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Robust Multiple Model Adaptive Control for 

Dynamic Positioning of Quadrotor Helicopter 

System 

Abstract- The quadrotor control has been one of the benchmark control 

problems. It is considered as an under-actuated, multivariable and high 

nonlinear system due to its dynamics, having strong coupling between 

translation and angular motion and affected by external disturbances 

associated with flight environment. Therefore, there is a need to design a robust 

control that can keep up with sudden changes and find better tracking 

performance against modeling error and uncertainties. In this work, an 

adaptive state feedback control method denoted as Classical Multiple Model 

Adaptive Control (CMMAC) has been implemented. This method embodies in 

its structure a bank of filters. Kalman filter (KF) has been used where each 

filter has been designed for a specific value of an equilibrium point and set of 

controllers, which was provided by the LQ-servo design. Comparisons of the 

performance of a quadrotor system between control designs for single Kalman 

filter with CMMAC for the same value of uncertainty in terms of Root Mean 

Square Error (RMSE) have been presented. CMMAC meets better performance 

of tracking design for all variations; the performance of the controlled 

quadrotor has been improved for the linear and angular coordinates 100%, as 

compared to the performance when using one Kalman filter. 

Keywords- quadrotor, Kalman filter, Classical Multiple Model Adaptive 

control (CMMAC), LQ-servo control, tracking performance, performance 

indices. 
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1. Introduction
Nowadays, the development of technologies makes 

the study of micro Unmanned Air Vehicles (UAVs) 

very interesting. UAV means an aircraft which can 

fly without a pilot. UAVs have gained a great 

importance at present, because they have usefulness 

in a variety of areas, for an instance, conducting 

research in hazardous and large-scale fields [1]. 

Quadrotor belongs to the rotary UAVs type and it is 

characterized by the simplicity in construction, ease 

of maintenance and less complicated in dynamics 

compared to a helicopter [2]. Micro quadrotor 

UAVs are small in size and have lightweight 

components. These features make the systems very 

sensitive to any variation and external disturbance 

uncertainty. As a result, additional payload, 

uncertainty in aerodynamic and gyroscopic 

coupling may change quadrotor dynamics 

dramatically affecting the stability and tracking 

response of the system. This problem raises the 

need for a robust control in order to meet a better 

tracking performance. In addition to the need for the 

estimation of the unmeasured variables required for 

controller design [3]. 

 Many types of strategies and methods have been 

implemented for controlling a quadrotor, some of 

them for stabilizing quadrotor attitudes as, [4-9], 

others for controlling a full quadrotor states as [10-

16]. For such a system, the controller design should 

be advanced, to alleviate any disturbances and 

adaptive to attains stabilizing and tracking in the 

presence of uncertainties. Therefore, the application 

of model-based control methods may not be 

adequate since they cannot satisfy completely 

stabilization of the system due to the uncertainty in 

the dynamics of a quadrotor. An adaptive method 

that based on a set of controllers designed for a 

reference model will be a competitive approach. 

The Adaptive Multiple Model (AMM) is a 

methodology that is based on linear model 

implementation in real time. It can efficiently deal 

with large sets of uncertainties. The Multiple Model 

approach has been explained by references [17,18]. 

It consists of a set of controllers and an 

identification module. A bank of filters is used for 

identification module which can achieve an optimal 

value for the estimated output, or a performance 

index for calculating a feedback control law [19]. 
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Many applications employed the Multiple Model 

Method (MMM) as: The authors in [20] achieved 

the trajectory design of 2DOF robotic manipulators. 

The continuous dynamic positioning systems had 

been designed for ships and offshore rigs subjected 

to the influence of sea waves in [21]. Reference [22] 

diagnosed the error in micro electro mechanical 

system/ Lateral Comb Resonators. In reference 

[23], the authors had suggested MMM to improve 

the existing collision avoidance systems of vehicles 

for different scenarios like cured path and using the 

data from Global Positioning System (GPS). In[24], 

the authors designed a procedure for F-8C aircraft 

to control longitudinal and lateral dynamics under 

several altitudes, air speed, and level of turbulence.  

In this work, Classical Multiple Mode Adaptive 

Control (CMMAC) is used to meet stability and 

performance requirement of tracking for a reference 

model. This will be achieved by selecting an 

appropriate control signal correlated with highest 

probability. Each Kalman filter is designed for a 

model corresponding to each known value of the 

uncertain parameter. A cost function Root Mean 

Square Error (RMSE) of the adaptive control has 

used to determine the error between actual response 

and references [19,25]. 

This paper is organized as follow: Section 2 

presents the dynamics model of a Draganflyer IV 

quadrotor which derived by using Newton Euler 

formulation. Section 3 and section 4 present the 

continuous time Kalman filter and LQ-servo, 

respectively. CMMAC is explained in section 5 and 

its performance and simulation result of tracking 

design are drawn in section 6 for a reference model. 

 

2. The Quadrotor Model 

I. Definitions 

A quadrotor is a rotary wing UAV composing of 

four identical rotors with propeller sets on motors, 

all located at the ends of a plus structure or 

configuration. Two distinct coordinate systems will 

be used when the quadrotor is moving in three 

dimensional spaces in order to define position and 

orientation. One is the body coordinate system, the 

other is the navigation frame (inertial frame), were 

forces have an effect. The quadrotor build based on 

some assumption [26]: 

 Quadrotor is modeled as a plus configuration 

with four rotors.  

 Quadrotor propeller frame of rotation is assumed 

fixed and parallel and blades are of fixed pitch so a 

quadrotor structure is a rigid body and the 

derivation of a rigid- body dynamics can be 

performed by applying Newton's second law and 

Euler's rotational equation of motion. 

 The quadrotor configuration is symmetrical over 

its center of gravity which makes the matrix of 

moment of inertia a diagonal matrix which has the 

same value on x-axis and y-axis and the off-

diagonal elements can be omitted.  

 Center of gravity and body axis origin are 

similar. 

 Euler angular rate and body angular rate are the 

same near hovering. 

The quadrotor is rotated on its axes with an angular 

velocity. This angular velocity is represented as p, q 

and r corresponding to x-axis, y-axis and z-axis, 

respectively, the two frames set direction to north, 

east and down and follow right hand rule, [𝑥 𝑦 𝑧] is 

a navigation coordinate frame, [𝑥𝑏 𝑦𝑏 𝑧𝑏] is the 

body coordinate frame as shown in Figure 1. 

Quadrotor position represents by Pn= [𝑥 𝑦 𝑧] and 

the velocity of quadrotor is represented in body 

coordinate frame, indexed 'V': VB= [p q r]T, the 

rotation of quadrotor is described by Euler angles, 

where the three Euler angles which are denoted by 

roll ɸ, pitch Ɵ, and ѱ respectively [27]. The desired 

orientation is achieved by rotating three times 

around body coordinate frame. The total 

transformation from body frame to navigation 

frame is achieve by the three matrixes will be 

multiplied together; the resulting is a rotation 

matrix, indexed 'RB
I ' [28]. 

