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A Simplified Recurrent Neural Network 

Trained by Gbest-Guided Gravitational 

Search Algorithm to Control Nonlinear 

Systems 

Abstract- This paper presents a feedback control strategy using a Simplified 

Recurrent Neural Network (SRNN) for nonlinear dynamical systems. As an 

enhancement for a previously reported modified recurrent network (MRN), 

the proposed SRNN structure is used as an intelligent Proportional-Integral-

Derivative (PID)-like controller. More precisely, the enhancement in the 

SRNN structure was realized by employing unity weight values between the 

context and the hidden layers in the original MRN structure. The newly 

developed Gbest-guided Gravitational Search Algorithm (GGSA) was 

adopted for optimizing the parameters of the SRNN structure. To show the 

efficiency of the proposed PID-like SRNN controller, three different 

nonlinear systems were considered as case studies, including a control valve, 

and a complex difference eq.. From an extensive set of evaluation tests, which 

includes a control performance test, a disturbance rejection test, and a 

generalization test, the proposed PID-like SRNN controller demonstrated its 

effectiveness with regards to precise control and good robustness and 

generalization abilities. Furthermore, compared to other Neural Network 

(NN) structures, including the original MRN and the Multilayer Perceptron 

(MLP) NN, the SRNN structure attained superior results due to the utilization 

of a reduced set of parameters. From another study, the GGSA accomplished 

the best optimization results in terms of control precision and convergence 

speed compared to the original Gravitational Search Algorithm (GSA). 

Keywords- Modified Elman neural network, modified recurrent neural 

network, artificial neural network, gbest-guided gravitational search 

algorithm, genetic algorithm. 
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1. Introduction

With the ability to comprehend aspects about 

systems, external disturbances, and operating 

conditions, intelligent control has become an 

effective strategy in various engineering and 

industrial applications. Heuristic reasoning and 

learning from previous experiences are the main 

features that enable intelligent control methods to 

achieve a human-like processing in solving a 

particular problem. The most popular techniques 

for developing intelligent control systems include 

Artificial Neural Networks (ANNs), fuzzy logic, 

and Evolutionary Algorithms (EAs). In particular, 

owing to their generalization and learning 

capabilities, many control and identification 

problems have been successfully addressed with 

the aid of ANNs. However, static ANNs suffer 

from some limitations due to the absence of 

dynamical characteristics, which negatively affect 

the overall network approximation ability. As 

such, recurrent neural networks (RNNs) have 

gained additional focus recently, particularly in 

process control field [1, 2]. RNNs are used to 

acquire sequential or time-varying patterns. In 

essence, a RNN has feedback (closed loop) 

connections [3]. RNNs can be farther divided into 

two types, depending upon the connections 

between layers as fully and partially recurrent 

networks. In Fully Recurrent Networks (FRNs), 

each node is connected to all other nodes. In 

addition, there might be self-feedback connections 

in some nodes. On the other hand, in Partially 

Recurrent Networks (PRNs), only certain nodes 

have feedback connections with other nodes or 

with themselves. In fact, PRNs combine the 

advantage of feedforward and recurrent networks 

[3, 4], and they have been widely used in linear and 

nonlinear control design for many control 

problems. 

In the literature, one of the most widely used 

neural network types is the Elman Network (ELN), 

which was proposed by Elman [5]. Aiming at 

improving the dynamic characteristics and the 

approximation capability of the original ELN, 
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Pham and Liu [6] proposed a modified ELN 

structure, which was called the Modified Elman 

Neural Network (MELN). The MELN was 

successfully employed for solving different 

modelling and control problems. For instance, 

Shiltagh [4] proposed to use adjustable weights 

that connect the hidden and the context layers to 

improve the performance of the MELN. This 

network structure, which was called the Modified 

Recurrent Network (MRN), was exploited to 

control nonlinear dynamical systems. Ji and Qi [7] 

proposed a proportional–integral–derivative (PID) 

MLEN which has two context layers to improve 

the approximation accuracy of the original MLEN.  

Ge et al. [8] utilized the MELN to control the speed 

of an ultrasonic motor. In another work, 

Thammano and Ruxpakawong [9] suggested a 

new strategy in defining the weights of the original 

ELN. More specifically, the authors suggested to 

use multi-valued weights based on the value of the 

input samples. Zhou et al. [10] designed a control 

method to control the air chamber pressure in the 

slurry shield tunneling utilizing the MELN. In 

order to accomplish a fast response for the real 

power control in hybrid generation systems, 

Huang [11] suggested an intelligent controller 

which combines a radial basis function neural 

network and a MLEN to achieve maximum power 

point tracking in the power generation system.  

