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This paper studies the pliability of regressogram decomposition as a technique of modeling 

bivariate random measurements of                   either via equal-width bins or via linear 

smoother with the use of nonparametric, Olanrewaju-Olanrewaju, and machine-learning Boxcar 

kernels. The mentioned kernels were separately incorporated into the Nadaraya-Watson kernel-

estimator as a generalized Mercer kernel. The optimal bandwidth needed as a smoothing 

parameter for impelling the kernel-based regressogram was derived using Generalized Cross-

Validation (GCV). Furthermore, finite and countable sample size bound required for the 

regressogram modeling was ascertained for reasonable sample sizes needed for effective 

optimization of coefficients, deductive measurable of some error indexes and strongly 

universally consistent estimator. In conclusion, the Olanrewaju-Olanrewaju kernel-based 

regressogram was notably sensitive with miniature scale estimated      and GCV estimates in 

application to real life dataset and simulation study to the nonparametric Doppler regression 

function. 
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1. Introduction  

Nonparametric regression is a 

distribution-free regression type modeling that 

does not presupposes a particular functional 

error form for linking covariate(s) of interest 

with associated dependent variable. Instead, it 

uses division of histogram into either equal or 

unequal bins; kernels (either as a smoothing or 

Mercer function), or regression tree to link 

covariate(s) of interest with the dependent 

variable with strong assumption of linearity 

and independence [1, 2]. However, link 

functions between interested covariate(s) and 

the associated dependent variable could be in 

terms of either simple, multiple or multivariate 

nonparametric regression [3]. Consequently, 

behavioral histogram via equal or unequal bins 

driven by a kernel-based function to link 

covariate(s) of interest to the corresponding 

response variable is regarded as regressogram 

[4]. In other words, regressogram is simply the 

conventional regression modeling plus space of 

histogram bins been compelled by a kernel or a 

linear smoother. It is otherwise known as the 

binning approach of regression analysis. 

Explicitly, it is the average of the responses 

corresponding to the associated covariates in 

the same bin as   (where   is the vector of all 

covariates). A special version of the 
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regressogram analysis occurs when the bins are 

chosen recursively by splitting previous bins 

along axis directions. This could be regarded as 

regression tree [5, 6]. Regressogram is an 

effective method of examining intricate 

interactions between variables in a 

nonparametric setting. One important issue to 

keep in mind while utilizing regressogram is 

the bias-variance trade-off. Intuitively, this can 

be catered for via employing kernel estimators 

(such as the spline) and linear/non-linear 

smoothers as drivers for regressogram 

decomposition [7 - 9]. 

Harmoniously, bias-variance trade-off 

describes estimates‟ accuracy and the cognate 

ideal of balancing precision in regressogram. 

Bias-variance trade-off is regarded as trade-off 

because the biasedness of estimator of interest 

decreases resulting to higher variability of such 

estimator and vice versa [10]. The trade-off 

complexity can be balanced-off in 

regressogram by appropriately selecting the 

optimal smoothing parameters (bandwidths), 

bins, and kernel-based estimator (smoother) for 

the distribution-free regression-type 

(regressogram) [11]. On the other hand, kernel 

smoother is referred to as kernel estimator 

because it makes use of kernel functions to link 

covariates of interest to the corresponding 

dependent variable with the assurance of 

optimal, efficient, and deductive estimates.  

Emphatically, regressogram is a useful 

nonparametric regression technique that makes 

it possible to choose from a pool of kernels and 

select the ideal bandwidth that best drive the 

distribution-free regression analysis [12, 13]. 

Additionally, smoothen estimate makes it 

possible via kernel functions to weight 

observations according to how significant they 

are to the smoother or covariates. It also makes 

it possible to ascertain changes in responses 

due to changes in parameters. Regressogram 

also makes it possible and easier to adopt and 

compare different types of kernel estimators to 

ascertain their variability and error index 

performances. Among the well-known 

generalized kernel estimators include Priestley-

Chao, Nadaraya-Watson, and Gasser-Müller 

estimators [14, 15]. The smoother can be linear 

or non-linear depending on the strength and 

direction of the relationships between or among 

covariate(s) and the response variable. 

From reviewing point of view, [16] 

proposed a regressogram-type model 

estimation for data with equal values. Residual 

Mean Square Error (RMSE) was adopted as 

error measurement index with the adoption 

Mood-Brown, Ordinary Least Square (OLS), 

Theil, Optimum and Theil Median, Hodges-

Lehman and Theil, and Optimum Mean kernels 

separately. In application to Samsunspor league 

away goals and scoring goals. That is, the 

number of away and scoring goals between 

1995-2013 seasons. Hodges-Lehman and Theil 

nonparametric regression analysis yielded the 

smallest mean and median ranking values, as 

well as the same miniature RMSE estimate 

valued at 88,9088 compare to high estimates by 

the classical regression model. It was 

concluded that the regressogram-type model 

should be adopted whenever the classical 

regression model assumptions are not valid or 

when the sample number is very low. This 

advantage makes the former more effective in 

the presence of outliers. In extension, [17] 

numerically employed the nonparametric 

regression model by adopting the Gaussian 

kernel to predict the average waiting time and 

time spent moving at 1 ms
-1

 or less by urban 

bicyclists during rush hours while performing 

different manoeuvres at intersections in the city 

of  Bologna, Italy. It was reported that 

predictions made were optimally robust. The 

robustness was confirmed via boostrapping 

method that highlighted contributions of 

different covariates that affected waiting time 

in the city. Reportedly, it was affirmed that 

future work should focus more on testing the 

model transferability to some other case 

studies. 

Furthermore, [18] considered 

nonparametric regression model with the 

adoption of k-Nearest Neighbours (k-NN) 

method and Nadaraya–Watson kernel in a 

highly flexible compositional response data 

with inclusion of zeros. In application to 

simulation studies and real-life data, [18] 

highlighted that nonparametric regression 

model via the two adopted methods was robust 

in complex relationships between 
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compositional response and Euclidean 

predictor variables. [18] also affirmed that both 

methods of regression analyzes lead to more 

accurate predictions compare to the classical 

regression-type models that usually assume 

restrictive parametric relationship with the 

dependent variables. Conclusively, it was 

summarized that the k-NN regression kernel 

enjoys higher computational efficiency than 

Nadaraya–Watson kernel, rendering the former 

to be highly attractive for use with large sample 

data sets.  

