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This study introduces the Sine Type II Topp-Leone Weibull (STIITL-W) distribution, 

a novel statistical model designed to enhance flexibility in data modeling. The 

proposed distribution extends the classical Weibull distribution by incorporating the 

Sine Type II Topp-Leone family, offering improved adaptability for complex datasets. 

Key mathematical properties, including moments, moment generating functions, and 

reliability measures, are derived. Parameter estimation is performed using 

the maximum likelihood estimation (MLE) method, and a simulation study is 

conducted to evaluate the consistency and efficiency of the estimates. Additionally, 

a Sine Type II Topp-Leone Weibull Survival Regression (STIITL-WSR) model is 

developed for survival data analysis. The model's performance is assessed using real-

world datasets, including transect stake distance measurements and liver cancer 

survival data. Comparative analysis based on the Akaike Information Criterion 

(AIC) demonstrates that the STIITL-W distribution outperforms competing models, 

such as the Topp-Leone Modified Weibull, Exponential, and Generalized Weibull 

distributions. Furthermore, the log-STIITL-Weibull survival regression model 

achieves a lower AIC compared to the log-TLG-Weibull regression model, confirming 

its superior performance in survival data modeling. 
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1. Introduction  

Probability distributions are fundamental tools 

in statistical modelling, enabling the 

description, analysis, and prediction of real-

world phenomena across diverse fields such as 

reliability engineering, medicine, and finance. 

The flexibility of these distributions is crucial 

for extracting accurate insights from complex 

datasets. However, classical probability 

distributions often fail to adequately capture 

multimodal behaviours, heavy-tailed data or 

extreme variations, highlighting the need for 

more robust and adaptable models. 

To address these limitations, researchers have 

developed generalized families of distributions, 

often referred to as generators. These 

generators enhance the flexibility of existing 

distributions by introducing additional 

parameters, such as scale or shape parameters. 
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Notable examples include the Marshall-Olkin 

Weibull generalized family [1], the Marshall-

Olkin exponentiated half logistic-generalized 

family [2], and the Secant Kumaraswamy 

family [3]. 

Among these, trigonometric families of 

distributions have gained significant attention 

due to their ability to improve the flexibility of 

existing distributions without introducing 

additional parameters. This simplification 

facilitates parameter estimation and the 

derivation of distribution properties. A 

prominent example is the Sine-G family of 

distributions, introduced by [4], which has been 

used to extend various existing distributions. 

Models derived from this family, such as 

the Sine Exponential distribution [5], Sine 

Lomax distribution [6], Sine Burr XII [7], Sine 

Weibull distribution [8], Sine Type II Topp-

Leone Burr XII [9], Cosine Marshal-Olkin 

distribution [10], and Cosine Lomax [11], have 

demonstrated superior performance compared 

to their parent distributions. 

Recently, [12] introduced the Sine Type II 

Topp-Leone generator, which combines the 

sine family of distributions with the Type II 

Topp-Leone family developed by [13]. This 

generator enhances the flexibility of existing 

distributions, enabling them to better capture 

the complexities of real-world phenomena. For 

instance, [12] demonstrated the effectiveness of 

this generator by compounding it with the 

Lomax distribution, resulting in the Sine Type 

II Topp-Leone Lomax distribution, which 

outperformed the baseline Lomax distribution 

and other existing models when applied to real-

world datasets. 

The Weibull distribution is widely recognized 

for its versatility in modelling reliability and 

lifetime data. However, its limitations in 

accommodating complex data behaviours have 

led to numerous extensions, such as the Topp-

Leone Weibull model [14], the Topp-Leone 

modified Weibull model [15], the Cosine-

Weibull model [16], and the extended Weibull 

model [17]. These extensions introduce 

additional features, enabling the Weibull 

distribution to effectively capture diverse 

hazard rate shapes and complex patterns. 