It is worth to highlight that the above works used 

the general MELN structure which contains 

several sets of connection weights, which add 

complexity to the control system design.   

With regards to the training process, gradient-

based methods are the most widely used 

techniques for training the ELN and the MELN 

[12]. Nevertheless, these training techniques have 

slow convergence speed and they might easily 

trapped at local minima of the optimization 

problem [10, 13]. As better alternative training 

methods, Evolutionary Algorithms (EAs) are 

increasingly utilized to avoid the limitations of 

gradient-based optimization methods.   

As a newly developed optimization algorithm, the 

gravitational search algorithm (GSA), which was 

proposed by Rashedi et al. [14], is a population-

based search algorithm which uses Newton’s 

universal law of gravitation, mass interaction, and 

law of motion [15]. The GSA uses certain objects, 

which are known as agents, to perform the 

optimization process. The positions of these agents 

represent possible solutions for the optimization 

problem and the agent's performance is measured 

by the size of its mass. In this context, agents with 

heavy masses, which move slowly, apply strong 

gravitational forces and attract other agents with 

smaller masses. This process causes all agents to 

gradually move towards the global optimal 

solution [14, 16]. 

In the present work, to improve the approximation 

ability of the MRN proposed in [4], a Simplified 

Recurrent Neural Network (SRNN) is put forward. 

More precisely, the improvement was attained by 

adopting unity values for the weights that connect 

the context and the hidden layers in the original 

MRN structure. The proposed SRNN structure is 

used as a PID-like feedback controller to control 

nonlinear systems. Moreover, to avoid drawbacks 

of gradient-based optimization methods, the newly 

developed Gbest-guided Gravitational Search 

Algorithm (GGSA), which is classified as an EA, 

is employed for optimizing the weights of the 

SRNN structure. 

The remaining parts of the paper are arranged as 

follows: Section 2 explains the structure of the 

proposed SRNN. An overview of training the 

SRNN is given in Section 3. Basic concepts of the 

gravitational search algorithm (GSA), the GGSA, 

and the procedure of applying the latter are 

discussed in Section 4. In order to show the 

efficiency of the proposed PID-like SRNN 

controller, an extensive set of evaluation tests with 

two comparative studies are conducted in Section 

5. Finally, a few remarks are provided in Section 6 

to conclude the paper. 

 

2. Background of Recurrent Neural 

Network 

This section clarifies the structure of the proposed 

PID-like SRNN controller. At first, an outline of 

the basic and the modified Elman networks are 

given. After that, the structure of the SRNN is 

explained in details.  

 

I. Basic and Modified Elman Networks 

The most commonly known architecture of RNNs 

is the ELN. This network extends the feedforward 

network using context nodes whose task is to 

remember the network's previous action. These 

context nodes offer a limited recurrent 

architecture, hence the ELN is also called the 

simple recurrent network. At a specific time k, the 

input nodes take the first input pattern and together 

with the context nodes activate the nodes in the 

hidden layer. Then, the hidden layer nodes activate 

the output nodes and at the same time activate the 

context nodes. At the next time step, k+1, the 

above steps are repeated and this time the context 

nodes preserve the previous outputs of the hidden 

nodes at time k. In the original ELN, feedback 

connection weights between the hidden and the 

context layers are fixed and all the other 
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connection weights in the network are adjustable 

[4, 5, 17,18]. 

Aiming at improving the approximation capability 

of the basic ELN, a modified version has been 

proposed in [6], which was called the Modified 

Elman Network (MELN). The idea of the MELN 

is to add other feedback connections to the context 

units, which are known as the "self-feedback" 

links, each of which with a fixed gain to boost the 

approximation capability of the basic ELN. 

Specifically, each self-feedback connection gain is 

fixed, and can be found manually from 0 to 1 [4]. 

