.020217106 0.885552051 
2 1.500864133 1.283835712 1.015702084 0.881702682 
         
0/45/-45/90/0/45/-45/90 

Wmax/h 
E1/E2 
3 5 10 15 

0.5 1.672687557 1.415017862 1.083540855 0.949228308 
1 1.553799051 1.300610542 1.013675441 0.88141936 
1.5 1.515533463 1.278444234 1.000400976 0.868474041 
2 1.501928192 1.270528361 0.995657977 0.863880487 
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Table (3) Variation of frequency of laminated cylindrical shell for different 
thickness ratio 

Wmax/h 

[0/90/0/90/0/90/0/90] 
Thickness ratio (a/h) 
10 20 50 100 

0.5 0.995163672 0.995989891 0.945902172 0.968499531 
1 0.982261225 0.98253814 0.93691108 0.961663992 
1.5 0.965647406 0.965346216 0.924716796 0.952000054 
2 0.947767427 0.950245124 0.91104925 0.940762715 

Wmax/h 

 [45/-45/45/-45/45/-45/45/-45] 
Thickness ratio (a/h) 
10 20 50 100 

0.5 1.211084329 1.186263118 0.870931957 0.774350296 
1 1.19328851 1.166592484 0.860495641 0.768023597 
1.5 1.171269981 1.142842444 0.847063366 0.759333344 
2 1.148072284 1.118127394 0.832583126 0.749516914 

Wmax/h 

[0/45/-45/90/0/45/-45/90]  
Thickness ratio (a/h) 
10 20 50 100 

0.5 0.994880536 0.994910849 0.851931981 1.003496992 
1 0.981248996 0.982588223 0.84295392 0.995971013 
1.5 0.964004368 0.964191207 0.831040971 0.985446734 
2 0.945633912 0.944770372 0.817932604 0.97336475 
Table (4) Frequency ratios of laminated cylindrical shell for different curvature 

ratios, lamination schemes and amplitude ratios. 
 

Wmax/h 

[0/90/0/90/0/90/0/90] 
 R/a 
10 20 50 100 

0.5 0.995163672 0.995989891 0.945902172 0.968499531 
1 0.982261225 0.98253814 0.93691108 0.961663992 
1.5 0.965647406 0.965346216 0.924716796 0.952000054 
2 0.947767427 0.950245124 0.91104925 0.940762715 

Wmax/h 

[45/-45/45/-45/45/-45/45/-45] 
 R/a 
10 20 50 100 

0.5 1.211084329 1.186263118 0.870931957 0.774350296 
1 1.19328851 1.166592484 0.860495641 0.768023597 
1.5 1.171269981 1.142842444 0.847063366 0.759333344 
2 1.148072284 1.118127394 0.832583126 0.749516914 

Wmax/h 

[0/45/-45/90/0/45/-45/90] 
 R/a 
10 20 50 100 
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0.5 0.994880536 0.994910849 0.851931981 1.003496992 
1 0.981248996 0.982588223 0.84295392 0.995971013 
1.5 0.964004368 0.964191207 0.831040971 0.985446734 
2 0.945633912 0.944770372 0.817932604 0.97336475 
 
 
 
Table (5) Effect of number of layers on the frequency ratio and amplitude ratio 

 

Wmax/h 
[0/90/0] [0/90/0/90/0] [0/90/0/90]s [0/90/0/90/0/90]s 
Amplitude Ratio 

0.5 0.994126671 0.993479344 0.995163672 0.994617709 
1 0.979183295 0.977133428 0.982261225 0.98058019 
1.5 0.960576377 0.957068515 0.965647406 0.962787474 
2 0.940910088 0.936105529 0.947767427 0.943848581 
 

Table (6) Effect of various boundary conditions on frequency ratios of 
cylindrica l 

Wmax/h 
  

[0/90/0/90/0/90/0/90] 
Boundary Condition  
SSSS SCSC CCCC 

0.5 1.117122228 1.144280709 1.247976244 
1 1.117122228 1.03659193 1.058801939 
1.5 1.029696605 1.015228814 1.007639366 
2 1.024744024 1.00768562 0.98543487 

Wmax/h 
  

[45/-45/45/-45/45/-45/45/-45] 
Boundary Condition  
SSSS SCSC CCCC 

0.5 1.017880288 0.719815501 1.392439 
1 0.914623179 0.637949266 1.097554057 
1.5 0.8937672 0.620350335 1.025412022 
2 0.886401958 0.614124014 0.992703752 

Wmax/h 
  

[0/45/-45/90/0/45/-45/90] 
Boundary Condition  
SSSS SCSC CCCC 

0.5 0.949228308 0.857224276 1.262529587 
1 0.881421544 0.761390319 1.053566689 
1.5 0.868473041 0.740984643 1.000178638 
2 0.863880721 0.733772977 0.975261178 
 
 
 
 
 
 

Figure (1) General curved shell elements 
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Figure (2) Convergence study of non-dimensional frequency for square shell 
having SSSS boundary condition with different stacking sequences 

 
Figure (3) Effect of material orthotropy on linear free vibration 

 of laminated cylindrical shell 
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Figure (4) Effect of different thickness ratio on frequency  
ratio of laminated cylindrical shell 

 
 

Figure (5) The effect of curvature ratios with the  
non-dimensional linear frequency 
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Figure (6) The effect of number of layers on the non-dimensional 

 linear frequency for [0/90]n 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure (7) Effect on variable boundary conditions on the  
non-dimensional linear frequency 
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Appendix (A) 
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Or , { } { } { }NLL εεε +=                                                                                                   

(2) 
Where { }Lε  and  { }NLε  are the linear and nonlinear strain vectors respectively. 
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Where : N is the numbers of layers  
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(9) 
Where, [f] is the function of the thickness coordinate. 
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(11) 
Where (N) is the Lagrangian interpolation function and (i) is the node number. 
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(13) 
Where [ ] [ ] [ ]iiiNL GAB =  , [A]33×27 is function to the displacements and [G]27×9  is the 

product form of differential operator and shape function in the nonlinear strain terms. 
[BL]20×9 is the product form of the differential operator and nodal interpolation 
function in the linear terms. 
 
 