𝑅𝐵
𝐼 =

[

 𝐶𝜓𝐶Ɵ 𝐶𝜓𝑆Ɵ𝑆𝜙 − 𝑆𝜓𝐶𝜙 𝐶𝜙𝑆Ɵ𝐶𝜓 + 𝑆𝜙𝑆𝜓
 𝑆𝜓𝐶Ɵ 𝑆𝜓𝑆Ɵ𝑆𝜙 + 𝐶𝜓𝐶𝜙 𝐶𝜙𝑆Ɵ𝑆𝜓 − 𝑆𝜙𝐶𝜓
  −𝑆Ɵ 𝐶Ɵ𝑆𝜙 𝐶𝜙𝐶Ɵ

] 

(1) 
From assumption, the propeller has fixed-pitch 

blades and propellers axes of rotation are fixed. So 

that the speed is the only changing variable of the 

propellers [28]. The opposite blades are matched 

and rotate in the same direction [29], so the motors 

𝑀1  and 𝑀3  rotate in the clockwise direction when 

seeing from above, while motors 𝑀2 and 𝑀4 rotate 

in the counterclockwise direction. The angular 

velocities of the motors are written 𝒘 =
[w1 w2 w3 w4 ]

T. 

 
 

Figure 1: Navigation frame and body frame [29]. 
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II. Quadrotor kinematics 

The kinematics of the quadrotor is represented as 

the movement of the craft body as one piece within 

the surroundings environment with no information 

that specifies the force and moments that really 

generate these movements. The velocity of 

the quadrotor is calculated from a time derivative 

for position data. The linear velocity of the craft 

will be related by rotation matrix as demonstrated 

in the Equation below [2]:  
 

[
�̇�
�̇�
�̇�

]

𝑖𝑛𝑒𝑟𝑡𝑖𝑎𝑙

[

(𝐶𝜓𝐶Ɵ)�̇�𝐵𝑜𝑑𝑦 +

(𝑆𝜓𝐶Ɵ)�̇�𝐵𝑜𝑑𝑦 +

(−𝑆Ɵ)�̇�𝐵𝑜𝑑𝑦 +

 

(𝐶𝜓𝑆Ɵ𝑆𝜙 − 𝑆𝜓𝐶𝜙)�̇�𝐵𝑜𝑑𝑦 + (𝐶𝜙𝑆Ɵ𝐶𝜓 + 𝑆𝜙𝑆𝜓)�̇�𝐵𝑜𝑑𝑦

(𝑆𝜓𝑆Ɵ𝑆𝜙 + 𝐶𝜓𝐶𝜙)�̇�𝐵𝑜𝑑𝑦 + (𝐶𝜙𝑆Ɵ𝑆𝜓 − 𝑆𝜙𝐶𝜓)�̇�𝐵𝑜𝑑𝑦

(𝐶Ɵ𝑆𝜙) 𝑦 ̇_𝐵𝑜𝑑𝑦 + (𝐶𝜙𝐶Ɵ)𝑧 ̇_𝐵𝑜𝑑𝑦

] 

 (2) 

 

where S ( ) and C ( ) represent sine and cosine, 

respectively, the linear velocity in navigation 

frame comes from the inverse of the rotation 

matrix multiplied by a linear velocity in body 

coordinate frame. All attitude angles are changing 

with time, so the relationship between the Euler 

angles rates in navigation system with the body 

angular rates with regard to the body fixed system 

are calculated by using the transformation matrix. 

At the beginning, the navigation attitude rates and 

the body attitude rates seem to be one and the 

same. The Euler rate depends on the angular 

displacement of the navigation systems. Equation 

(3) illustrates the Euler angle rates related to the 

body axis rates [8]. 

 

[

�̇�

Ɵ̇
�̇�

]

𝑖𝑛𝑒𝑟𝑡𝑖𝑎𝑙

= [

1 𝑆𝜙𝑡Ɵ 𝐶𝜙𝑡Ɵ
0 𝐶𝜙 −𝑆𝜙
0 𝑆𝜙𝑠𝑒𝑐Ɵ 𝐶𝜙𝑠𝑒𝑐Ɵ

]   [
𝑝
𝑞
𝑟
]

𝐵𝑜𝑑𝑦

                                                                                               

(3) 
 

III. Quadrotor Dynamics  

The dynamics describe behavior of 

quadrotor which is characterized by under-

actuated and coupled system. The 

vehicle has six degrees of freedom (three degrees 

for translation and three degrees for angles about a 

translation axes) and only four control inputs. The 

under-actuated state means that there are two states 

which are uncontrollable and couple [28]. In this 

case, x and y positions are coupled and depended 

on the angles of rotation with regard to 

control inputs. The dynamic model is 

represented by understanding and determining 

various forces and moments applied to generate 

accurate model and generate equation of motion by 

using Newton-Euler formalism which is written by 

Eq.(4) [30]:  

 

[𝐹
𝐵

𝜏
] =[

𝑚 ⨯ 𝐼 03⨯3 
03⨯3 𝐼𝑥,𝑦,𝑧

]  [�̇�
𝐵

�̇�𝐵
] +[

𝜔𝐵 ⨯ (𝑚 𝑉𝐵)

𝜔𝐵 ⨯ (𝐼𝑥,𝑦,𝑧 𝜔
𝐵 )

]                                 

                                                                (4) 

 

The variable 𝑚 represents the mass in (Kg), I is the 

identity matrix, Ix, y, z is a moment of inertia in (x-

axis, y-axis, and z-axis) and  𝑉𝐵, 𝜔𝐵
  represent 

linear and angular velocity of the system. The total 

force represent on the quadrotor are the sum of 

forces shown in advance: 

 

𝐹𝑡𝑜𝑡
𝐵 =𝐹𝑔𝐵𝑜𝑑𝑦

𝐵  –𝐹𝑡ℎ𝑟𝑢𝑠𝑡
𝐵 +𝐹𝑑𝑟𝑎𝑔

𝐵  +𝐹𝑑𝑖𝑠𝑡𝑢𝑟𝑏𝑎𝑛𝑐𝑒𝑠 
𝐵  

       =m⨯𝑉�̇�+ 𝜔𝐵x ( m  𝑉𝐵)    
                                                           (5) 

𝐹𝑡𝑜𝑡
𝐵 =[ 

𝑚 �̈�𝐵

𝑚 �̈�𝐵

𝑚 �̈�𝐵

] + [

Ɵ̇�̇� − �̇��̇�

�̇��̇� − �̇��̇�

�̇��̇� − Ɵ̇�̇�

] 

   =mtot ⨯[

−𝑔 ⨯ 𝑆Ɵ
𝑔 ⨯ 𝐶Ɵ𝑆𝜙
𝑔 ⨯ 𝐶𝜙𝐶Ɵ

]-[
0
0

𝑏 ⨯ (𝑤1
2 + 𝑤2

2 + 𝑤3
2 + 𝑤4

2)
] 