 

II. Simplified Recurrent Neural Network (SRNN) 

algorithm 

The problem of finding suitable values of the gain 

𝛼 in the self-feedback connection in the MELN is 

inconvenient and time consuming, particularly 

when the network has a large number of hidden 

layer nodes. Hence, a suggestion was made to find 

the optimal gain values by a particular 

optimization method, and moreover to adopt 

adjustable weights between the hidden and context 

layers [4]. This network structure was called the 

Modified Recurrent Network (MRN). In fact, the 

MRN structure consists of a large number of 

parameters which might negatively affect the 

network approximation ability, since more 

parameters result in more uncertainty in their 

values. Therefore, it was proposed to utilize unity 

values for the weights that connect the context and 

the hidden layers in the original MRN structure. 

This proposed structure is called the simplified 

recurrent neural network (SRNN), which can be 

considered as a simplified version of the original 

MRN. The structure of the SRNN controller is 

depicted in Figure 1. Obviously, this figure shows 

that the SRNN structure comprises an input layer, 

a hidden layer, and an output layer. The task of 

each of these layers is explained below.  

Layer 1: This layer is called the input layer and it 

consists of two parts, namely real inputs and 

context units. The real units transfer the input 

variables, (𝑥1, 𝑥2,…, 𝑥𝑛), to the hidden layer. The 

output of each context node is calculated by the 

expression below: 
 

mc
co(k)=β

c
(k)mc

co(k-1)+ξ
c
(k)hC(k-1) 

 

Where c=1, 2, ⋯, C, and C is the number of nodes 

in the context layer. Beta (𝛽) and Zeta (𝜉) are 

adjustable connections from context and hidden 

layers, respectively. ℎ𝑐(𝑘 − 1) and 𝑚𝑐
𝑐𝑜(𝑘 − 1) 

are past outputs of the hidden and the context 

layers, respectivelyLayer 2: This is the hidden 

layer whose mission is to activate both the output 

and the context layers. The response of the  𝑚𝑡ℎ 

hidden node is expressed as follows: 

ℎ𝑚(𝑘) = 𝑓 [∑𝑚𝑐
𝑐𝑜(𝑘)

𝐶

𝑐=1

 +∑𝑤𝑚𝑖
ℎ𝑥𝑥𝑖

𝑛

𝑖=1

(𝑘)] (2) 

 

where m=1, 2, ..., C, and C is the number of nodes 

in the hidden layer which is also equal to the 

number of nodes in the context layer, 𝑥𝑖 is the 𝑖𝑡ℎ 

input variable, where i = 1, 2, …, n and n 

represents the number of nodes in the input layer, 

f(.) is a nonlinear activation function, and 𝑤𝑚𝑖
ℎ𝑥 

represents the weight between the ith input node 

and the mth hidden node. 

Layer 3: The single node in this layer, known as 

the output layer, produces the output of the SRNN 

structure according to the following formula: 

 

y(k) = ∑  vjhj(k)
m
j=1                                    (3) 

 

where 𝑣𝑗 is the 𝑗𝑡ℎ  connection weight between 

the𝑗𝑡ℎhidden node and the output node, while 𝑦(𝑘) 
denotes the control signal at time sample (k). 

 

3.Training the SRNN controller 

From the above discussion, it is evident that the 

SRNN has different modifiable weights, as given 

below: 

𝑆 = [𝛽𝑗𝜁𝑗𝑤𝑚𝑖
ℎ𝑥𝑣𝑗]                                      (4) 

 

For achieving the required SRNN performance, 

the optimal values for the weights in Eq. (4) must 

be obtained. To accomplish this objective, the 

GGSA is utilized in this work as the optimization 

method for the PID-like SRNN controller.  

 

4.Gravitational Search Algorithm 
To clarify the GSA optimization procedure, 

assume that there are N agents which are scattered 

in a given search space whose dimension is D. In 

this search space, each agent has a particular 

position, as given below: 
 

 

xi
 =[xi

1, …,xi
d,…,xi,

D],                                    (5) 
 

where xi
d denotes the ith agent position in the 

𝑑𝑡ℎdimension. 

The top 𝐾𝑏𝑒𝑠𝑡 agents apply a gravitational force  

which can be calculated using the following eq.  

 [14]: 

 

 

 

3)) 

(1) 

(4) 
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Figure 1: Structure of the SRNN controller. 

 

 

(t)=∑ Randj  .  Fij
d(t)j∈Kbest , j≠i                         (6) 

 

Fij
d(t)=G(t).