        Connectively, regressogram depends on 

the division of covariates into histogram space 

bins, say          with a cognate assumption 

that covariates   
 𝑠  are from a distribution over 

[0, 1] before exploring the ideal bandwidth, 

kernel estimators, and other parameters needed 

to drive it [19 - 21]. 

Consequently, this article shall workout the 

practical details of regressogram based on 

equal-width bins and afterwards adopt the 

Nadaraya-Watson estimator (NW-estimator) to 

smoothen the defined regressogram function. 

The NW kernel-estimator will be adopted 

because of its pliability to accommodate bias-

reducing (second and fourth-order kernels: the 

nonparametric kernels) kernels, built-in 

kernels, and the newly convoluted machine-

learning kernel known as the Boxcar kernel. In 

other words, the nonparametric kernels of 

Epanechnikov, Biweight, Triweight, Gaussian, 

Uniform, and Triangular, as well as the inbuilt 

Olanrewaju-Olanrewaju kernel and machine-

learning kernel of Boxcar shall be incorporated 

into the generalized NW kernel-estimator 

differently to smoothen the regressogram 

function. In addition, linear smoother via 

collection of nice functions with the use of 

Least Square (LS) method shall be introduced 

to drive the regressogram function with an 

optimal bandwidth to be optimized by 

Generalized Cross-Validation (GCV). Lastly, 

these mentioned functional relations of 

regressogram shall be subjected to simulation 

study of a regression function known as the 

Doppler function and real life application for 

deductive inference. 

   The key components of this manuscript 

includes Introduction, Terminology and 

symbols, Methodology, Research findings and 

discussion, Conclusions, Appendix 

Acknowledgement, Author contributions, 

Conflicts of interest, and References. 

2. Methodology 

 

Let                   be a bivariate 

random sample for ranges of values that can be 

domain in a continuous or discrete form. In this 

kind of regression analysis, we are interested in 

the regression function of the form,  

𝑚                                                 (1)                                 

Equation (1) can be explicitly written as,  

   𝑚                                                    (2)                                                                            

Such that,                       
       ∑     

 
   , with      ,    

      and the assumption that        ,  

         𝑚      . 

 

      𝑚    could be referred to as the 

smoothen function, otherwise regarded as the 

nonparametric regression. Equation (2) may 

however be problematic in some applications, 

particularly if the data are tainted by anomalies 

or needed to be constraint to be non-

distributional error form, then the concept of 

histogram will be required to adjust the 

regression setting of equation (1). The 

adjustment of equation (1) with histogram is 

what is regarded as regressogram.  The name 

regressogram was coined by [22] to mean the 

combination of the normal regression (as a 

smoother without any error distributional form)  

plus space of bins of histogram. According to 

equation [23], regressogram is the averaging of 

covariates corresponding to   𝑠 that falls into 

disjoint bins spanning of the  -covariates 

space. 
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                    Table 1: Terminology and symbols for the proposed regressogram modeling. 

Symbol                         Quantity 

      j   

      𝑗  
 

 

            

  𝑚       

𝑚̂            
 

     ℎ>0    

     𝐾(⋅)     
  𝑖𝑎𝑠(𝑚𝐽( ))

 

    𝑉𝑎𝑟(𝑚𝐽( ))  

     𝐶𝑉(ℎ)                                                  

     𝐺𝐶𝑉(ℎ)     

    

  ℎ𝑜𝑝𝑡( )     

 𝑃𝑛        

Is the average of  𝑖′𝑠 in  𝑗  

Is the bins  1,…,  j that represents the entire histogram‟s 

regression space. 

Is the response variable 

The smoothen function or the nonparametric regression 

Is the nonparametric Nadaraya-Watson kernel estimator 

Referred to as the bandwidth  

Referred to as the second and fourth order kernel 

Biasedness of the regressogram estimator  

Variance estimator of the regressogram 

Cross-validation that minimizes the bandwidth 

Generalized cross-validation that minimizes the 

bandwidth  

Optimal bandwidth for covariate    to 𝑡−1  

Empirical measure 

 

2.1 Regressogram via Equal Width-Bins 

 

        This can be thought of as an 

approximation to smoother     by a stepwise 

function evaluated at midpoints of the bins. 

This makes regressogram a special kind of 

kernel-based regression function defined for 

discontinuous stepwise function of bins. 

Regressogram with equal-width bins is often 

regarded as the binning approach of regression 

analysis as represented below as, 
 

Regressogram = regression + histogram     (3)                                                                                                   
 

Alternatively, regressogram represents the 

histogram's regression version that makes bins 

        out of the available space of the 

entire histogram space. Mathematically, 

𝑚̅     ̅    for                                      (4)                

Where  ̅  is the mean of the responses (  𝑠) 

for the data in the bin   . In nonparametric 

regression setting, this implies selecting the 

bins recursively, by dividing early bins along 

axis directions. Assuming we are interested in 

multiple covariates of            for a 

random variable say  , then the nonparametric 

regression of equation (2) becomes,  

  𝑚                                           (5)                        

Additively, 

  𝑚      𝑚      𝑚      𝑚      
𝑚                                                           (6) 

            such that, 𝑚̂   𝑚̂  𝑚̂  𝑚̂   𝑚̂   could be 

estimated by a kernel estimator. This implies 

that each 𝑚̂  is an embedded function of 

        for  𝑖      𝑛. For simplicity, if 

covariates of            for a random 

variable say   that assumes values between 
     , then the simplest nonparametric 

estimator of 𝑚 is the regressogram with 

𝑘  integer such that, the 𝑘  equal-width bins 

can be divided into       with  

        
 

 
         

 

 
   

 

 
        

 
 

 
   

 

 
         

 

 
   

 

 
       

 

 
   

 

 
                (7) 

         Assuming 𝑛  denotes observations in the 

bins, say   . This implies that 𝑛  

∑         
 

  where             if  

       and             provided     

  .  If   ̅   is the average of    
 𝑠 in   , then, 

 ̅  
 

  
∑        

. Rewriting in a kernel form 
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gives 𝑚̂    ∑  ̅        
 

   
.  The stated 

kernel estimator of equation (6) that smoothens 

  can be of any form. 