                                              (6) 
 
The forces on the quadrotor create moments in the 

different axes. The moment generally has the 

following: 

 

τ = 𝐼𝑥𝑦𝑧   �̇�𝐵 +  𝜔𝐵 ⨯ (𝐼𝑥𝑦𝑧 𝜔
𝐵)                         (7)                                                              

                                                

In a model the thrust forces and length from center 

of gravity to the center of the propeller cause 

moment in the three axes: 

 

𝜏𝑡ℎ𝑟𝑢𝑠𝑡 = [
𝜏𝑥
𝜏𝑦
𝜏𝑧

]= [
𝑙 ⨯ (𝐹4 − 𝐹2)

𝑙  ⨯  (𝐹3 − 𝐹1)
𝑇1 + 𝑇2 + 𝑇3 + 𝑇4

]  

 
= 𝐼𝑥𝑦𝑧   �̇�𝐵 +𝜔𝐵 ⨯ (𝐼𝑥𝑦𝑧 𝜔

𝐵)                                (8)  
                                                 

      where [

𝑙 ⨯ (𝐹4 − 𝐹2)

𝑙 ⨯ (𝐹3 − 𝐹1)
𝑇1 + 𝑇2 + 𝑇3 + 𝑇4

]=[

𝑢2

𝑢3

𝑢4

]                  (9)                                                 

                                            

[

𝑢2

𝑢3

𝑢4

] =[

𝐼𝑥𝑥  ⨯ �̈�𝐵

𝐼𝑦𝑦  ⨯  Ɵ̈𝐵

𝐼𝑧𝑧  ⨯  �̈�𝐵

]  + [(�̇�𝑖 + Ɵ̇𝑗+ �̇�k) ⨯ (

𝐼𝑥𝑥 �̇� 𝑖

𝐼𝑦𝑦  Ɵ̇ 𝑗

𝐼𝑧𝑧 𝜓�̇� 

) ]   

(10) 
                                                                                          

where 𝐹𝑑𝑟𝑎𝑔
𝐵  and 𝐹𝑑𝑖𝑠𝑡𝑢𝑟𝑏𝑎𝑛𝑐𝑒𝑠 

𝐵  are neglected in the 

model. Coriolis terms are picked up when the 

linear velocities are crossed (vector product) with 

the angular velocities and 𝑇1, 𝑇2, 𝑇3, 𝑇4 are drug 
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moments have the relationship with thrust force on 

each arm.  

 

IV. Equations of motion  

Equations of motion for quadrotor system which 

have been derived above can be represented as in 

Eq. (11) and Eq. (12) [28]: 

 

[
�̈�𝐵

�̈�𝐵

�̈�𝐵

]= [
−𝑔 ⨯ 𝑆Ɵ
𝑔 ⨯ 𝐶Ɵ𝑆𝜙
𝑔 ⨯ 𝐶𝜙𝐶Ɵ

] - 
1

𝑚
 [

0
0

𝑏 ⨯ (𝑤1
2 + 𝑤2

2 + 𝑤3
2 + 𝑤4

2)
] 

(11)  

                                                                                 

[

�̈�𝐵

Ɵ̈𝐵

�̈�𝐵

]=[

𝑢2/𝐼𝑥𝑥 
𝑢3/𝐼𝑦𝑦

𝑢4/𝐼𝑧𝑧

] +[

Ɵ̇�̇�(𝐼𝑧𝑧 − 𝐼𝑦𝑦)/𝐼𝑥𝑥

ɸ̇�̇�(𝐼𝑥𝑥 − 𝐼𝑧𝑧)/𝐼𝑦𝑦

Ɵ̇�̇�(𝐼𝑦𝑦 − 𝐼𝑥𝑥)/𝐼𝑧𝑧

]          (12)  

                                                                                                                                          

The movement of the quadrotor results from the 

processing of the thrust force and drag moment 

prepared by the four rotors. The thrust force and 

drug moment have the relationship with rotors 

speed as given in the following equations [30]: 

  

𝐹 = 𝑏 ⨯ 𝒘2                                                      (13) 

     

𝑇= 𝑑 ⨯ 𝒘2                                                       (14)       

 

Equations (13) and (14) represent the effect of 

angular velocity of the motors. The thrust force 

and moments are considered as control inputs 

 

𝐹𝑡ℎ𝑟𝑢𝑠𝑡(𝒘
2)= (𝑤1

2 +𝑤2
2 +𝑤3

2 + 𝑤4
2 ) ⨯b = 𝑢1 

 (15)                                                                    

𝝉ɸ(𝑤2,4) = ( 𝑤4
2 − 𝑤2

2 ) ⨯ 𝑏 ⨯ 𝑙  =𝑢2 
                                                        (16)                                                      

𝜏Ɵ(𝑤1,3) = ( 𝑤1
2 − 𝑤3

2) ⨯ 𝑏 ⨯ 𝑙 = 𝑢3                                                                                                               

(17) 

 

𝝉ѱ (𝒘) = (𝑤2
2 + 𝑤4

2 − 𝑤1
2 − 𝑤3

2 ) ⨯ d = 𝑢4                                                                                                     
(18)   

                  

The states of the craft are the linear location, linear 

velocities, Euler angles and angular velocities. 

These 12 state variables form the state vector of 

the quadrotor and these provided in Eq. (19) 

 

𝒙 = [𝑥  𝑥 ̇  𝑦  �̇�  𝑧  �̇�  𝜙  �̇�  Ɵ  Ɵ ̇  𝜓  �̇� ]
𝑻

            (19)

                                    

These states form the equation of motion in body 

coordinate system. The Body Fixed Frame (BFF) 

and Inertial Frame (IF) are related. Accordingly, 

these states can be made in IF as: 

 

�̇� = 𝑓(𝒙, 𝑢)                                                      (20)           

                                                                                                                        

[
 
 
 
 
 
 
 
 
 
 
 
 
�̇�
�̈�
�̇�
�̈�
�̇�
�̈�
�̇�

�̈�

Ɵ̇
Ɵ̈
�̇�

�̈�]
 
 
 
 
 
 
 
 
 
 
 
 