Mi(t) . Mj(t)

Rij(t)+ ε
 . (xj

d(t)  -  xi
d(t))      (7) 

 

where i = 1, 2, . . . , N and j = 1, 2, . . . , D. Randj 

is a random number from [0, 1], G(t) is the 

gravitational coefficient, Mi(t) and Mj(t) signify 

masses of solutions i and j, respectively, Rij(t) is 

the Euclidian distance from solution i to solution j, 

ε  is a small constant, and 𝐾𝑏𝑒𝑠𝑡 denotes a set with 

the first K agents having the best fitness values.  

The parameters 𝐺(𝑡) and Rij(t) in Eq. (7) are 

obtained as given below: 

𝐺(𝑡) = 𝐺0
 ∗ 𝑒𝑥𝑝 (−𝛿 ∗

𝐿

𝐿𝑚𝑎𝑥
)                      (8) 

 

Rij(t)=‖xi
d(t),xj

d(t)‖
2
                                      (9) 

 

where 𝐺0 is the initial gravitational constant, 𝛿 is 

the decrease coefficient,  𝐿 is the current iteration, 

and 𝐿𝑚𝑎𝑥 is the maximum number of iterations, 

respectively. Additionally, for the 𝑖𝑡ℎ solution 𝑋𝑖
 , 

its mass is defined by: 
 

𝑀𝑖
 =

Si
 (t)

∑ Sj
 (t)N

j=1

                                               (10) 

Si
 (t) =

Fiti(t)−  worst(t) 

best(t) −  worst(t) 
,                             (11) 

 

where 𝐹𝑖𝑡𝑖(𝑡) represents agent's i fitness at time t, 

and worst(t) and best(t) represent the minimum 

and the maximum fitness values (for a 

minimization problem) at time t. In particular, 

worst(t) and best(t) are found according to the 

following expressions [14]:  

 

 

worst(t)= min
j∈[1,….,N]

Fitj(t)                            (12) 

best(t)= 𝑚𝑎𝑥
j∈[1,….,N]

Fitj(t)                                 (13) 
 

The next step is to compute the acceleration of 

each agent, as given below [14]: 
 

aij
d=

Fij
d

Mi
                                                              (14) 

 

Subsequently, the new velocity and position of 

each agent are determined as follows: 

 

vij
 d(t+1)=randi*vij

d(t)+aij
d(t)                           (15) 

 

xij
d(t+1)=xij

d(t)+vij
d(t)                                     (16) 

 

I. Gbest-Guided Gravitational Search Algorithm 
Population-based heuristic algorithms are built 

using two main operations, namely exploration 

and exploitation. Expanding the search space is the 

task of exploration, while further searching the 

promising solution areas to find the optimal 

solution is the objective of the exploitation. In 

general, exploration is performed during the early 

iterations. With progression of iterations, 

exploration gradually decreases while exploitation 

gradually increases to avoid the problem of getting 

stuck at local minima. To ensure the best possible 

optimization performance, there should be a 

reasonable compromise between the exploration 

and the exploitation operators [14]. Nonetheless, 

several studies proved that the original GSA has a 

relatively slow and ineffective exploitation [19-

21]. Therefore, the authors in [19] proposed a 

modified variant of the GSA and they called it the 

Gbest-Guided Gravitational Search Algorithm 

(GGSA) for enhancing the exploitation of the GSA 

using a low-cost method. Specifically, the GGSA 

preserve and utilize the position of the best agent, 

which is known as the global best (gbest) solution, 

achieved so far to guide the movement of other 

agents towards the global optimal solution. This is 

(18) 
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done by adding an additional velocity component 

related to the gbest agent, which aids in preventing 

the agents from stagnation in local minima of the 

search space. Therefore, two advantages are 

gained from the above searching strategy. Firstly, 

unlike the procedure in the original GSA, the agent 

with the best fitness function, i.e. the gbest, 

obtained thus far is saved. Secondly, this gbest 

agent is used to accelerate the movement of the 

other agents towards the global solution of the 

optimization problem. In more details, this 

searching proposal is provided as follows: 

 

vi(t+1)=  rand  *  vi(t) +  �́�1  *  aci(t)  +  

�́�2  *  (gbest  -  x
i
(t)),                                      (17) 

 

where vi (t) is agent's i velocity at time t,  �́�1 and  

�́�2 are accelerating coefficients, rand denotes 

random number between [0, 1], aci (t) is agent's i 

acceleration at time t, and gbest represents the best 

solution position obtained thus far.  