 

2.2 Nadaraya-Watson Kernel-Estimator 

 

     The adopted kernel estimator for this write-

up that smoothens   is the nonparametric 

Nadaraya-Watson kernel estimator (NW 

kernel-estimator) define as, 

𝑚̂           
 

∑     
    

 
 

 

   

∑   
    

 
 

 

   

               (8)                          

Where      is referred to as the 

bandwidth and the function 𝐾 ⋅  could be any 

of the second and fourth order kernels, inbuilt 

kernels or machine-learning kernels, 𝑚̂    is 

the local average of   
 𝑠. However, NW-

estimator was adopted because it effectively 

smoothen noisy data, reduces noise 

interference, and can be conceived as a locally 

weighted average function (weighting 

function). This implies that equation (6) could 

be rewritten as,  

  𝑚      𝑚      𝑚      𝑚     
 𝑚         

        
 

    
    

 
 

  
    

 
 

 
    

    
 

 

  
    

 
 

   

    
    

 
 

  
    

 
 

                                                (9)      

In a general term of  𝑖      𝑛.  

 

Below are the known properties of  𝐾     

 

 𝐾       ,   𝐾         and   
  

   𝐾         

 

       It is to be noted that theoretical 

calculations might be insensitive in terms of 

deviation of results to the choice of kernel. 

What matters is the choice of bandwidth  ), 

which controls the amount of smoothing. 

Notably, smaller magnitude of bandwidths 

usually yields rough estimates, while larger 

bandwidths produce smoother estimates. 

Among the optimal second and fourth order 

kernels, inbuilt kernels, and convoluted kernels 

of 𝐾 ⋅  designed such that they can be 

incorporated into the NW kernel-estimator are 

the nonparametric second and fourth kernels of  

 

1.  Bisquare Kernel:         

𝐾 
    

  
        

 
  

  
           

         
        

         

  
   

     𝑖 𝑗      𝑛                    (10)                            

           

2. Gaussian Kernel: 

𝐾 
    

  
        

       
 ⁄           

     
     

(11)                                                                      

 

           The commonest choice of this kernel is 

the Gaussian density with 𝐾        

 ⁄ . This 

does not necessarily mean that it is assumed 

that the data are normally distributed neither 

that a distributional random noise is needed. 

The proportionate kernel is just a way of 

defining smoothing weights. 

 

3. Triweight Kernel: 

𝐾 
    

  
        

 
  

    
           

          
         

                   

  
     

(12)            

4. Uniform Kernel: 

      𝐾 
    

  
        

 

 

 
                 

  
          (13)                            

 

5. Epanechnikov Kernel: 

      

𝐾 
    

  
        

 
 

 
          

                   

  
           (14) 
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6. Triangular Kernel: 

     𝐾 
    

  
        

 
                            

  
           

(15)                                                                 

           Where,    is the bandwidth of the  𝑙  
individual covariate.  

          In addition, another notable inbuilt      

        kernel is the  

 

7. Olanrewaju-Olanrewaju Kernel: 

𝐾 
    

  
        

   
    

 

 
        

      

 
        

  
 

    
 

 
        

      

 
  

      

       

  
             (16)                               

      (  a non-negative value), usually  

0.005, where    is usually peg at 3.5  

according to [24, 25], such that, 

 (    )     *    
 

 
)        

*
 

 
    

 

 
)                  

 

 
    

 

 
            

 
   

 
    

   

 
      

   

 
                       (17)                

The known convoluted machine-learning 

kernel is the  

 

8. Boxcar Kernel:  

   𝐾 
    

  
        

    
     𝑖       

    

  
     

     𝑖      
    

  
      

         

(18)                                                                                          

           For all average of    such that        
  where      is some small magnitudes of 

bandwidths. This implies that all the stated 

kernels from equation (10) to equation (18) 

shall be individually incorporated into equation 

(9) of the NW kernel-estimator to give different 

variants of the regressogram function of 

equation (6).   

The biasedness of the regressogram 

estimator via each of these stated kernels can 

be carved-out as: 

         𝑖𝑎𝑠 𝑚̂      (
 

 
)                             (19)                                                                                 

The corresponding variability (variance) 

estimator of the regressogram is nothing but: 

      𝑉𝑎𝑟 𝑚̂       (
 

 
)                             (20)                                                                                       

such that the Mean Square Error (MSE) and 

Mean Index Square Error (MISE) indexes are: 

  𝑀    (
 

 
)   (

 

 
)   𝑀     (

 

 
)  

 (
 

 
)                                                            (21)                                                                

2.3    Confidence Interval (C.I) and Variance 

Estimation of the Regressogram via Equal-

Width Bins. 

To construct the Confidence Interval (C.I) 

of 𝑚    , the stated assumption of equation (2) 

that           shall be adopted. Having 

ascertained that         , then the z-variate 

distributed random variable of 𝑚     shall be 

assumed. That is z-variate of   
   

√  
. Then,  

√𝑛  𝑚̂        𝑚̂           
  ⋅  

 

    
    (22)     

                    

 ̂        ̂     

     ̂     
                                     (23)   

          

         No doubt that the variance depends on 

three quantifications of   ,   
   and     . 