=

[
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

𝒙2

−(𝑐𝑜𝑠𝜙 𝑠𝑖𝑛Ɵ 𝑐𝑜𝑠𝜓 + 𝑠𝑖𝑛 𝜙 𝑠𝑖𝑛𝜓) ⨯ 𝐹𝑡ℎ𝑟𝑢𝑠𝑡  

𝑚
𝒙4

−(𝑐𝑜𝑠𝜙 𝑠𝑖𝑛Ɵ 𝑐𝑜𝑠𝜓 − 𝑠𝑖𝑛𝜙 𝑐𝑜𝑠𝜓) ⨯ 𝐹𝑡ℎ𝑟𝑢𝑠𝑡 

𝑚
𝒙6

𝑔 − (
(𝑐𝑜𝑠𝜙 𝑐𝑜𝑠Ɵ ) ⨯ 𝐹𝑡ℎ𝑟𝑢𝑠𝑡

𝑚
𝒙8

Ɵ̇ �̇� (𝐼𝑧𝑧 − 𝐼𝑦𝑦 )
𝐼𝑥𝑥

⁄ +
𝜏𝜙

𝐼𝑥𝑥
⁄

𝒙10

�̇� �̇� (𝐼𝑥𝑥 − 𝐼𝑧𝑧 )
𝐼𝑦𝑦

⁄ +
𝜏Ɵ

𝐼𝑦𝑦
⁄

𝒙12

Ɵ̇ �̇� (𝐼𝑦𝑦 − 𝐼𝑥𝑥  )
𝐼𝑧𝑧

⁄ +
𝜏𝜓

𝐼𝑧𝑧
⁄ ]

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

(21) 
                                                                                
Equation (21) displays twelve state variables 

effectively controlled from the rotational rate of 

the motors. In this work, it is needed to put the 

model in a matrix format for a linear control. This 

was proved by linearizing the equations of motion 

at any operating point, as explains in Eq. (22), 

when the vehicle is in a hovering situation. While 

the vehicle is hovering, the angles roll and pitch 

should be stabilized so that there would be no 

movement in x and y position because they are 

coupled. The positions x and y, altitude z, and the 

rotation angle yaw could be a constant. In this 

work, the assumed operating point is written below 

in Eq. (23) and the control input signals of linear 

model at the operating point are explained in Eq. 

(24). 

 

𝒙𝒆𝒒 = [𝑥, 0, 𝑦, 0, 𝑧, 0,0,0,0,0,ѱ, 0]                   (22)

                                                                                            

𝒙𝒆𝒒 = 𝒙𝒐𝒑 = [0 0 0 0 − 8  0  0  0 0 0 0 0]     (23)  

                                                              

𝑢𝑒𝑞 = [𝑢1 , 𝑢2 , 𝑢3 , 𝑢4 ]                          (24)    

                         

where 𝒙𝒆𝒒 and 𝑢𝑒𝑞 are the equilibrium point and 

the control signal for a linearized quadrotor at 

hovering situation. For hovering situation the 

control signal 𝑢1 = 𝐹𝑡ℎ𝑟𝑢𝑠𝑡 = 𝑚𝑔  and the other 

u2, u3 and u4 are zeros. The state space format of 

the equations of motion at any equilibrium point 

is: 

 

�̇� = 𝐴 𝒙 + 𝐵𝑢                                                  (25)

                                              

𝑦 = 𝐶 𝒙                                                             (26)

                                                                                                                       

where A = 
𝑑𝑓

𝑑𝒙
|
𝒙=𝒙𝒆𝒒

     , 𝐵 =
𝑑𝑓

𝑑𝑢
|
𝑢=𝑢𝑒𝑞
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𝐴 =

 

[
 
 
 
 
 
 
 
 
 
 
 
0 1 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 −𝑔 0 0 0
0 0 0 1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 𝑔 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 0 0 0 0]

 
 
 
 
 
 
 
 
 
 
 

                                                                                           

          (27) 
 

𝐵 = 

[
 
 
 
 
 
 
 
 
 
 
 

0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

−1/𝑚 0 0 0
0 0 0 0
0 1/𝐼𝑥𝑥 0 0
0 0 0 0
0 0 1/𝐼𝑦𝑦 0

0 0 0 0
0 0 0 1/𝐼𝑧𝑧
0 0 0 0 ]

 
 
 
 
 
 
 
 
 
 
 

            (28)              

                                                      

C= 

[
 
 
 
 
 
1 0 0 0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 0 0 1 0]

 
 
 
 
 

  

(29) 

 

where g is the gravitational acceleration and the 

adopted parameters for Draganfler IV have been 

used in Eqs. (27) to (29) [28]. 

 

3. Continuous Time Kalman Filter 

The main limitation of many control methods is 

based on the fact that all-state variables of any 

system are assumed to be measured. Whilst in 

practical field/reality, it is usually difficult to 

measure all of these state variables because 

measuring all states will be with a high cost [31]. 

Besides, the measurement can never be exact. 

These issues provide a great importance of 

estimation methods that can estimate physical state 

variables of a process more easily from available 

measurements. The Kalman Filter (KF) is a 

powerful linear estimator, which generates an 

optimal state estimate for a linear system, 

subjected to the assumptions listed below:  

1. Noise Statistics: Both the process noise ζ 

and measurement noise M are zero mean, white 

noise sequences whose properties are described 

below; 

 

𝐸[𝜁(𝑡) ] = 0                                    (30) 

                                                           

 𝐸[𝑀(𝑡) ] = 0                                    (31) 

                                                           

𝐸[𝜁(𝑡) 𝜁(𝑡)′ ] = 𝑄                       (32) 

                                              

𝐸[𝑀(𝑡) 𝑀(𝑡)′ ] = 𝑅                       (33) 

                                                            

2. Initial States: The initial states vector is a 

random variable which has the properties below; 

Mean:     

  𝐸[𝒙(𝟎)] = 𝒙𝒐                                    (34)           

                                                                  

and   

                                                                    

Variance: 

   𝐸[(𝒙 − �̂�)(𝒙 − �̂�)𝑻] = 𝒔𝑶                   (35) 

 

3. System Parameters: The parameters 

of 𝑨, 𝑩 and 𝑪 are defined in Eqs. (27) to (29). The 

optimality represents the minimum estimation 

error covariance. The function of a filter is to 

eliminate the noisy effects in a signal or 

information [32, 33].  
One of the important functions of the KF here is 

that its gain still improves until a steady state 

situation is reached where no further improvement 

is obtained. Also, the assumed noise strength in the 

internal model of filters is based on the 

information obtained from available measurement, 

so the filter continues to be tuned as much as 

possible. This algorithm is often called adaptive or 

self-tuning estimation algorithm. The key for 

adaptation is the residual signal of the estimator as 

it can be seen in Figure 2. It represents the 

difference between the actual measurement and 

estimated measurement from the filter's model, a 

consistent mismatch means an error exists in a 

formulated model, and this mismatch provided the 

need for adaptation.  