In this study, we propose a novel extension of 

the Weibull distribution based on the Sine Type 

II Topp-Leone family, referred to as the Sine 

Type II Topp-Leone Weibull (STIITL-W) 

distribution. This model leverages the unique 

properties of the Sine Type II Topp-Leone 

family to address the limitations of the classical 

Weibull distribution. We derive key properties 

of the proposed distribution, including 

moments, quantile functions and hazard rate 

behaviour. The performance of the model is 

evaluated using real-world datasets, 

demonstrating its superiority in fitting complex 

data. 

The development of this model is motivated by 

the growing demand for robust and adaptable 

statistical tools capable of addressing the 

increasingly complex and heterogeneous nature 

of data across various fields. By extending the 

classical Weibull distribution, this study 

contributes to advancing statistical 

methodologies and provides a practical tool for 

researchers and practitioners working with 

intricate datasets. 

2. Methodology 

2.1 Sine G Family of Distribution 

Let H(x) be the CDF of a Univariate 

continuous distribution and h(x) be the PDF, 

then, the Sine-G family of distributions 

according to [4] is defined by the CDF given 

by: 

  

 

( , )
2

0
( , ) cos( ) sin ( , )

2

H x

F x t dt H x
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 
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 
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 
                                                                                       (1) 

and its corresponding PDF given by: 
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                                                                                                    (2) 

Where ( ; )h x  and ( ; )H x   are the PDF and 

CDF of any baseline distribution and   is a 

vector parameter of the baseline distribution. 

2.2 Sine Type II Topp-Leone G Family of 

Distribution 

The CDF of the Sine Type II Topp Leone G 

family of distribution proposed by [12] is 

defined by: 

2( , , ) sin 1 (1 ( ; ))
2

F x G x 
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 
     

 
                                                                                           (3) 

the PDF corresponding to equation (3) is given by; 

1
2 2( ; , ) 2 ( ; ) ( ; ) 1 ( ; ) cos 1 (1 ( ; ))

2 2
f x g x G x G x G x


 

      
  

          
 

                                (4) 

where   is a shape parameter which controls 

the skewness and kurtosis of the distribution. 

When   is too large, the distribution may 

become too skewed thereby making it less 

suitable for skewed data. ( ; )G x  and ( ; )g x  are 

the CDF and PDF of the baseline distribution. 

2.3 Weibull Distribution 

Supposed that the baseline distribution is 

Weibull with CDF and PDF given respectively 

by: 

( ; , ) 1

x

F x e



 
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 
                               (5) 
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                                                           (6) 

Where     and   is a shape parameter and   

is a scale parameter. If   is too large or too 

small, the distribution may become too spread 

or too concentrated which will limit its 

applicability to certain datasets. 

2.4 The Proposed Sine Type II Topp-Leone 

Weibull Distribution 

The CDF of Sine Type II Topp Leone-Weibull 

distribution was obtained by inserting the CDF 

of the Weibull distribution in equation (5) into 

to the CDF of the Sine-Type II Topp-Leone G 

family in equation (3) as follows; 

2

( ; , , ) sin 1 1 1
2

x

F x e





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                                                                 (7) 

Where  

and the corresponding pdf is also obtained by 

substituting the PDF and CDF of the Weibull 

distribution in equation (5) and (6) respectively 

into the PDF of the Sine-Type II Topp-Leone 

G family in equation (4) as follows: 

1
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where   and   are shape parameters while   is 

a scale parameter. These parameters control the 

flexibility and the behaviour of the distribution 

and    . The survival function.     , hazard 

function      and the quantile function      
are given in equation (9), (10) and (11) 

respectively: 

2

( ) 1 sin 1 1 1
2

x

S x e


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(9) 

The survival function represents the probability 

that the event of interest has not occurred by 

time  . 
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Figure 1: PDF plot of STIITLW distribution Figure 2: CDF plot of STIITLW distribution 

  

Figure 3: HRF plot of STIITLW distribution Figure 4: HRF plot of STIITLW distribution 
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Figure 1 and 2 represents the PDF of the 

STIITL-W distribution for different parameter 

values. The plot demonstrates how the shape of 

the distribution changes with varying  ,   and 

  while figure 3 and 4 display the hazard rate 

function of the STIITL-W distribution, 

illustrating how the risk of failure changes over 

time. 