Moreover,   
   is the quantity from the 

characteristic of the kernel function.      is the 

density of covariates that can be estimated from 

Kernel Density Estimation (KDE). What 

remains is the unknown estimation of the 

variance noise   . This can be done via the 

estimation technique of residuals from the 

normal regression setting, that is,  

 

       ̂     𝑚̂                              (24)                           

From the known quantity, that is    

𝑉𝑎𝑟     and the residual square ∑   
  

   
 

∑ 𝑉𝑎𝑟    
 

   
 approximation in linear 

regression setting, then, we have, 
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∑   
  ∑ 𝑉𝑎𝑟        𝑛  𝑝    

 

   

 

   
 

(25)                        

Then, 

 ̂  
∑   

 
 

   

       
                                                (26) 

                            

Where 𝑝 is the number of parameters 

estimated and  𝑛  𝑝     could be referred to 

as degree of freedom. The        C.I can 

be constructed via: 
 

𝑚̂         
 ⁄

 ̂⋅  

√ ̂   
                                 (27)                         

 

Where   ̂     is the KDE of the covariates. 

 

2.4 Regressogram via Linear Smoother 

 
Apart from embracing the kernel-based 

style estimator in modeling regressogram 

function of equation (5), alternatively, the 

notion of linear smoother might also be 

introduced. Linear smoother is a collection of 

nice functions (differential functions with 

starting point(s), say   ) of any regression 

estimator. A typical example of a linear 

smoother is the Least Squares (LS) for a simple 

linear regression of the form,  

 

𝑚̂    ∑        
 

   
                         (28)                       

Where       are nice functions that depend 

only on    𝑖      𝑛  but not on    𝑖  
    𝑛 . The residual for the  𝑖    observation 

is of the form, 

 

      𝑚̂        ∑   
 
                (29)                         

Assuming                is the vector 

of residuals, then the 𝑛  𝑛 matrix of  

            is    

 

  [

                   
                   

    
                   

]  

[
 
 
 
     

 

     
 

 
      ]

 
 
 
             (30) 

This connotes that  equation (8) can be 

rewritten as: 

𝑚̂           
 

∑     
    

 
 

 

   

∑   
    

 
 

 

   

 

∑         
 

   
                                      (31) 

Having said that a typical linear smoother is 

the LS simple linear regression. Therefore, 

from the   ̂  of LS estimator, it implies that  

 

  ̂              and   ̂    ̂  
           , so, 

  

                                             (32)                                                      

Hence, the 𝑖  -row of matrix   could be 

referred to as the effective kernel for estimating  

𝑚     , where matrix   could be regarded as 

the smoothing matrix, such that the alternative 

degree of freedom as affirmed in equation (26) 

is the trace of   , that is, 𝑝   𝑟𝑎     .    

However, after rigorous derivations and 

approximations, it was concluded that 

regressogram is also a linear smoother. If the 

bins of the covariates are            with 

     being the bin that belongs to   𝑠. Then,    

      
          

∑           
 

   

                               (33)                                 

Additionally, kernel driven regressogram 

with equal-width bins is also a linear smoother 

from a starting point value of       as a 

differential equation with, 
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𝑚̂            
 

∑     
     

 
 

 

   

∑   
     

 
 

 

   

 

∑     
     

 

   
   such that,  

 

   
      

  
     

 
 

∑  
     

 
 

 

   

 

So, invariably,       
  

     

 
 

∑   
     

 
 

 

   

  

In addition, the variance of any kernel 

driven regressogram coincides with that of the 

regressogram driven by a linear smoother with   

 

 ̂  
∑   

 
 

   

       
   (See Appendix). 

        

2.5 Selection of Bandwidth   by a Cross-

Validation (CV) Technique 

 

Bandwidth     could be chosen via Cross-

Validation (CV), or via a more redefined 

Leave-One-Out Cross-Validation (LOOCV). 

Assuming 𝑚̂ 
    

 is the kernel estimator with 

bandwidth     obtained after leaving-out 

       . The CV (similar to that of the AIC of 

continuous parametric index) index score is, 

, 

𝐶𝑉    
 

 
∑     𝑚̂ 

    
     

 

 
              (34)                          

For 

           {

                               𝑖   𝑖  𝑗
     

∑      
   

         𝑖   𝑖  𝑗 

 

Such that,  𝑚̂        ∑      
 

   
  𝑗   

 

However, there is still a short cut to it via, 

 

𝐶𝑉    
 

 
∑  

     ̂      

     
 

 

                     (35)                            

 

  The idea here is to fit 𝑚̂  for some values 

of    . We then compute 𝐶𝑉    by trying to 

find  ̂ that minimizes 𝐶𝑉   . By doing so,     

could be replaced by the averaging value of 
 

 
∑     

 

 
 𝑟    

 

  
. By this replacement 

of     with  
 

 
 , we have Generalized Cross-

Validation (GCV) as, 

𝐺𝐶𝑉    
 

   
 

 
  

 

 
∑     𝑚̂      

 
 

        (36)                       

Alternatively, local bandwidth can also be 

selected via a plug-in principle. The formula 

depends on asymptotic best optimal local 

bandwidth       of the variate   , that is, 

       ; 

        
 

 
 

 ⁄
(

  
         

                  
)
 

 ⁄

   (37)    

                           

Iteratively by starting with an initial 

bandwidth     to estimate 𝑚  ⋅  by an inflated 

version of 𝑛
 

  ⁄     and   
 . In case there is 

need for smoothing of two continuous 

derivative functions of a regression problem 

that need to minimize the sum of squares, we 

then have,  
 

  (       )   ∑   𝑖 𝑚      
  

   
 

  𝑚 
       

   
    

    
                                    (38) 

 

Where         is the smoothing parameter. 

 

2.6 Finite Sample Bounds of 

Regressogram with Appropriate Linear 

Smoother  
 

Theorem 1: If  𝑙𝑖𝑚
   

      and  𝑙𝑖𝑚
   

   
 

    
 

 , then the estimate  𝑚   is strongly 

universally consistent (See [26]), that is, 

 

   
   

  𝑚    𝑚                (a.s.)                                  

(39) 
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for any bivariate random sample of       with 

       . 

 

   
   

    𝑚    𝑚                                                  

(40) 

 

    𝑚    𝑚̃               
 

   
   

    

    
                (41) 

 

for any bivariate random sample of       with 

       , such that,     𝑛           , and  

   
 

√    
 . 

 

Proof. 

 

Assuming the smoothing estimator is 

universally consistent, such that,    𝑚̂     
𝑚  

     
     as 𝑛    with assumption that 

         for any compacted kernel 𝐾    

and bandwidth       satisfying       and 

𝑛  
     as 𝑛   .  