The steady-state KF model can be described by 

the following set of differential equations [34]: 

 
�̇�(𝑡) = 𝐴(𝑡) 𝑥(𝑡) + 𝐵(𝑡) 𝑢(𝑡) + 𝜁(𝑡)           (36)   

                                                                                              
𝑦(𝑡) = 𝐶(𝑡) 𝑥(𝑡) + 𝑀(𝑡)                             (37) 

                                                                                             

Here 𝑥(𝑡) is the state vector, 𝑢(𝑡) is the control 

signal,𝐴 is a system matrix, 𝐵 is an input matrix 

applied to control signal, 𝐶 is the measurement 

matrix, 𝑦(𝑡)  is the measurement noise vector and 

the measurements noise  𝑀(𝑡)  have Gaussian 

distribution.  
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The KF is described by the following Eqs. (38) to 

(41); 

 

�̇� =  𝐴 𝑥 + 𝐵𝑢 +  𝐿 (𝑦 − 𝐶 𝑥)                          (38) 
                                                                                                                       
�̂� = 𝐶 𝑥                                                                  (39) 
                                                                                       
�̇� = 𝐴𝑇 𝑠 + 𝑠𝐴 − 𝑠𝐵𝑅−1 𝐵𝑇 𝑠 + 𝑄                 (40)                      

                                                                          
𝐿 = 𝑠 𝐶𝑇 𝑅−1                        (41)  

                                                                              
where [A, B] are assumed to be controllable, the 

symmetric positive definite weighting matrices ζ 

and M are viewed as tuning parameters that, both 

matrices are taken as relative to each other, and 

assuming that the precise characteristics of the 

noises are not known. 

 

   
Figure 2: Kalman filter algorithm. 

 

4. Linear Quadratic (LQ)-Servo Optimal 

Control 

Traditional LQR is an optimal control method 

which guarantees stability and brings states to zero 

[35] whilst the LQ - servo controller is another 

kind of state feedback optimal control which can 

provide tracking the dynamic reference and 

eliminate the error due to the absence of an integral 

term in this controller. A designated system of LQ- 

control, which is shown in Figure 3, includes the 

output states of the LQR control as a part of the 

state variable and the integral of error vector (four 

states) to improve the tracking performance [13]. 

Let the error be e, the state space of the including 

error vector can be written as follows: 
 

�̇� = 𝑟 − 𝑦 = 𝑟 − 𝐶𝑥(6⨯1)                              (42)

                                                                                       

where r is the reference signals of linear and 

angular positions and the state space of the 

designated system written as follows:  

 

�̇�𝐸  =𝐴𝐸  𝑥𝐸 + 𝐵𝐸 𝑢                                           (43)

                                                                                                                                   

[
�̇�
�̇�
] = [

𝐴 0
−𝐶 0

] [
𝑥
𝑒
] + [

𝐵
0
] ⨯ 𝑢 + [

0
𝐼
] ⨯ 𝑟       (44)                                                                                                    

 

where the 𝑥𝐸 ,  𝐾𝐸 , 𝐴𝐸  and 𝐵𝐸  represent the 

augmented of state vectors, control gains, system 

matrix, input matrix, respectively, where 𝐴𝐸 and 

𝐵𝐸 must be controllable [36]. 

From the augmented system representation, the 

control input matrix u is calculated by: 

 
𝑥𝐼 =
 [∫(𝑥𝑟 − 𝑥) ∫(𝑦𝑟 − 𝑦) ∫(𝑧𝑟 − 𝑧) ∫(𝜓𝑟 − 𝜓) ]𝑇                                                                      

(45) 
𝑥𝐸

= [𝑥 �̇� 𝑦 �̇� 𝑧 �̇� 𝜙 �̇� Ɵ Ɵ̇ 𝜓 �̇� 𝑥𝐼]
𝑇   

 (46) 

 

 𝑢 = −𝐾𝐸 ⨯ 𝑥𝐸                                     (47) 

 

where 𝐾𝐸 is calculated in MATLAB from linear 

model matrices by using lqr command.   

 

 
Figure 3: State feedback structure of LQ-servo 

controller. 

 

5. Continuous Time-Classical Multiple 

Model Adaptive Controller (CT-CMMAC) 

In flying environment, the quadrotor is exposed to 

uncertainties that may cause variations in the 

plant's parameters as a result of mechanical wear, 

friction coefficients increase, or due to changes in 

operational circumstances [37]. So these variations 

and uncertainties lead to performance degradation 

or instability. 

Assume that the plant model states 𝒙 is subjected 

to parameter uncertainty (a), then the linear plant  

is represented as follows; the plant is time 

invariant, multiple-input-multiple-output (MIMO) 

subject to  ξ  and M  noise signals, respectively: 
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�̇�(𝑡) = 𝐴𝑎  𝒙(𝑡) + 𝐵𝑎  𝑢(𝑡) + 𝐺𝑎 𝜁(𝑡)            (48)

                                                                            

𝑦(𝑡) = 𝐶𝑎 𝒙(𝑡) + 𝑀(𝑡)                        (49)                                                                                

                

The MMAC consists of: i) N weighting signal, 𝑝𝑁, 

from a dynamic generator weighting signals and ii) 

a bank of 𝑁 continuous-time estimators, 𝐾𝐹𝑁, 

where each estimator is designed based on one of 

the selected  models adopted. Notice that these 

selected models are chosen from the original set of 

the plant model. 

The vector of uncertain parameters is represented 

in the linear state model for a dynamic system; 

these parameters change the matrices which define 

the structure of the linear model. For tractable 

representation, it is assumed that (𝑎 )can take only 

one value for each run. 

The dynamic weights represent the best guess 

about which models are likely enough to be 

correct. They are considered as the key in Multiple 

Model algorithm and they are calculated online. 

The initial value of dynamic weighting at time zero 

is equal to 1⁄N and satisfy the following condition, 

that  

 
( 𝑝𝑖(𝑡))  ∈  (0, 1)                  For i=1-N         (50)

                                                              
The dynamic weights are created by a differential 

equation named Dynamic Weighting Signal 

Generator (DWSG) which is represented as 

follows [25]: 

 

�̇�𝑖(𝑡)

= −£ (1 −
𝛽𝑖(𝑡) 𝑒

−𝑤𝑖 (𝑡)

∑ 𝑃𝑗
𝑁
𝑗=1 (𝑡) 𝛽𝑗(𝑡) 𝑒

−𝑤𝑗 (𝑡)
) 𝑃𝑖(𝑡) 

(51)        
                                                                                             
£ is a positive constant,  𝛽 𝑖(𝑡) is a function, and 

𝑤𝑖(𝑡) is an error measuring continuous function 

that relates  the measurement states of the plant and 

the estimated measurable states of each  local 

estimator to a nonnegative real value. These 

functions are calculated, respectively as follows 

[25]: 

 

𝑤𝑖(𝑡) =
1

2
‖𝑦(𝑡) − �̂�𝑖(𝑡)‖2 𝑆𝑖

−1(𝑡)            (52)

                                                                                  

𝛽𝑖(𝑡) =
1

√𝑑𝑒𝑡 𝑆𝑖(𝑡)
                                              (53)  

                                                                                              

𝑆𝑖 = C si C
T + R𝑖                                             (54)                                                                                                                                   

 

where 𝑠𝑖 is a uniformly positive definite weighting 

matrix which is already calculated in Eq. (40) , R𝑖 

is a variance of noisy measurement vector , 𝑦(𝑡) is 

noisy measurement vector calculated in Eq. (37), 

�̂�𝑖(𝑡) is an estimated measurement from the filter's 

model at the selected value of uncertainty and  

 

‖𝑥‖2𝑆 =(𝑥𝑇𝑆 𝑥 ) ^ (1/2)                            (55)

                                                                                                           

Each control signal is produced from the product 

of the state estimation of the 𝐾𝐹 𝑥 𝑘(𝑡|𝑡), 𝑘 =
1,2, . . 𝑁, and the gain associated with optimal 

linear quadratic control; 𝐺𝑘; is given by [25, 38] 

 
𝑢𝑘(𝑡) = −𝐺𝑘  �̂�𝑘(𝑡|𝑡), 𝑘 = 1,2,……𝑁           (56)            
                                                                
N is equal to 3 in this paper. The ‘global' control 

signal u(t), which inters to both of the plant and the 

banks of KFs , is computed by the probabilistic 

weighting of each local control signal [25, 38]. 