2.5 Density Expansion 

The PDF and CDF of the proposed STIITLW 

distribution can be expanded using Taylor’s 

Series Expansion and Binomial Expansion as 

follows: 
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The CDF can also be expressed as follows: 
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2.6 Mathematical Properties of STIITL-W 

Distribution 

The mathematical properties of the STIIL-

Weibull distribution such as the moment, 

moment generating function, entropy and order 

statistics are derive: 

2.6.1 Moment of STIITL-Weibull 

Distribution 

The moment of the STIITL-Weibull 

distribution is obtained as follows: 
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The first, second, third and the forth moments can be obtained by substituting r=1, 2, 3, and 4 into 

equation (4.36) as follows: 
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2.6.2 Skewness and Kurtosis of STIITL-W 

Distribution 

Skewness is the measure of extent that the 

distribution leans to the one side of the mean 

and kurtosis is used to measure the flatness or 

peakedness of the probability curve. The 

skewness and kurtosis are denoted by    and  

   respectively and expressed in the following 

form: 

    
    

 

     
                                                                                                                                                              

and 

   
  

     
                                                                                                                                                               

The skewness of the STIITL-W distribution is obtained by substituting equation (16) and (17) into 

equation (19) as follows: 
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                                                                                              (21) 

and the kurtosis can be obtained by substituting equation (16) and (18) into equation (20): 
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                                                                                                     (22) 

2.6.3 Moment Generating Function of STIITL-W Distribution 

The moment generating function of a random variable   can be obtaied as follows: 

( ) ( ) ( )tx tx

xM t E e e f x dx



    

Therefore, the moment generating function of the STIITL-W distribution is given by:  
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2.7 Maximum Likelihood Estimate of STIITL-W Distribution 

The likelihood function of the STIITL-W Distribution is given by: 
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       (27) 

3.1 STIITL-W Survival Regression 

The STIITL-W Survival Regression (STIITL-

WSR) was obtained using the one-to-one 

transformation defined in equation (28) is used 



 

 

A. M. Isa, S. I. Doguwa, B. B. Alhaji and H. G. Dikko/ Iraqi Statisticians Journal / Vol. 2, no. 1, 2025: 74-90 

82 

 

in this section to change the probability density 

function of X directly in terms of the 
probability density function of log( ), 0y x x 

( ) ( )
dx

g y f x
dy

                                                                                                                              (28) 

Exposure variables such as sex, age and tumor 

size at a start of a treatment have impact on 

survival time in a variety of real world 

application. Investigating the casual 

relationship between survival time and 

exposure factors is crucial. It is possible to 

employ a survival regression model to capture 

the effect of these factors on the survival of the 

subjects. We take into account a group of 

location scale model, where the vector 

  (             )
 
 of covariates is 

associated with the response variable   
       using a regression framework. 

3.1.1 Sine Type II Topp-Leone Weibull 

Survival Regression 

Let X be a random variable with pdf STIITL-

W as defined in equation (28). By replacing the 

scale parameter      and the shape 

parameter       and using the log 

transformation yield the following: 

1 1 1 1
1

2 2
1

1

2
( ) 1 1 1 cos 1 1 1

2 2
 

y y y ye e e e
y

e e e e ye
g y e e e e e e

e

   

   

 






  





       
          
               

                                                                    

 

1
2 2

2
( ) 1 1 1 cos 1 1 1

2 2

y y y yy

e e e eg y e e e e e

   

   

 


  



          
       
       


 

 
    

                                                

      (29) 

Where        and   is a location parameter, equation (5.2) is referred to as log STIITL-W 

distribution and                      The survival function of the transformed pdf is presented 

in equation (30). 
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Figure 5: Pdf plot of log-STIITL-W SR Figure 6: Survival plot of log-STIITL-W SR 

Equation (29) can be written as a log-linear model: 

                                                                                                                                                                    

Let  
y

z
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 be the standardized random variable, then, the random variable   has pdf given by: 
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                         (32) 

Where        Now, considering the 

framework of regression model based on the 

Log-STIITL-W distribution in equation (28). 