To solve the kernel smoothing estimator 

consistency of   𝑚̂     𝑚  
     

     

depends on another emphatic probabilistic 

assumption that 𝑃  is known such that 

  𝑚̂     𝑚  
     

    𝑚̂     

𝑚  
    𝑃     or equivalently ∑ 𝑚̂     

𝑚  
    𝑃     (In a discrete setting). By 

dropping this assumption in order to move 

away from the parametric probabilistic 

assumption of known 𝑃 , we shall be 

employing a spherical kernel 𝐾      
         to nullify the constraint of known 

𝑃   as a result of extension to incorporated 

kernels. 

 

𝑚̂     
∑              

 

   

∑            
 

   

 
∑              

 

   

𝑛𝑃         
 

                                                                                                 

(42) 

 

Where 𝑃  is an empirical measure, where 

        𝑢    𝑢    . Obviously, if  

        𝑢    𝑢      , then  

𝑚̂       .  

 

Assuming    𝑚  𝑚̂     𝑚      
𝐿   𝑢        𝑢       such that      ⋅      is 

an  𝐿  space with 𝑝     for  𝐿   𝑢  .  

The risk bound of   𝑚̂     𝑚  
     

  

without density 𝑃   for compact support of   

possesses                , then, 

𝑠𝑢𝑝
         

  𝑚̂     𝑚      
     

  
  

   
                        

(43) 

 
 

 
 

     

   if    𝑛
 

      

Such that the smoothen manifold of 

dimension  𝑟     is 

 

 
     

          
   

 

      Instead of    
 

                 

(44) 

Let, 

𝑚     
∑                 

 

   

           
                                                 

(45) 

 

If      exist and is true such that    
 𝑃            , it implies that, 

 

   𝑚̂     𝑚                     
∑                    

 

   

    
         

 
  

           
                                        

(46) 

 

For 𝑚   , we have  𝑚     𝑚     
𝐿       𝐿  for          , hence, 

  

 𝑚     𝑚      𝐿    𝑚            (47)    

                  

Therefore,  

 

   𝑚̂     𝑚      𝑃   
    𝑚̂     𝑚       𝑃   
    𝑚     𝑚      𝑃    

 

   
  

           
       𝑃    𝐿    

 𝑚               𝑃                               (48) 
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Bounding the first term, assuming  𝐺  
𝑛𝑃         . It is to be noted that 𝐺  
 𝑖𝑛 𝑛 𝑞  where 𝑞  𝑃          . Now,  

 

 

  
      

 
    

 

   
  ∑

 

   
 
𝑛
𝑘
 𝑞    

 

   

𝑞                   (49) 

 
 

      
∑  

𝑛   
𝑘   

 
 

   
𝑞      𝑞                                          

(50) 

 

 
 

      
∑  

𝑛   
𝑘

 
 

   
𝑞      𝑞                             

(51) 

 

  𝑞     𝑞      

      
 

 

      
 

 

  
                              

(52) 

 

Therefore, 

 

  
        

           
 𝑃        

     

          
                                 

(53) 

 

Our interest is to choose points  𝑡    𝑡   such 

that the support of  𝑃   is covered by 

∪   𝑡   
 

 
  

     where   
  

     
  . So,  

 

 
     

          
 ∑  

          
 

 
  

          

 

   

 𝑃    

∑  
          

 

 
  

        
 

 
  

 

   

 𝑃    
 

 
 

  

   
     (54) 

                                                                                                    

From the third entity of equation (48) we have, 

 

 𝑚               𝑃    𝑠𝑢𝑝
 

𝑚        

𝑃           𝑃                                        (55) 

  

 𝑠𝑢𝑝
 

𝑚                  𝑃    

 

 𝑠𝑢𝑝
 

𝑚                 
𝑛𝑃        

𝑛𝑃        
 𝑃    

 

    
 

𝑚       
 

 𝑢     
 

𝑛𝑃        
 𝑃    

 

 𝑠𝑢𝑝
 

𝑚    𝑠𝑢𝑝
 

 𝑢    
  

    
  

                (56)                              

 

Remark: 

 

Equation (56) ascertain the finite and 

countable sample size bound require for kernel-

based regressogram modeling. It implies that 

estimates from linear smoother or kernel-based 

regressogram are error and estimates bounded, 

coupled with the un-deviated linearity 

assumption without making strong 

assumptions. Furthermore, what this connotes 

is that for strongly universally consistent 

estimates of 𝑚     to be ascertained, sample 

size  𝑛  of bivariate data points ideal for 

optimal regressogram estimates and bounded 

error must be less than  𝑛       𝑛      for 

some     and    in  . Additionally, 

futuristically, rates of convergence for 

estimates could be looked into.   

2.7 Algorithm 

Input: Observations/samples/datapoints 

stored in a trained bivariate dataset  

                             for 

𝑖      𝑛  with  , smooth function from 

Hilbert space  , bins 

              
 

𝑘
    

 

𝑘
   

 

𝑘
   

 

𝑘
   

 

𝑘
      

 
     

 
   

     

 
   

     

 
   

 

 
     and 

regularization parameter    that is usually 

3.5 in magnitude and penalization   

included in the Olanrewaju-Olanrewaju 

kernel. 

1. Initialize  

𝑚̂            𝑚̂              𝑚̂           

  for  𝑛  ∑         
 

  

2. If   ̅   of    
 𝑠  are in    , then, estimate  

 ̅  
 

  
∑        
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3. If  𝑛  ∑         
 

,  then  𝑚̂     

∑  ̅        
 

   
  

4. Compute the initial estimator based on 

 :   

 ̂       
   𝐾 ⋅  such that 𝐾 ⋅  is any of 

the second, fourth, inbuilt, machine-

learning kernels to be incorporated into 

NW 

5. Apply a smoother to  ̂       
  on    to 

obtain  𝑚̂      

 

6. Compute   ̂       
   𝐾 ⋅  and transfer 

it to the machine 

7. Compute  

        
 

 
 

 ⁄
(

  
         

                  
)
 

 ⁄

  

 

8.   𝐺𝐶𝑉    
 

(  
 

 
)
 

 

 
∑ (   

 

𝑚̂     )
 
  for  𝑡        

 

9. Estimates of   ,   ,   , and         are 

extracted from 𝑚̂     with the involved 

NW kernel-based estimator.   