Finally, the mixing between the state estimation 

and feedback control generation can be clearly 

noticed; any errors in the estimation of the state 

will directly have an effect on the local control 

signals. So, in the CT-CMMAC architecture, there 

is no separation-principle of an identification 

system and a control system [39], as shown in 

Figure 4. 

 

6. Simulation Results   

The application of CT-CMMAC for changing the 

operating point will be illustrated. From the state 

space matrices of the linear model, which have 

been explained in Section 2 in Eqs. (27), (28) and 

(29). The value of sample time is 0.001 sec. The 

CT-CMMAC built employs three Kalman Filters 

as shown in Figure 4. The(𝑎) value equals to 0, 

0.78, and 1.2 rad for Kalman Filter number 1, 2, 

and 3, respectively. Three filters are run in parallel 

when the parameter (a) is assigned to the reference 

model. For each case, the filters are initialized with  

𝒙𝒐 = [2 0 3 0 − 10 0 0.2 0. 3 0 0.7] 
 set to the current 𝒙 values, and the initial 

weighting signal is uniformly distributed Po= 1/3. 

Figure 5 shows the time histories of the conditional 

probabilities for these three cases. The system 

tracks the references in about 15 sec. This 

illustrates the ability of the algorithm to identify 

constant parameters with relatively rapid 

convergence. The close loop responses of 

CMMAC and residual signal of three filters has 

been represented when the model and filter start at 

the same initial point. Figure 6 shows the  response 

of the linear position x by using CMMAC, where 

(curve 1) represents the actual response from the 

model,  the estimated signal represented in (curve 

2) and the reference signal is explained in (curve 

3). The Figures 7, 8 and 9 also show the tracking 

for y and z position, roll, pitch, and yaw, 
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respectively.  Figure 10 shows the time histories 

for the residual signal from the three filters when 

yaw position is 0.78 rad, so the correct control 

signal is provided by 𝐾𝐹2 and the related 

probability goes to one. 

 

 
Figure 4: Block diagram of CMMAC [17] 

 
As can be seen from figures, the linear and angular 

positions track the references, and the adaptation 

(intelligence) of this algorithm can be seen clearly 

in Figures 6, 7, 8 and 9, where the actual response 

follow the true value by adjusting its parameter (a). 

Figures 11 and 12 demonstrate the performance of 

the controller to follow the references for the 

model which demonstrates the capability of the 

controller to select the correct control signal. The 

performance of the adaptive control has been 

evaluated using the index (RMSE) for the 

CMMAC, where the value of cost function has 

been computed for tracking in the same initial 

point. These results are summarized in Table 1 

below. The results of the MMAC are compared 

with that estimator (where yaw=0.78rad). The 

same initial conditions are used in both cases and 

the results are summarized in Table 1. The table 

clearly shows the ability of the CMMAC to track 

the references better compared to Kalman Filter 

alone. 

From Figures 6-11, a number of observations can 

be made: 

1. The best performance was for the linear 

position, since the error response is small. The 

figures clearly show the ability of the CMMAC to 

track the references significantly better as 

compared to KF alone. 

2. CMMAC always determines the correct control 

signals. 

3. MMAC has a featured advantage on only one 

KF in that its structure takes into account the 

possible uncertainty in the model.  

 

 
Figure 5: Time histories for probability when the 

angular velocity yaws=0.78 rad. 

 
Figure 6: Closed loop response of the linear position 

x from CMMAC with KF starting at an operating 

point where yaw=0.78 rad. 

 
Figure 7: Closed loop response of the linear positions 

y and z from CMMAC with KF starting at an 

operating point where yaw=0.78 rad. 
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Figure 8: Closed loop response of the position Roll 

from CMMAC with KF starting at an operating 

point where yaw=0.78 rad. 

 
Figure 9: Closed loop response of the positions of 

Pitch and Yaw from CMMAC with KF starting at 

an operating point where yaw=0.78 rad. 

 
Figure 10: Residual signals when the yaw position in 

reference model is 0.78 rad.  

 
Figure 11: RMSE of the linear position when the 

yaw position in reference model is 0.78 rad. 

 
Figure 12: RMSE of the angular position when the 

yaw position in reference model is 0.78 rad. 

 

Table 1: Errors in states by using RMSE between 

CMMAC and KF when operating at yaw=0.78rad 

 

Quadrotor's 

states 

RMSE for 

CMMAC 

RMSE 

for 𝑲𝑭𝟐 

alone 

x 0.1250 unstable 

y 0.1541 unstable 

z 0.3074 unstable 

roll 1.0620 unstable 

pitch 0.8868 unstable 

yaw 0.0169 unstable 
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7. Conclusion and Future Work 

In this paper, the fundamentals of quadrotor 

dynamics were studied and the mathematical 

equation of nonlinear model was derived using 

Newton-Euler Formula. Then, a linearized model 

was obtained for an operational point, enabling the 

linear model to be used in linear control 

techniques. Also, this paper has presented one of 

the important problems, which is the stability of 

the controllers applied to the linearized real 

system, which is not ensured due to uncertainties. 

One way of augmenting the stability bounds of the 

linear model is provided by the adaptive multiple 

model technique CMMAC. This technique 

achieves improved tracking performance for a 

wider range of linear region within yaw position 0-

1.5 rad. Improvements in tracking performance of 

100% in linear and angular position, have been 

achieved, as compared with using a single KF. 

Robust performance in presence of uncertainty has 

been achieved as well. For future work, an 

intelligent method like fuzzy controller can be 

examined instead of probability equation to make 

a better selection of the most suitable plant model 

for estimation. Moreover, investigate the 

application of Baram proximity measure for 

adaptively selecting the nearest nominal value to 

the actual one. 

 

References 

[1] L.R. Newcome, “Unmanned Aviation: A Brief 

History of Unmanned Aerial Vehicles,” American 

Institute of Aeronautics and astronautics, Inc., (1st Ed.), 

Reston, Virginia, 1930. 