In the GGSA, all the agents are randomly 

initialized. Then, the gravitational force and the 

gravitational constant are obtained utilizing Eq.s 

(6) and (8), respectively. Next, Eq. (14) is used to 

find the acceleration of each agent. After updating 

the position of the gbest achieved until the current 

iteration, Eq. (17) is used to compute the velocity 

of each agent. Finally, Eq. (16) is used to update 

the position of each agent. This process terminates 

by satisfying a certain stopping condition [19].  

 

II. The Procedure of Applying the GGSA for 

Optimizing the SRNN Controller 

In this work, the proposed PID-like SRNN 

controller is trained by the GGSA. Figure 2 shows 

the flowchart of the GGSA [19]. The following 

steps explain the procedure of the optimization 

method:  

Step 1: Specify the agents' number, the maximum 

number of iterations, and the coefficients of the 

gravitational constant, namely G0 and 𝛿.  

Step 2: Randomly generate an initial population of 

N agents within specific limits. Each of these 

agents is the complete modifiable weights of a 

single SRNN controller. 

Step 3: Set t = 1, where t is the iteration counter.  

Step 4: Determine each agent's cost function 

utilizing the Integral Square of Error (ISE) having 

the following expression: 

 

ISE=0.5  ∑ e2(k),T
t=1                                    (18)   

  

Where 𝑒(𝑘) represents the control error between 

the reference signal and the actual system output at 

time sample k and T is the total number of time 

samples. Subsequently, the fitness of each agent is 

obtained as follows: 

 

𝑓𝑖𝑡𝑛𝑒𝑠𝑠 =
1

𝐼𝑆𝐸+𝜀
                                        (19) 

 

where ε is a small number for evading the zero 

division. 

Step 5: For the first iteration, the agent with the 

largest fitness function is considered as the global 

best solution. However, for the remaining 

iterations, if an agent achieves a larger fitness 

function compared with the global best solution, 

this agent is assigned as the current global best 

solution.  

Step 6: Update the gravitational constant 

according to Eq. (8) and find the mass of each 

agent utilizing Eq. (10).  

Step 7: For each agent, obtain the gravitational 

force applied by the top Kbest solutions using     

Eq. (6). 

Step 8: Determine the acceleration of each agent 

utilizing Eq. (14). 

Step 9: Find the velocity of each agent utilizing 

Eq. (17). 

Step 10: Update the position of each agent using 

Eq. (16).  

Step 11: When the maximum number of iterations 

is achieved, then the current gbest position 

represents the final optimized SRNN weights. 

Otherwise, set t = t + 1 and go back to Step 4. 

 

3. Simulation Results 
Several simulation tests and comparative studies 

have been conducted in this section to investigate 

the effectiveness of the proposed PID-like SRNN 

structure to act as a feedback controller, as 

depicted in Figure 3. By adopting the training 

procedure described in Section 4 paragraph II, the 

GGSA was employed to optimize the parameters 

of the SRNN controller. Main parameters in the 

GGSA including number of iterations, initial 

gravitational constant, and decrease coefficient 

were set to 500, 10 and 10, respectively. Moreover, 

for all controlled systems, only six hidden layers 

were used for the SRNN. The above settings for 

the GGSA and the SRNN controller were 

sufficient to guarantee the desired control 

objective. 

 

I. Normal Control Tests 

The efficiency of the proposed SRNN controller 

is evaluated in controlling the following nonlinear 

dynamical systems. The input signal for all plants 

has the following definition: 

  

 

 

(19) 
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Figure 2: A flowchart of the GGSA [14] 

 

 

rtrain(k)={

0.6,            0  ≤  k  ≤  100

0.7,           101 ≤  k  ≤  200

0.8,            201 ≤  k  ≤  300

0.7,           301  ≤  k  ≤  400

 

(20) 

 

 
Figure 3: A schematic diagram for the control 

system, in which the SRNN is used as a feedback 

controller. 

 

 

 

 

Case Study 1:  

In this case study, the SRNN controller is used to 

control a valve representing an opening which has 

an adjustable area. This valve includes an actuator, 

a valve body, and a valve plug. The task of the 

actuator is to transform the control signal into a 

movement of the stem and valve plug. In 

particular, the following Wiener model is used to 

represent the dynamics of the control valve [22]: 

 

x(k)= 
0.0616q-1+0.0543q-2

1-1.5714q-1+0.6873q-2
u(k)  

y(k)= 
x(k)

√0.10+0.90x2(k)
  

where the control pressure, the stem position, and 

the flow through the valve are represented by the 

variables 𝑢(𝑘), 𝑥(𝑘) and 𝑦(𝑘), respectively. As a 

constraint in this control problem, the input to the 

valve should be limited within the range of [0, 0.4]. 