Linking the response variable Y to the vector 

of explanatory variables X, and letting 

i iX    in the Log-Linear model of equation 

(31) so that the model of Y given X can be 

represented by: 

       1,2,3,...,i i iy X z i n                       (33) 

Where iz  are random errors which follows the 

Log-STIITL-W distribution in equation (29), 

       and 
1 2( , ,..., )p     are unknown 

parameters, therefore, equation (33) is referred 

to as the Log-STIITL-W survival regression 

model, with survival function given in equation 

(30). This transformation allows the model to 

be expressed as a log-linear regression model, 

making it easier to interpret the effects of 

covariates on survival time. 

3.1.2 Simulation Study of STIITL-Weibull 

Distribution 
A Monte Carlo simulation study was conducted 

to evaluate the performance of the newly 

proposed STIITL-Weibull distribution.  

The study involved generating data using the 

quantile function of the distribution for various 

sample sizes (n = 20, 50, 100, 150, 200), with 

parameters set at α = 2.0, γ = 0.5, and λ = 1.1. 

Each sample size was replicated 1000 times. 

The mean, bias, and root mean square error 

(RMSE) of the maximum likelihood estimates 

were computed. The results, presented in Table 

1, demonstrate the accuracy and consistency of 

the parameter estimates for different sample 

sizes. 

 

 

 

 
Table 1: Estimate, Bias and Root Mean Square Error of the STIITL-W distribution 
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N Properties                   

 

20 

 

Estimate 

Bias 

RMSE 

2.2446 

0.1446 

0.9516 

0.6231 

0.0231 

0.1232 

0.4591 

0.0591 

0.2369 

 

50 

 

Estimate 

Bias 

RMSE 

2.1695 

0.0695 

0.6700 

0.5934 

-0.0066 

0.0715 

0.4535 

0.0535 

0.1580 

 

100 

 

Estimate 

Bias 

RMSE 

2.1203 

0.0203 

0.3850 

0.5850 

-0.0150 

0.0506 

0.4467 

0.0467 

0.1042 

 

150 

 

Estimate 

Bias 

RMSE 

2.1003 

0.0003 

0.3025 

0.5814 

-0.0186 

0.0439 

0.4449 

0.0449 

0.0906 

 

200 

 

Estimate 

Bias 

RMSE 

2.1058 

0.0058 

0.2661 

0.5800 

-0.0200 

0.0387 

0.4453 

0.0453 

0.0824 

 

Table 1 represents the results of the Monte 

Carlo simulation study, showing the bias and 

RMSE of the parameter estimates for different 

sample sizes. The results shows that, the values 

of biases and RMSEs tend to zero as shown in 

table and the estimates tend to the true 

parameter values as the sample size increases, 

indicating that the estimates are efficient and 

consistent. 

 

4.1 Application  

4.1.1 Fitting STIITL-W Distribution to 

Transect stake Distance Measurements 

This data set, obtained from [18], represents 

the distances from the transect line for the 68 

stakes detected in walking L = 1000 m and 

searching w = 20 m on each side of the line. 

The measurements are: 

2.0, 0.5, 10.4, 3.6, 0.9, 1.0, 3.4, 2.9, 8.2, 6.5, 

5.7, 3.0, 4.0, 0.1, 11.8, 14.2, 2.4, 1.6, 13.3, 6.5, 

8.3, 4.9, 1.5, 18.6, 0.4, 0.4, 0.2, 11.6, 3.2, 7.1, 

10.7, 3.9, 6.1, 6.4, 3.8, 15.2, 3.5, 3.1, 7.9, 18.2, 

10.1, 4.4, 1.3, 13.7, 6.3, 3.6, 9.0, 7.7, 4.9, 9.1, 

3.3, 8.5, 6.1, 0.4, 9.3, 0.5, 1.2, 1.7, 4.5, 3.1, 3.1, 

6.6, 4.4, 5.0, 3.2, 7.7, 18.2 

Table 2: The MLEs, Log-Likelihoods and Goodness of Fits Statistic of Transect stake Distance Measurements 