3. Research Findings and Discussions 

 

     Two set of analyzes shall be carried-out 

in this section: the regressogram analyzes shall 

be applied to simulation study of 

nonparametric Doppler regression function and 

a real life dataset. Two set of analyzes will be 

used to validate the embedded nonparametric, 

Olanrewaju-Olanrewaju, and Box kernels into 

the NW generalized-estimator as a 

regressogram function. In each of the set of 

these analyzes, the kernel-based regressogram 

shall be juxtaposed performance and optimality 

wise via some error indexes. 
 

3.1  Simulation Study 

 

The well-known nonparametric regression 

function regarded as the Doppler function, 

      𝑠𝑖𝑛                      (57)                      

shall be subjected to the above stated kernel-

based regressogram functions, where   ⋅  is the 

indicator function of the constraint    . The 

sine function shall be kinked at     with a 

slope linear component. The error distribution 

of interest is the  𝐺𝑎                 . 

Where  𝐺𝑎  𝐺𝑎𝑚𝑚𝑎     , while     is the 

student-t distribution with three (3) degrees of 

freedom. Five thousand (5000) paired samples 

of            of  
 

  
   𝑡𝑎      with 

distribution of    𝑚        shall be used to 

run       𝑠𝑖𝑛                  . 

Figure 1. Nadaraya-Watson regression estimates of the  nonlinear function of equation (39) 

Source: Authors‟ Computation (2025) 
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           From Figure 1. above, the true function 

of the non-linear regression function is the 

green color, while estimates are in red color 

with estimated bandwidth close to 0.25 (left) 

and 0.27 (right) respectively. Bandwidth values 

lead to estimates, which capture the function 

well with considerably lesser variation than the 

smaller bandwidth from the first set of 

estimates. It is to be noted that the first plot was 

based on approximation of the Mean Squared 

Error (MSE) minimizing bandwidth, while the 

other is based on Leave-One-Out Cross-

Validation (LOOCV). The NW-estimator 

kernel was adopted as default because it was 

also perceived as a local-linear estimator. 

Smaller bandwidths are accurate over much of 

the range, but exhibits increased variation in 

the tails. The selection of the bandwidth was 

from the histogram of each of the component 

of the bin of the generated 5000 samples.          

Significantly, it connotes that bandwidths 

between zero (0) and ten (10) were used to 

drive the optimal bandwidths to be estimated 

Generalized Cross-Validation (GCV), that is, 

they were used as guessing bandwidths. 

    From Table 2, five thousand (5000) pair 

sample were sampled from 
 

  
    𝑡𝑎      

and the distribution of   𝑚̂       was 

described for each of the kernel-based 

regressogram. Notably, all the embedded 

kernels: Triangular, Uniform, Epanechnikov, 

Triweight, Bisquare, Gaussian, Olanrewaju-

Olanrewaju, and Boxcar into NW-estimator 

produced significant respondents for the 

regressogram 𝑚̂     with corresponding 

covariate                        with 

distributional random noise of Student-t (of 

three (3) as the degree of freedom). A Durbin-

Watson estimate of 1.8 indicates a positive 

serial correlation (Ascertaining that the 

independence assumption was met).  

The adjusted R-squared (R-Sq. (adj)) is a 

modified version of the R-squared that adjusted 

number of predictors in the model. The 

adjusted R-squared increases when terms 

improve the model more than expected by 

chance. It decreases when a predictor improves 

the model by less expected. Alternatively, 

adjusted R-squared increases when an added 

explanatory variable has contributed 

significantly to the model. However, all the 

embedded kernels significantly contributed to 

the covariate                       , 

that is,                        

contributed immensely to 𝑚̂    . With this, 

only uniform, Olanrewaju-Olanrewaju, and 

Boxcar kernels yielded higher adjusted R-

squared of 26.1% for the three kernels compare 

to 9.81%, 4.2%, 0.873%, 3.48%, and 0.257% 

by triangular, Epanechnikov, Triweight, 

Bisquare, and Gaussian kernels respectively. 

However, the 26.1% adjusted R-squared 

yielded by uniform, Olanrewaju-Olanrewaju, 

and Boxcar kernels is still somewhat low in 

explaining the proportion of variance in the 

dependent variable that could explain the 

independent variable. Explicitly, this literally 

connotes that R-Sq.(adj) must lie between 

zero(0) and one (1), such that any value of R-

Sq.(adj) close or approximately equal to one(1) 

is a good fit. Affirmatively, only the uniform, 

Olanrewaju-Olanrewaju, and Boxcar kernel R-

Sq. (adj) for the regressogram are closer to 1 

(but still somehow low), this implies that these 

kernels are somewhat of indication of interest 

as far as the simulation study is concern. To 

cement the final deduction from the pinpointed 

three kernels by the adjusted R-squared 

inference, it could be inferred that only the 

Olanrewaju-Olanrewaju kernel yielded the 

smallest magnitude of GCV, scale 

estimated    , and residual estimates valued at 

0.0002081, 0.00020802, and 1.039677 

respectively compare to that of higher 

magnitudes yielded by uniform and Boxcar 

kernels valued at 59592, 59568, 297721710; 

and 353.7724, 353.624, 1190886841 

respectively. 
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Table 2: Simulation study of the kernel-based regressogram of the Doppler function                       

      

NW 

  

Kernel 

Intercept via 

  𝑚̂     

      R-

Sq.(adj) 

Deviance 

Explained 

  GCV Scale 

Estimated 

Residual 

Triangular 15609.5 

(1071.0) 

<2e-16 *** 

-4546.7 

(194.8) 

<2e-16 *** 

0.0981 9.83% 28863.42 28851.8 787312.3 

Uniform -213.186 

 (8.402) 