As a control objective, it is desired to force the 

system output to track the reference signal.    

Figure 3 illustrates the valve response, the control 

action signal, and the best objective function 

against iterations. Specifically, Figure 4(a) 

 

(21) 

 

 

 

(22) 
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demonstrates the remarkable capability of the 

suggested SRNN controller in controlling the 

nonlinear valve model, where it is evident that the 

system response reaches the desired reference 

signal. The control signal was within the allowable 

range of [0, 0.4], as can be clearly seen from Figure 

4(b). Figure 4(c) illustrates the best objective 

function against iterations. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 4: Control valve (a) system's output and 

reference signal (b) control action (c) best 

performance index against iterations. 

 

 

 

Case Study 2: 

The Continuous Stirred Tank Reactor (CSTR), 

which is a highly nonlinear chemical process, is 

controlled by the SRNN controller in this case 

study. The following nonlinear difference equation 

is used in this work to represent the CSTR model 

[23]: 

 

y(k + 1)= 0.7653 y(k)- 0.231 y(k - 1)+ 0.4801 u(k) 
- 0.6407𝑦2(k)+ 1.014 y(k – 1)y(k) - 
0.3921 𝑦2(k – 1)+ 0.592 y(k)u(k)- 
0.5611 y(k - 1)u(k) 
 

The simulation results of this case study are given 

in Figure (5). With a zero steady-state error and 

with no oscillations, Figure 5(a) shows that the 

SRNN controller has achieved a good performance 

in controlling the CSTR process. As for the control 

signal, it was within the allowable range of [-1, 1], 

as indicated in Figure 5(b). Minimization of the 

0.5ISE criterion is illustrated in Figure 5(c). 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 
(b) 

 

 

 

 

 

 

 

 

 

 
(a) 
 

 

 

 

 

 

 

 
(b) 

 

 

   

 

 (c) 

 

(23) 
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Figure 5: CSTR (a) system's output and reference 

signal (b) control action (c) best performance index 

against iterations. 

 

Case Study 3: 

The system considered in this case study 

represents a nonlinear (in both output and input) 

plant. The following nonlinear discrete-time eq. is 

used for this plant [24]: 

 

y(k+1)=
y(k)

1+y2(k)
+𝑢3(k) 

 

Figure 6 illustrates the output response, the control 

action signal, and the best 0.5ISE against the 

iterations.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 6: The nonlinear plant (a) system's output 

and reference signal (b) control action (c) best 

performance index against iterations. 

 

In particular, Figure 6(a) illustrates the excellent 

performance of the SRNN controller, where it is 

obvious that the system response is practically 

identical to the reference signal. Figure 6(b) shows 

the control action, while the decrease in the 0.5ISE 

against 500 iterations is depicted in Figure 6(c). 

 

II. Robustness Tests 

The purpose behind conducting these tests is for 

examining the robustness of the PID-like SRNN 

controller in handling unexpected external 

disturbances. Particularly, these tests were 

performed by injecting external disturbances of 10 

percent of the controlled system response during 

only the testing phase. During different periods of 

the simulation time, these disturbances last a 

period of 80 samples. More precisely, these 

disturbances were encountered during the 

following intervals: "110 ≤ k ≤ 190, 210 ≤ k ≤ 290 

and 310 ≤ k ≤ 390", for all the plants. As an 

important issue in these tests, the above 

disturbances have been only applied throughout 

the controller testing stage and not throughout the 

training stage, which further complicates the 

SRNN controller since it is not trained to deal with 

such unexpected disturbances. Figure 7(a), (b), and 

(c) clearly shows the robustness of the proposed 

controller in attenuating the disturbances applied 

for Plants 1, 2, and 3, respectively, where it is clear 

that the controller has done well both during and 

after the effect of each disturbance. 

 
III. Generalization Tests 

These tests are made for proving generalization 

capability of the proposed controller by following 

testing signals that are completely different from 

the training signals. 
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Figure 7: Robustness tests for (a) system 1 (b) 

system 2 (c) system 3. 

 
In this regard, the same training signal defined in 

Eq. (20) was used for all the plants.  

