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Abstract- In this paper, the problem of controlling a group of mobile robots is 

considered; each one operates with the nonlinear nonholonomic under actuated 

dynamics. A coordinated control scheme is designed based on leader-follower(s) 

method to achieve prescribed formation maneuvers. This objective is fulfilled 

using the approach of sliding mode controller based on conditional 

servocompensator, which will bring the system error trajectories into a positively 

invariant set (boundary layer) close to the origin. Then, a special form of 

servocompensator conditional integrator, which will be active only inside the 

boundary layer, will regulate the trajectories to the origin in finite time. 

Compared to the traditional integral which will deteriorate the performance of 

the feedback system, the conditional version will have a very insignificant effect 

on the performance. The simulation results show that the designed controller is 

able to achieve the objective efficiently with very reasonable control actions. 
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1. Introduction

Formation control represents one of the major 

problems in the Multi-agent control systems field. 

In this problem, it is required to design a controller 

(either centralized or decentralized) to define a 

coordination of an ensemble of agents. In other 

words, it is required that the agents to maintain 

certain inter-agent distances to form specified 

geometrical shapes [1,2]. Maintaining certain 

shape while moving has many advantages; for 

example it can reduce the system cost, increasing 

the robustness and efficiency of the system and 

providing redundancy while moving, and also 

provides flexibility and reconfiguration capability 

[3-6]. Formation control has been utilized in 

various applications; like transportation of large 

dangers objects, surveillance mapping, search, 

rescue, or large data acquisition  [7 .]  

One of the most popular schemes to deal with the 

problem of formation control is the leader-

follower(s) scheme [1,8]. The basic idea of this 

scheme is that to designate a leader robot; either 

one of the formation group, or a fictitious leader to 

be the responsible for guiding the formation. One 

important advantage of this approach is the 

simplicity of the approach, because the leader’s 

motion directs the group as reference trajectory, 

and the internal formation stability is induced 

based on individual agents’ control laws [7].  

There are a variety of control design methods have 

been explored and tested in literature; including for 

example, the use of feedback linearization [1], 

dynamic feedback linearization [9], and high gain 

observer [10]. In ref. [11], the authors designed a 

formation controller using an approach known as 

terminal sliding mode control, which involves 

using non-smooth sliding surfaces. This 

sacrificing of the smoothness of the sliding 

surfaces came into the advantage of achieving 

faster convergence time compared to regular 

sliding mode approach. However, there is a price 

from using such technique is that the singularities 

in the state space. To remedy this problem, the 

authors proposed an approach to partition the state 

space into two regions, one of them the controller 

is bounded and the other will be its complement . 

In our work, we use the approach of designing a 

continuously-implemented sliding mode 

controller based on conditional servocompensator 

to design the coordination controller. The 

conditional servocompensator is introduced in 

2005 by Seshagiri and Khalil [12], where in their 

work a special form of internal dynamics (internal 

model) is implemented to act with a continuously 

sliding mode controller. In general, continuous 

sliding mode control will derive the system state 

variables towards a positively invariant set around 

the origin, which represents the boundary layer. 

The conditional servocompensator will be active 
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only inside this layer, so that the internal model 

states and the steady-state control action will be 

relatively small. The benefit behind that the 

servocompensator will have a very slight effect on 

the transient performance of the system under 

control. In other words, the controller will recover 

the performance of a discontinuous sliding mode 

controller and will render a zero-error equilibrium 

with a continuous version of sliding mode control. 

This actually is a great benefit compared to the 

issues resulted due to the discontinuous term of the 

sliding mode like chattering behavior, which 

considered undesirable from the practical point of 

view. Yet the controller will preserve the ability to 

control the system with the same robustness 

properties as the discontinuous version . 

In this work, this idea is been invested to design a 

continuously-implemented sliding mode 

formation control law and the results are compared 

with the ones obtained in the work of ref. [11]. The 

comparison show comparable results in terms of 

performance and stability with reasonable control 

actions. With the benefit of this work to have two 

privileges over the method of ref. [11], which are: 

in this work we don’t need to have non-smooth 

surface manifolds, we will just use a linear 

surfaces form, therefore we don’t expect to see 

singularities on the state- space , and the 2nd 

important privilege is that we can obtain 

continuous sliding mode controller in finite time 

instead of the asymptotic convergence like the one 

in  [33.]  