Model       LL AIC 

STIITLW 1.8560 0.5783 6.6905 -186.081 376.162 

TIITLW 3.6326 0.1912 16.433 -189.422 384.845 

TLMW 0.4845 0.5949 1.0467 -186.368 378.735 

W 1.2238 6.2368 - -186.170 378.340 

GW 1.1000 1.1000 0.2000 -187.779 381.546 

TW 1.1385 5.4002 0.2984 -186.041 378.083 

Table 2 presents the results of the analysis of 

STIITL-Weibull distribution. The analysis 

compared the performance of the Sine-Topp-

Leone Exponentiated Weibull by [20] 

distribution against several other distributions, 

namely the Topp-Leone Exponentiated Weibull 

distribution, Topp Leone Modified Weibull 

distribution, the Weibull distribution, 

Generalized Weibull and Transmuted Weibull 

distributions.  

The results indicated that the proposed STIITL-

Weibull distribution outperformed some 

competing distributions, as it exhibits the 

lowest AIC value. The visual assessment of the 
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goodness of fit, as depicted in Figures 1, 

further validates the superiority of the proposed 

distribution when compared to other competing 

distributions. Therefore, it can be concluded 

that the proposed family of distributions is the 

most suitable choice for modelling distance 

transect line for the stakes detected in walking 

L = 1000 m and searching w = 20 m on each 

side of the line. 

 
Figure 7: Fitted pdfs for the STIITLW, W, GW, TITLIW, TW and TLMW on distance transect line 

4.1.2 Fitting STIITL-W Survival Regression 

Model on Liver Cancer Dataset 

The liver cancer survival time dataset, sourced 

from the Real Statistics website, contains 

information on 40 liver cancer patients, with 

27.5% of the cases censored and 72.5% 

uncensored. The primary response variable, 

denoted as y, represents the observed survival 

time in weeks, while the censoring indicator d 

is used to differentiate between patients who 

were still alive or lost to follow-up (coded as 0) 

and those who died due to liver cancer (coded 

as 1). The dataset includes survival-related 

variables such as age, gender, blood levels, and 

tumor size. The age is categorized into three 

groups: below 35 years (  ), 35 to 50 years 

(  ), and above 50 years (   ). Gender is 

recorded as    for male and    for female. 

Blood levels of Alpha-fetoprotein are classified 

into two levels: level 1 (  ) and level 2 (  ). 

Tumor size is grouped into three stages: stage 1 

(  ), stage 2 (  ), and stage 3 (   ). 

Table 3: Parameter estimates, log likelihood, AIC of log-STIITL-Weibull and TLG-Weibull Regression Models 

Parameters log-STIITL-WSR log -TLG-WSR 

  1.6458 <0.001 0.0273 0.0273 

      0.1262 0.1262 

  4.4471 <0.001 -8.6188 <0.001 

   7.2598 <0.001 -1.5763 0.0516 

   7.4355 <0.001 -1.3236 0.0896 

   7.0589 <0.001 -1.6512 0.0472 

   -3.4873 <0.001 -8.2837 <0.001 

   -2.9618 <0.001 -8.0825 <0.001 

   1.1040 <0.001 13.860 <0.001 

   1.3329 <0.001 13.758 <0.001 
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   -3.4468 <0.001 -2.2247 0.0039 

   -3.5911 <0.001 -2.1271 0.0092 

    -3.0626 <0.001 -2.0519 0.0140 

LL -102.5833 -103.3930 

AIC 128.5833 133.3930 

 

Table 4 compares the performance of the log-

STIITL-Weibull survival regression model 

with the log-TLG-Weibull survival regression 

model for the liver cancer dataset based on the 

AIC statistics. The results revealed that, log-

STIITL-WSR has AIC value of 128.5833 while 

the comparator model log-TLG-WSR has AIC 

of 133.3930. This indicated that, the proposed 

models is more suitable to model liver cancer 

dataset. The results for the best-fitted survival 

regression model shows that, all the exposure 

variables are statistically significant at 0.05 

percent level of significant. While log-STLE-

WSR also shows that, all the exposure 

variables are significant except for age group 

below 35 and age group above 30-50 years. 