[2] M. D. Schmidt, “Simulation and Control of a 

Quadrotor Unmanned Aerial Vehicle,” M.Sc. Thesis, 

Electrical Dept. Eng., Univ. of Kentucky, Lexington, 

Kentucky, USA, 2011. 

[3] D. Mellinger, M. Shomin, and V. Kumar, “Control 

of Quadrotors for Robust Perching and Landing,” Int. 

Powered Lift Conf., Philadelphia, Pennsylvania, USA, 

pp. 205-225, 2010. 

[4] F.A. Al-Saedi and R.A. Sabar, “Design and 

Implementation of Autopilot System for Quadcopter,” 

Int. Journal of Science, Engineering and Computer 

Technology, Vol.5, No. 6, pp. 190-199, 2015. Available:  

http://www.ijcset.net/docs/Volumes/volume5issue6/ijc

set2015050613.pdf 

[5] D. Yacine, K. Madjid, and A. Aimad, “Fully 

Decentralized Fuzzy Sliding Mode Control with 

Chattering Elimination for a Quadrotor Attitude,” 

IEEE, 4th Int. Conf. on Electrical Eng., Boumerdes, 

Algeria, pp. 1-6, 2015. 

[6] E. Abbasi, M. Mahjoob and R. Yazdanpanah, 

“Controlling of Quadrotor UAV Using a Fuzzy System 

for Tuning the PID Gains in Hovering Mode,” 10th Int. 

Conf. Adv. Comput. Entertain. Technol., Boekelo, 

Netherlands, pp. 1-6, 2013. 

[7] P. Pounds, R. Mahony, and P. Corke, “Modeling 

and Control of a Large Quadrotor Robot,” Control 

Engineering Practice Sci. [Online], Vol. 18, No.7, pp. 

691-699, 2010. Available: 

https://www.sciencedirect.com/science/article/pii/S096

7066110000456 

[8] I.C. Dikmen, A. Arisoy, and H. Temeltas, 

“Attitude Control of a Quadrotor,” IEEE, 4th Int. Conf. 

on Recent Advances in Space Technologies,  RAST'09, 

Istanbul, Turkey, pp. 722-727, 2009. 

[9] S. Bouabdallah, A. Noth, and R. Siegwart, “PID vs 

LQ Control Techniques Applied to an Indoor Micro 

Quadrotor,” IEEE/RSJ, Int. Conf. on Intelligent Robots 

and Systems, IROS, Sendal, Japan, pp. 2451-2456, 

2004. 

[10] M. Moness and M. Bakr, “Development and 

Analysis of Linear Model Representations of the 

Quadrotor   System,” 16th Int. Conf. on Aerospace 

Siences & Aviation Technology, Cairo, Egypt, 2015. 

[11] A.E. EL-Henawy, A.N.  Oda, S.A. kader, 

Quadcopter System Modeling and Autopilot Synthesis, 

Int. Journal of Engineering Research & Technology, 

(IJERT) [Online], Vol. 3, No. 1, 2014. Available: 

http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.

1.1.674.2696&rep=rep1&type=pdf 

[12] I. Sadeghzadeh, M. Abdolhosseini and Y. Zhang, 

“Payload Drop Application Using an Unmanned 

Quadrotor Helicopter Based on Gain-Scheduled PID 

and Model Predictive Control,” Unmanned 

Systems- World Scientific Sci. [Online], Vol. 2, No. 1, 

pp. 39-52, 2014. Available:  http://sci-

hub.tw/https://www.worldscientific.com/doi/pdf/10.11

42/S2301385014500034 

[13] O. Araar and N. Aouf, “Full Linear Control of a 

Quadrotor UAV, LQ vs H∞,” IEEE, UKACC Int. Conf. 

on Control (CONTROL), Loughborough, UK, pp. 133-

138, 2014. 

[14] H. Bergkvist, “Quadcopter Control Using Android 

Based Sensing,” M.Sc. Thesis, Dept. of Automatic 

Control, Univ. of Lund, Lund, Sweden, 2013. 

[15] L. M. Argentim, W.C. Rezende, P.E. Santos and 

R.A. Aguiar, “PID, LQR and LQR-PID on a 

Quadcopter Platform,”  IEEE,  Int. Conf. 

on  Informatics, Electronics & Vision, ICIEV, Dhaka, 

Bangladesh, pp. 1-6, 2013. 

[16] E. Balasubramanian and R. Vasantharaj, “Dynamic 

Modeling and Control of Quad Rotor, Int. Journal of 

Engineering & Technology,” (IJET) [Online], Vol. 5, 

No. 1, pp. 63-69, 2013. Available: 

 http://www.enggjournals.com/ijet/docs/IJET13-05-01-

013.pdf 

[17] S. Fekri, M. Athans and A. Pascoal, “Issues, 

Progress and New Results in Robust Adaptive Control,” 

Int. Journal of Adaptive Control & Signal Processing 

[Online], Vol. 20, No.10, pp. 519-579, 2006. Available: 

http://www.ijcset.net/docs/Volumes/volume5issue6/ijcset2015050613.pdf
http://www.ijcset.net/docs/Volumes/volume5issue6/ijcset2015050613.pdf
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=7405754
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=7405754
https://www.sciencedirect.com/science/article/pii/S0967066110000456
https://www.sciencedirect.com/science/article/pii/S0967066110000456
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.674.2696&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.674.2696&rep=rep1&type=pdf
http://sci-hub.tw/https:/www.worldscientific.com/doi/pdf/10.1142/S2301385014500034
http://sci-hub.tw/https:/www.worldscientific.com/doi/pdf/10.1142/S2301385014500034
http://sci-hub.tw/https:/www.worldscientific.com/doi/pdf/10.1142/S2301385014500034
http://www.enggjournals.com/ijet/docs/IJET13-05-01-013.pdf
http://www.enggjournals.com/ijet/docs/IJET13-05-01-013.pdf


Engineering and Technology Journal                                                              Vol. 36, Part A, No. 12, 2018 
 

1259 

 

http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.

1.1.118.9616&rep=rep1&type=pdf 

[18] M.G. Safonov, and T.C. Tsao, “The Unfalsified 

Control Concept and Learning,” IEEE, 33rd IEEE 

Conf. on Decision & Control, Lake Buena Vista, FL, 

USA, Vol. 3, pp. 2819-2824, 1994. 

[19] V. Hassani, J.P. Hespanha, M. Athans and A.M. 

Pascoal,” Stability Analysis of Robust Multiple Model 

Adaptive Control,” IFAC Proc. [Online], Vol. 44, No. 1, 

pp. 350-355, 2011.  

[20] J. Hao, G. Tao, and T. Rugthum, “A dynamic 

Prediction Error Based Adaptive Multiple-Model 

Control Scheme for Robotic Manipulators,” 

IEEE, American Control Conf., ACC, Seattle, WA, 

USA, pp. 1791-1796, 2017. 