The remaining of the paper is outlined in the 

following way; in the next section the derivation 

of the mobile robot agent dynamics is provided. In 

section 3, the derivation of classical discontinuous 

version of the controller is presented.  Section 4, 

shows how to modify the control laws and sliding 

manifolds to achieve the control objective with 

continuous sliding mode controller version. The 

simulation results is shown in section 5, finally, 

section 6, ends with the paper conclusions.   

 

2. Mobile Robot Agent Dynamics 

In this section, the model dynamics of each mobile 

robot agent subjected to nonholonomic constraint 

is derived. This nonholonomic constraint is 

considered due to the condition of no slip in the 

normal direction to the robot path [11], this will 

simply means that the motion of each wheel is 

restricted to the longitudinal direction with the 

linear velocities of wheels [13].In other words, no 

motions occurs in robot lateral coordinates. In Fig. 

(1), the free-body diagram of the mobile robot is 

presented. The center of robot mass horizontal and 

vertical position coordinates (in meters) with 

respect to the inertial frame are denoted by the 

variables and, respectively. The orientation angle 

is determined by the variable  (in radians). 

 

 
Figure 1: Mobile robot free-body diagram [11]. 

 

The mobile robot model considered here have the 

differential scheme, where it is derived using two 

wheels on the left and right; each one is actuated 

using independent motor. The projections of the 

Newtonian equations of motion onto the body-

fixed frame with center of mass C are given by 

[11]; 

 

∑ 𝐹𝑥 = 𝑚𝑣̇𝑥(𝑡) − 𝑚𝜃̇(𝑡)𝑣𝑦(𝑡) = 𝑓1(𝑡) + 𝑓2(𝑡) (1) 

∑ 𝐹𝑦 = 𝑚𝑣̇𝑦(𝑡) − 𝑚𝜃̇(𝑡)𝑣𝑥(𝑡) = 𝑓1̅(𝑡) + 𝑓2̅(𝑡) (2) 

∑ 𝑀𝐶𝑧
= 𝐼𝜃̈(𝑡) =

𝐿

2
(𝑓2(𝑡) + 𝑓1(𝑡)) − 𝑑(𝑓1̅(𝑡) +

(𝑓2̅(𝑡))                  (3) 

Where; 

𝑣𝑥 and 𝑣𝑦: are the projections of the velocity of the 

center of mass  onto the body-fixed frame; 

𝑚: is the mass of robot; 

𝐼: is the robot’s moment of inertia about the axis 

orthogonal to the plane passing through center point 

C; 

𝑎 : is the robot’s axle length; 

𝑑 : is the distance between mid-axle point 𝐴 and the 

center of mass point C; 

𝑓1and𝑓2: are the corresponding longitudinal friction 

forces acting left and right wheels, respectively; and 

𝑓1̅ and 𝑓2̅: are the corresponding lateral friction 

forces acting left and right wheels, respectively. 

The nonholonomic constraint equation is given by; 

𝑣𝑦 = 𝜃̇(𝑡)𝑑  𝑡 ≥ 0                          (4) 

Differentiation of Eq. (4) with respect to time gives; 

𝑣̇𝑦 = 𝜃̈(𝑡)𝑑   𝑡 ≥ 0              (5) 

By substituting Eq. (5) back into Eq. (2), yields; 

𝑚𝑑𝜃̈(𝑡) + 𝑚𝜃̇(𝑡)𝑣𝑥(𝑡) = 𝑓1̅(𝑡) + 𝑓2̅(𝑡)                 (6) 

By equating Eq. (6) with Eq. (3); results  

(𝐼 + 𝑚𝑑2)𝜃̈(𝑡) = 𝑚𝑑𝜃̇(𝑡)𝑣𝑥(𝑡) +
𝐿

2
(𝑓2(𝑡) +

𝑓1(𝑡))                  (7) 
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Now, considering the kinematics of the wheels 

which are given by; 

𝑣𝑥(𝑡) =
1

2
(𝑉1(𝑡) + 𝑉2(𝑡)) =

𝑟

2
(∅̇1(𝑡) + ∅̇2(𝑡))(8) 