 

4.2 Cox-Snell Residuals Analysis for Liver 

Cancer 

An essential step after constructing a survival 

regression model is analyzing residuals to 

assess the adequacy of the model. This 

involves comparing actual survival outcomes 

with those predicted by the model. The 

research focuses on the Cox-Snell residual 

method, introduced by [20], which is calculated 

as the negative natural logarithm of the 

estimated survival probability, comparing 

observed and estimated survival times. More 

precisely, it is defined as the negative natural 

logarithm of the estimated survival probability 

[21], as outlined below: 

log[ ( )], 1,2, ,i i ie S y x i n   ∣  

where       is the survival function obtained 

from the fitted survival regression models. The 

Cox-Snell residuals of the proposed log-

STIITL-W survival regression models is as 

follows; 
 

 

 

 

 

2

log 1 sin 1 1 1 , 1,2, ,
2

Ty xi

e

ie e i n









  
 
 
 

                                    

                                                             (34) 

If the fitted models are adequate, the residuals will follow standard exponential distribution. 

 
Table 4: Parameter estimates, log likelihood, AIC of log-STIITL-Weibull and TLG-Weibull Regression Models 

Parameters log-STIITL-WSR log -TLG-WSR 

  15.6767 0.1804 16.5597 0.5339 

  2.0363 <0.001 7.7708 0.3131 

  - - 4.0132 0.4222 

   6.5146 <0.001 8.7767 0.0754 

   0.2809 0.3536 -2.1205 0.1948 

   -0.1229 0.7231 -2.5233 0.1399 

   -0.7629 0.0761 -1.3923 0.5627 

   -0.6029 0.2984 -1.9509 0.4650 

   1.0076 6.0076 -14.8104 <0.001 
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   1.1176 0.0221 -14.2886 <0.001 

   -4.1206 <0.001 1.0647 0.5102 

   -3.6304 <0.001 -1.9509 0.4650 

    -3.5428 <0.001 0.9010 0.6269 

LL -112.5062 120.1437 

AIC 138.5062 148.1437 

 

The Cox-Snell residuals analysis evaluates the 

fit of the regression models by comparing the 

observed survival data with the expected 

survival data under the assumed model. The 

proposed model and the competing model were 

assessed and the results revealed that, the 

proposed STIITL-WSR yielded a lower AIC 

value (138.51) compared to the log-TLG-

Weibull model (148.14), indicating that the 

log-STIITL-Weibull model provides a better fit 

to the liver cancer survival data. Significant 

parameter estimates, particularly for variables 

                 in the log-STIITL-WSR 

model, suggest these variables strongly 

influence survival time.  

  

Figure 8: Cox Residual plot of STIITL-WSR Figure 9: Cox Residual plot of TLG-WSR 

Using the Kolmogorov-Smirnov one-sample 

test, the    statistic yields values of 0.0972, 

and 0.117 for the log-STIITL-WSR and log-

TLG-WSR models, respectively. These values 

are less than the table value (0.215) at 0.05 

significance level. This suggests that the Cox-

Snell residuals for these models follow the 

standard exponential distribution. 

Correspondingly, Figures 8, and 9 exhibit Cox-

Snell residuals plots for the log-STIITL-WSR 

and log-TLG-WSR models respectively. From 

these plots, it is evident that the estimated 

standard exponential curve closely aligns with 

the theoretical survival curve both each model. 