[21] V. Hassani, A.J. Sørensen, A.M. Pascoal, and A.P. 

Aguiar, “Multiple Model Adaptive Wave Filtering For 

Dynamic Positioning of Marine Vessels,” IEEE, 

American Control Conf., ACC, Montreal, QC, Canada, 

pp. 6222-6228, 2012. 

[22] A. Izadian and  P. Famouri, “Fault Diagnosis of 

MEMS Lateral Comb Resonators Using Multiple-

Model Adaptive Estimators,” IEEE Trans. on Control 

Systems Technology [Online], Vol. 18, No. 5, pp. 1233-

1240, 2010.  

[23] C. Barrios, H. Himberg, Y. Motai and  A. Sad, 

“Multiple Model Framework of Adaptive Extended 

Kalman Filtering for Predicting Vehicle Location,” 

IEEE, Intelligent Transportation Systems Conf., 

ITSC'06., Toronto, Ont., Canada, pp. 1053-1059, 2006. 

[24] M.  Athans, D.  Castanon, K.P. Dunn, C. Greene, 

W. Lee, N. Sandell, and A. Willsky, “The Stochastic 

Control of the F-8C Aircraft Using a Multiple Model 

Adaptive Control (MMAC) Method--Part I: 

Equilibrium Flight, “IEEE Trans. on Automatic 

Control [Online], Vol. 22, No. 5, PP. 768-780, 1977.  

[25] V. Hassani, A.P. Aguiar, A.M. Pascoal, and M. 

Athans, “Further Results on Plant Parameter 

Identification Using Continuous-Time Multiple-Model 

Adaptive Estimators,” 48th IEEE Conf. on  Decision & 

Control, held jointly with the 28th Chinese Control 

Conf., CDC/CCC, Toronto, Ont., Canada, pp. 7261-

7266, 2009.  

[26] T.L. Wong, R.R. Khan and D. Lee, “Model 

Linearization and 𝐻∞, Controller Design for a 

Quadrotor Unmanned Air Vehicle: Simulation study,” 

IEEE, 13th International Conf. on Control Automation 

Robotics & Vision, ICARCV, Singapore, pp. 1490-

1495, 2014. 

[27] O. Magnussen, and K.E. Skjonhaug, “Modeling, 

Design and Experimental Study for a Quadcopter 

System Construction,” M.Sc. Thesis, Dept. of Eng., 

Faculty of Technology and Science, Univ. of Agder, 

Kristiansand and Grimstad, Norway, 2011. 

[28] R. Tesfaye, “Modeling and Control of a Quad-rotor 

Unmanned Aerial Vehicle at Hovering Position,” 

Electrical Eng., Addis Ababa University, Addis Ababa, 

Ethiopia, 2012.  

[29] B.S.M. Henriques, “Estimation and Control of a 

Quadrotor Attitude,” Ph.D. Thesis, Technical Univ. of 

Lisbon, Lisbon, Portugal, 2011.  

[30] J. Li, and Y. Li, “Dynamic Analysis and PID 

Control for a Quadrotor,” IEEE, Int. Conf. 

on Mechatronics & Automation, ICMA, Beijing, China, 

pp. 573-578, 2011. 

[31] J.B. Burl, “Linear Optimal Control,” Addison-

Wesley Menlo park, Technique Note, 1999. 

http://www.me.utexas.edu/~longoria/ssec/leks/Burl_C

h8_LQG.pdf. Visited on 1 January 2018. 

[32] O.F. AL-Kubasi, “Development of PC-Based 

Induction Furnace Thermal Processor,” M.Sc. Thesis, 

Electrical Dept. Eng., Univ. of Technology, Baghdad, 

Iraq, 2001. 

[33] S.M. Raafat, State Estimation of Synchronous PM 

Motor Drive based on pole Assignment, Engineering 

and Technology Journal [Online], Vol.6, No.1, pp. 20-

29, 2006. Available: 

https://www.iasj.net/iasj?func=fulltext&aId=69514 

[34] M.S. Grewal, Kalman Filtering, (2nd ed.), 2011. 

Available: 

https://wp.kntu.ac.ir/ghaffari/Advanced%20Control-II-

2017/Kalman%20Filtering.pdf 

[35] B.F. Midhat, “Optimal LQR Controller Design for 

Wing Rock Motion Control in Delta wing Aircraft,” 

Engineering and Technology Journal [Online], Vol. 35, 

Part A. No. 5, pp. 473-478, 2017. Available: 

https://www.iasj.net/iasj?func=fulltext&aId=130206 

[36]  J. Bae, J. Choi, J. Kim, C. Kim, and  J. Yoo, “Two-

Wheeled Self-Balancing Robot Based On LQ-Servo 

with Reduced Order Observer,”  Fourth Int. Conf. on 

Information Science & Industrial Applications, ISI, 

Busan, South Korea, p. 6-9, 2015. 

[37] S. Islam, P.X. Liu and A. El Saddik, “Robust 

Control of Four-Rotor Unmanned Aerial Vehicle with 

Disturbance Uncertainty,” IEEE Trans. on Industrial 

Electronics [Online], Vol. 62, No. 3, pp. 1563-1571, 

2015.  

[38] A.P. Aguiar, V. Hassani, A.M. Pascoal and M. 

Athans, “Identification and Convergence Analysis of a 

Class of Continuous-Time Multiple-Model Adaptive 

Estimators,” IFAC Proc. [Online], Vol. 41, No. 2, pp. 

8605-8610, 2008. Available: 

https://pdfs.semanticscholar.org/b2ee/44a8c37644c0f0

55aa21efec4401635b5faf.pdf 

[39] S. Fekri, M. Athans and A. Pascoal, “Robust 

Multiple Model Adaptive Control (RMMAC): A case 

Study,” Int.  Journal of Adaptive Control & Signal 

Processing [Online], Vol. 21, No.1, pp. 1-30, 2007. 

Available: 

http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.

1.1.116.2339&rep=rep1&type=pdf 

 

 

http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.118.9616&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.118.9616&rep=rep1&type=pdf
http://www.me.utexas.edu/~longoria/ssec/leks/Burl_Ch8_LQG.pdf
http://www.me.utexas.edu/~longoria/ssec/leks/Burl_Ch8_LQG.pdf
https://www.iasj.net/iasj?func=fulltext&aId=69514
https://wp.kntu.ac.ir/ghaffari/Advanced%20Control-II-2017/Kalman%20Filtering.pdf
https://wp.kntu.ac.ir/ghaffari/Advanced%20Control-II-2017/Kalman%20Filtering.pdf
https://www.iasj.net/iasj?func=fulltext&aId=130206
https://pdfs.semanticscholar.org/b2ee/44a8c37644c0f055aa21efec4401635b5faf.pdf
https://pdfs.semanticscholar.org/b2ee/44a8c37644c0f055aa21efec4401635b5faf.pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.116.2339&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.116.2339&rep=rep1&type=pdf