<2e-16 *** 

64.281 

(1.528) 

<2e-16 *** 

0.261 26.1% 59592 59568 297721710 

Epanechnikov   556421 

  (58204) 

<2e-16 *** 

 -157057 

  (10587) 

<2e-16 *** 

0.042 4.22% 465397.3 465218.3 12694777 

Triweight 

 

 

103522.4 

(83370.17) 

5.07e-06 *** 

-101762.3 

(55789.73) 

2.16e-11 *** 

0.00873 0.893% 32033295392 32020050831 523148.6 

Bisquare -577488 

(67335) 

<2e-16 *** 

165004 

(12248) 

<2e-16 *** 

0.0348 3.5% 622878.9 622634.7 16990545 

Gaussian 0.386903 

(0.034059) 

<2e-16 *** 

-0.023090 

(0.006195) 

0.000196 *** 

0.00257 0.277% 0.97916 0.97877 4891.868 

Olanrewaju-

Olanrewaju 

-0.1705225 

(0.0909371) 

<2e-16 *** 

0.1891411 

(0.06085714) 

<2e-16 *** 

0.261 26.1% 0.0002081 0.00020802 1.039677 

Boxcar -426.371 

(16.805) 

<2e-16 *** 

128.562     

(3.057) 

<2e-16 *** 

0.261 26.1% 353.7724 353.624 1190886841 

            Keys: Signif. Codes:  0 „***‟ 0.001 „**‟ 0.01 „*‟ 0.05 „.‟ 0.1 „ ‟ 1 

Source: Authors‟ computation (2025). 

 

3.2  Real Life Application 

       The English Premier League (EPL) is one 

of the famous and highest levels of the English 

professional football league, founded in 1992 

and is usually contested by twenty (20) clubs 

year-in year-out. It is also known as the 

Premiership. The football league is usually 

played per season. Season typically runs from 

August to May of another year, such that each 

team plays third-eight (38) matches against all 

other teams, both home and away. Unarguably, 

the accumulated points by each of the involved 

clubs in the EPL is a cognate function of Goals 

Scored (GS) and Goals Conceded (GC), that is, 

            𝐺   𝐺𝐶 . However, there are still 

some un-neglected and less determinant 

exogenous variables like number of wins, 

draws, and losses that contribute to the 

aggregate points  𝑖           by each of the 

twenty (20) participated clubs year-in year-out. 

Aggregated points year-in and year-out from 

2008 to 2023 shall be subjected to 

regressogram of embedded kernels of the 

nonparametric, Olanrewaju-Olanrewaju, and 

Boxcar kernels for deductive inference. 

However, seventeen (17) yearly data points of 

Goals Scored (GS) and Goals Conceded (GC) 

that yielded number of wins, draws, and losses 

shall be considered. 
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Figure  2. Nonparametric, Olanrewaju-Olanrewaju, and boxcar kernels grids of (975:1087) goals scored and goal 

conceded. 

                                                Source: Authors‟ computation (2025). 
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         It is to be noted that kernels are 

estimators of sum of „bumps‟ placed at the 

observations. Kernel function determines the 

shape of the bumps, while window width      

determines their width. In other words, kernels 

are estimators of sum of  „bumps‟ centred at the 

observations of two bivariate dimension of 

       ,        ,  ,          . The EPL 

scaled data are equal for each kernel for both 

dimensions and uses a single smoothing 

parameter each. Figure 2 above made-up the 

Gaussian, Epanechnikov, Triangular, 

Triweight, Bisquare (nonparametric); 

Olanrewaju-Olanrewaju, and Boxcar kernels in 

descending the order with positive bandwidths 

of 2.3, 2.5, 2.1, 2.4, 2.12, 2.6, 2.05 

respectively. Because the grids of scores 

considered for the mentioned kernels are non-

negative, that is symmetric nonnegative 

kernels, they could be referred to as second-

order kernels (bias-reducing kernels). Notably, 

only Epanechnikov and Triweight possessed a 

relatively rhombus like (Bell like: See Figure 2 

above) shape for the seventeen (17) year data 

points with grids of (975:1087) of goals scored 

and goals conceded respectively. Other 

remaining kernels: Gaussian, Triangular, 

Triweight, Bisquare, Olanrewaju-Olanrewaju, 

and Boxcar yielded a skewed-skewed (Cup 

like: See Figure 2 above) shape for the 

seventeen (17) year data points with grids of 

(975:1087) of goals scored and goals conceded  

respectively for the years of studied. Durbin-

Watson estimate of 1.6 indicates a positive 

serial correlation to ascertain and confirm the 

independence assumption. 

Table 3. English premier league (EPL) aggregated points from (2008 to 2023) in application to kernels‟ embedded NW 

estimator of the regressogram function. 

NW 

  

Kernel 

Gaussian Triangular Uniform Epanechnikov Triweight Bisquare Olanrewaju-

Olanrewaju 

Intercept 1364.96092 

(59.76913) 

0.002623*** 

3605258094 

(59.76913) 

0.00262*** 

363880.13 

(69395.03) 

0.00119** 

659638.4 

(504798.9) 

0.004158 

-56802.6 

(19713.08) 

0.0098*** 

-63269107 

(14027354) 

0.00642*** 

21.503160 

(4.100835) 

0.00119 ** 

Wins -0.88266 

(0.13171) 

0.00027*** 

9969461 

(749470) 

0.00788*** 

-1557.17 

(152.92) 

0.01280*** 

49735.76 

(15055.53) 

0.01447 

-2126.372 

(587.7958) 

0.0078*** 

-3865808 

(1538847) 

0.024189*** 

-0.092020 

(0.009037) 

0.0128*** 

Draws -0.73675 

(0.07046) 

0.010713 *** 

-969983 

(400922) 

0.04613* 

-316.25 

(81.81) 

0.00616** 

-47362.53 

(29627.74) 

0.0006*** 

760.8667 

(1157.029) 

0.04613* 

1359979 

(823213.7) 

0.000502 *** 

-0.018689 

(0.004834) 

0.00616** 

Losses 0.30853 

(0.02751) 