4.3 Liver Cancer Kaplan-Meier Survival 

Probability 

The results of the Kaplan-Meier survival 

probability analysis for the liver cancer dataset 

are represented in table 5 while the 95% 

confidence interval for the survival probability 

is shown in figure 10. The proposed and the 

competing models are also plotted with the 

non-parametric Kaplan-Meier estimator in 

figure 11 and 12. 
Table 5: Kaplan Meier Survival Probabilities for the Liver Cancer Data Set 

Time (in week) No at risk No of event Survival prob. SE 95% LCI 95% UCI 

2 40 2 0.950 0.0345 0.8848 1.000 

6 38 4 0.850 0.0565 0.7462 0.968 

7 34 2 0.800 0.0632 0.6852 0.934 

9 31 1 0.774 0.0663 0.6546 0.916 

11 30 3 0.697 0.0732 0.5672 0.856 

13 25 1 0.669 0.0754 0.5364 0.834 
14 23 1 0.640 0.0775 0.5046 0.811 
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15 22 1 0.611 0.0792 0.4736 0.788 

16 21 1 0.582 0.0806 0.4433 0.763 

17 19 2 0.520 0.0830 0.3808 0.711 

18 17 1 0.490 0.0835 0.3506 0.684 

19 16 2 0.429 0.0836 0.2925 0.628 

37 12 1 0.393 0.0839 0.2585 0.597 

41 11 2 0.321 0.0834 0.1944 0.531 
51 8 1 0.281 0.0813 0.1596 0.496 

52 7 1 0.241 0.0790 0.1268 0.458 

67 4 2 0.121 0.0721 0.0373 0.389 

80 1 1 0.000    

 

Table 5 represents Kaplan-Meier survival 

probabilities for liver cancer patients over time, 

showing how survival rates decrease as time 

progresses. It can be observed that, as more 

events (deaths) occur over time, the survival 

probability continues to decline. The table 

shows how survival trend and uncertainty 

(captured by SE and CIs) at various time 

points. 

 
                          Figure 10: Kaplan Meier Survival Curve for the Liver Cancer Data 
 

The exposure variable had improved the 

survival probabilities for these patients who 

experience the event (died) before week 

twenty, but worsened their survival probability. 

The plot in figure 10 shows the best fitted 

survival regression model together with the 

non-parametric Kaplan-Meier survival 

probability. The effect of the covariate plays a 

significant role in describing the distribution of 

the event time and the existence of the 

association between the explanatory variables 

and the event time distributions. This made the 

best fitted model more flexible compared to the 

Kaplan-Meier survival probability model. 
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Figure 11: K-M and log-STIITL-WSR survival curve  Figure 12: K-M and log-TLG-WSR survival curve 

 

5. Conclusion 

In this study, the STIITL-Weibull distribution 

was developed and fitted to the transect stake 

distance measurements obtained from [21] 

Patil and Rao (1994). Maximum likelihood 

estimation (MLE) was used to estimate the 

parameters of the proposed model, and its 

goodness-of-fit was evaluated using log-

likelihood and AIC. The STIITL-Weibull 

distribution achieved the lowest AIC value 

(376.162) compared to other competing 

models, such as the TIITLW, TLMW, W, GW, 

and TW models, indicating that the STIITL-

Weibull model provides the best fit for the 

transect stake distance data. 

Furthermore, the STIITL-W was transformed 

into log-STIITL-WSR and was also compared 

with the log-TLG-Weibull regression model 

based on their AIC values. The log-STIITL-

WSR yielded a lower AIC (128.5833) 

compared to the log-TLG-WSR (133.3930), 

confirming that it is a more suitable model for 

analyzing liver cancer dataset. Also, significant 

parameter estimates were observed for all 

exposure variables in the log-STIITL-WSR, 

indicating strong relationships between the 

predictors and the outcome variable. 

Cox-Snell residuals analysis was conducted to 

further assess the fit of the regression models. 

The analysis revealed that the log-STIITL-

WSR model outperformed the log-TLG-

Weibull model, with a lower AIC value of 

138.51 as compared to 148.14. The significant 

parameters in the proposed model (specifically, 

             and    ) demonstrated that these 

variables have significant influence on liver 

cancer patients survival time. Therefore, the 

results demonstrate that the STIITL-Weibull 

distribution and its associated survival 

regression model provide a robust and reliable 

framework for modelling transect stake 

distance measurements, offering improved 

accuracy compared to existing models. This 

study contributes to the field by highlighting 

the effectiveness of the STIITL-Weibull 

distribution in real-world data modelling and 

encourages further applications of the model in 

similar datasets. 
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