On the other hand, the controller testing phase was 

made by the following signal: 

 

 

rtest(k)=

{
 
 

 
 0.5 sin(

2πk

120
) ,  0  ≤  k  ≤  120

0.4,                    121 ≤  k  ≤  200

0.8,                    201 ≤  k  ≤  300
0.6,                   301  ≤  k  ≤  400

 

 

Figure 8(a), (b), and (c) illustrates generalization 

results of plants 1, 2, and 3, respectively. From this 

figure, one can infer that the PID-like SRNN 

controller successfully followed the testing signal, 

which was entirely unrelated to the training signal, 

for all plants under consideration.    

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 8: Generalization tests for (a) system 1 (b) 

system 2 (c) system 3. 
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IV. Comparing the Performance of the SRNN 

Controller with those of other Controllers 

The performances of the proposed SRNN 

controller, the Modified Recurrent Network 

(MRN) controller, and the Multilayer Perceptron 

(MLP) controller are compared in this section in 

terms of control accuracy and execution time. The 

same optimization steps described in Section 4.2 

were used for optimizing the parameters of each of 

the above networks to attain a fair and accurate 

comparative study. Due to the utilization of several 

random operators by the GGSA, the final 

optimization results might slightly change in 

different runs. In order to deal with this issue, 10 

runs have been conducted for each controller to 

account for the stochastic nature of the 

optimization method. The average of the 10 runs 

was then used to assess the result of each 

controller. As it is evident from Table 1, which 

summarizes the comparison results, the SRNN 

controller achieved a superior performance in 

comparison to the MRN and the MLP controllers. 

As an indication for the control accuracy, the 

SRNN controller produced the least values for the 

performance index compared to the other 

controllers. Moreover, as an indication for the 

processing speed, the SRNN controller took the 

shortest times among the times achieved by the 

other controllers. 

 

V. Comparing the GGSA Optimization 

Performance with those of other Methods 

This section is dedicated for comparing 

optimization results of the GGSA, and the original 

GSA as the optimization methods for the proposed 

controller. As was done in the previous section and 

for a fair comparison, 10 runs have been conducted 

for each optimization method and the average 

result has been taken. Obviously, Table 2, which 

illustrates the comparison results, demonstrates the 

advantage of using the GGSA algorithm compared 

to the original GSA. Specifically, the GGSA 

algorithm has accomplished the best control 

accuracy by producing the least ISE values for all 

the plants. Moreover, the GGSA has required the 

shortest processing times in comparison with the 

original GSA for all the plants.  

 

Networ

k Type 

Criterion 

(average of  

ten runs) 

Controlled Plant  

 Plant 1 Plant 2 Plant 3 

MLP 
ISE  0.79894 0.85882 1.15605 

Time  34.937 34.123 34.543 

MRN 
ISE  0.49347 0.77745 0.79704 

Time  32.168 32.284 40.381 

SRNN 
ISE  0.41583 0.20234 0.19533 

Time  19.643 19.282 18.496 

 

 

Table 2: Comparison results of the GA, the GSA, and the GGSA in training the proposed SRNN controller. 

Networ

k Type 

Criterion 

(average of  

ten runs) 

Controlled Plant  

 Plant 1 Plant 2 Plant 3 

GSA 
ISE  1.21098 1.11727 1.42215 

Time  20.25 20.35 20.122 

GGSA 
ISE  0.41583 0.20234 0.19533 

Time  19.643 19.282 18.496 

 

4.Conclusions 

In this paper, a PID-like SRNN controller was 

proposed for controlling nonlinear dynamical 

systems. The structure of the SRNN is an enhanced 

version of a previously published MRN structure. 

The enhancement has been attained by using unity 

values for the weights connecting the context and 

the hidden layers in the original MRN structure. 

Table 1: Comparison results of the MLP, the MRN and the proposed SRNN 
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For the purpose of optimizing the weights of the 

proposed controller, the recently suggested GGSA 

was exploited. This training method has done well 

by reducing the ISE to the least values for all the 

considered plants. By controlling three different 

nonlinear systems, the results of an extensive 

assessment tests clearly indicates the efficiency of 

the proposed controller with regards to precise 

control, robustness ability, and generalization 

ability. Compared with other controllers, the 

SRNN structure has shown its superiority with 

regards to control performance and processing 

time. In addition, compared to the original GSA 

and the GA, the GGSA has achieved the best 

control precision and the shortest processing time.      
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