0.024762*** 

-7073183 

(156528) 

0.000308*** 

912.41 

(31.94) 

0.0006*** 

-39030.9 

(11566.12) 

0.0003*** 

1507.871 

(451.7697) 

0.0003*** 

3232272 

(321440.7) 

0.0003*** 

0.053918 

(0.001887) 

0.00056*** 

Goals 

Scored 

-1.91795 

(0.15901) 

0.01521*** 

5810170 

(904808) 

0.00036*** 

-1699.58 

(184.62) 

0.02479*** 

57410.35 

(18175.22) 

0.01595 * 

-1239.195 

(709.6312) 

0.0004 *** 

-631323.9 

(504793.7) 

0.251466 

-0.100435 

(0.010910) 

0.02479*** 

Goals 

Conceded 

1.90162 

(0.15506) 

0.01360*** 

-15070507 

(882307) 

0.00527*** 

2723.83 

(180.03) 

0.00327*** 

-67202.75 

(17721.44) 

0.00570*** 

3213.135 

(692.2838) 

0.0053 

1296407 

(492406.1) 

0.017788*** 

0.16096 

(0.010639) 

0.00327*** 

R-sq.(adj) 0.999 0.999 0.998 0.999 0.999 0.999 0.993 

Deviance 

Explained 

99.9% 99.9% 99.9% 99.9% 99.9% 99.9% 99.9% 

GCV 8.1032 3155273 1197.852 2126326609 11929714 982945.4 0.038146 

Scale 

Estimated 

4.3633 1699039 2372.887 4212058677 6423711 529287.4 0.02054 
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NW 

  

Kernel 

Intercept    Wins Draws Losses Goals 

Scored 

Goals 

Conceded 

R-

sq.(adj) 

Deviance 

Explained 

GCV 

 

Boxcar 

727760.27 

(138790.06) 

0.00119** 

-3114.34 

(305.85) 

0.0128*** 

 -632.50 

(163.61) 

0.00616** 

1824.81 

(63.88) 

0.0006 *** 

-3399.16 

(369.24) 

0.0248 *** 

5447.66 

(360.06) 

0.00327*** 

0.999 

 

 

99.9% 

Scale Estimated 

2580.049 

4791.629 

Keys: Signif. Codes:  0 „***‟ 0.001 „**‟ 0.01 „*‟ 0.05 „.‟ 0.1 „ ‟ 1 

                                                    Source: Authors‟ computation (2025). 

 

 

             In a similar vein, from Table 3 above, 

all the involved regressogram covariates of 

𝑚      Wins, Draws, Losses, Goals scored, 

and Goals conceded of the involved kernels 

yielded significant contributions (that is, they 

contributed immensely to the dependent 

variable   : Points accumulated with their p-

values   0.05). Unarguably, the stated 

covariates immensely contributed to the 

accumulated points by the involved 

participated clubs within the seventeen (17) 

years of study in line with the ascertained finite 

and countable sample size bound of equation 

(56). Interestingly, all the kernels produced 

approximately the same magnitude of adjusted 

R-Squared and deviance estimates of 0.999 and 

99.9%. Notably, differences among the kernel-

based regressogram analyzes were in the scaled 

estimated      and Generalized Cross-

Validation (GCV). Among the kernel-based 

regressogram modeling to the EPL datasets is 

the Olanrewaju-Olanrewaju kernel-based 

regressogram analysis  that yielded the smallest 

magnitude of scale estimated      and GCV 

valued at (0.038146 and 0.02054) compare to 

the ones valued at (8.1032 and 4.3633),  

(3155273 and  1699039), (1197.852 and  

2372.887), (2126326609 and 4212058677), 

(11929714 and 6423711), (982945.4 and 

529287.4), and (2580.049 and 4791.629) by 

Gaussian, Triangular, Uniform, Epanechnikov, 

Triweight, Bisquare, and Boxcar respectively. 

       Deductively, from the simulation study of 

all the kernel-based regressogram for the 

Doppler function of               
             , the sensitivity of the 

Olanrewaju-Olanrewaju kernel-based 

regressogram with the smallest magnitudes of 

GCV, scale estimated      and residual 

estimates valued at 0.0002081, 0.00020802, 

and 1.039677 compare to some higher valued 

magnitude  GCV, scale estimated      and 

residual estimates by other kernel-based 

regressogram analyzes was optimally noted. 

Similarly, in application to the nonparametric 

kernels; Olanrewaju-Olanrewaju and Boxcar 

kernels to the 2008 to 2023 English Premier 

League yearly-accumulated points, the 

sensitivity of the Olanrewaju-Olanrewaju 

kernel-based regressogram modeling was noted 

with the smallest magnitude of scale estimated 

      and GCV estimates. 

 

4. Conclusions and Future  

Recommendations  

 

            We introduced regressogram as a 

technique for modeling bivariate random 

samples of                    via equal-

width bins and with the use of nonparametric, 

Olanrewaju-Olanrewaju, and Boxcar kernels. 

Also expounded is the introduction of linear 

smoother as a technique for driven 

regressogram analysis with the Nadaraya-

Watson estimator as the basis. A derivation for 

the optimal bandwidth           was derived 

for driving the mentioned kernels as a 

smoothing function needed for minimizing the 

sum of squares, fitting efficient regressogram 

coefficients, and other measureable indexes 

like Generalized Cross-Validation (GCV). 

Finite and countable sample size bound 

required for the kernel-based regressogram 

modeling was ascertained for reasonable 

sample sizes needed for the nonparametric 

modeling coefficients and measurable to be 

efficient. In conclusion, the Olanrewaju-

Olanrewaju kernel-based regressogram was 

noted to be sensitive with the smallest 

magnitude of scale estimated      and GCV 

estimates in application to real life datasets and 

simulation study of the Doppler nonparametric 

function. In recommendation, futurist 
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expansion could be tailored through a naive 

estimator, curse of dimensionality, as well as 

penalized regressogram type-estimator 

(situation where the sample size  𝑛   is less 

than the covariates needed to drive the 

regressogram function via linear smoother, 

equal-width bins, or unequal-width bins. 
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