𝜃̇(𝑡) =
1

𝐿
(𝑉2(𝑡) − 𝑉1(𝑡)) =

𝑟

𝐿
(∅̇2(𝑡) + ∅̇1(𝑡))  (9) 

Where; 

𝑉1(𝑡), 𝑉2(𝑡):  are the corresponding linear velocities 

for the right and left wheels, respectively; 

∅1(𝑡), ∅2(𝑡): are the corresponding angular 

velocities for the right and left wheels; respectively; 

and 

𝑟 : is the radius of wheels; 

By differentiating Eq. (8) and (9) with respect to 

time, results; 

𝑣̇𝑥(𝑡) =
𝑟

2
(∅̈1(𝑡) + ∅̈2(𝑡))             (10) 

∅̈(𝑡) =
𝑟

𝐿
(∅̈2(𝑡) + ∅̈1(𝑡))             (11) 

 

We have the dynamics of each wheel are given by; 

𝐽∅̈1(𝑡) = 𝜏1(𝑡) − 𝑓1(𝑡)𝑟             (12) 

𝐽∅̈2(𝑡) = 𝜏2(𝑡) − 𝑓2(𝑡)𝑟                                    (13) 

 

Where; 

𝜏1(𝑡), 𝜏2(𝑡): are corresponding right and left wheels 

actuators torques, respectively; and 

𝐽: is the rotational inertia of the wheels about their 

axis of rotation; 

By adding and subtracting Eq. (12) and (13) 

together, and rearrange 

 

𝑓1(𝑡) + 𝑓2(𝑡) =
1

𝑟
(𝜏1(𝑡) + 𝜏2(𝑡)) −

𝐽

𝑟
(∅̈1(𝑡) +

∅̈2(𝑡))                    (14) 

 

𝑓2(𝑡) + 𝑓1(𝑡) =
1

𝑟
(𝜏2(𝑡) + 𝜏1(𝑡)) −

𝐽

𝑟
(∅̈2(𝑡) +

∅̈1(𝑡))                            (15) 

 

The next step is to substitute Eq. (10) and (11) into 

Eq. (14) and (15), respectively; 

 

𝑓1(𝑡) + 𝑓2(𝑡) =
1

𝑟
(𝜏1(𝑡) + 𝜏2(𝑡)) −

2𝐽

𝑟2 𝑣̇𝑥(𝑡)    (16) 

𝑓2(𝑡) + 𝑓1(𝑡) =
1

𝑟
(𝜏2(𝑡) + 𝜏1(𝑡)) −

𝐿𝐽

𝑟2 𝜃̈(𝑡)      (17)  

 

By substituting Eq. (16) and (17) into Eq. (1) and 

(7), the equations of motion will be; 

 

[𝑚 +
2𝐽

𝑟2] 𝑣̇𝑥(𝑡) = 𝑚𝑑𝜃̇2(𝑡) +
1

𝑟
(𝜏1(𝑡) + 𝜏2(𝑡))                                                          

               (18) 

[𝐼 + 𝑚𝑑2 +
𝐽𝐿2

2𝑟2] 𝜃̈(𝑡) = 𝑚𝑑𝜃̇(𝑡)𝑣𝑥(𝑡) +
𝐿

2𝑟
(𝜏2(𝑡) + 𝜏1(𝑡))                          (19) 

 

The projection of velocity of the center of mass of 

the robot onto the inertial reference frame can be 

obtained as; 

𝑥̇(𝑡) = 𝑣𝑥(𝑡) 𝑐𝑜𝑠(𝜃(𝑡)) − 𝑣𝑦(𝑡)𝑠𝑖𝑛 (𝜃(𝑡))        (20) 

𝑦̇(𝑡) = 𝑣𝑥(𝑡)𝑠𝑖𝑛 (𝜃(𝑡)) − 𝑣𝑦(𝑡) 𝑐𝑜𝑠(𝜃(𝑡))       (21) 

 

By Substituting Eq. (5) into Eq. (20) and (21), and 

using Eq. (18) and (19), the complete set of 

equations of motion is; 

𝑥̇(𝑡) = 𝑣𝑥(𝑡) 𝑐𝑜𝑠(𝜃(𝑡)) − 𝑑𝜔(𝑡)𝑠𝑖 𝑛(𝜃(𝑡))     (22) 

𝑦̇(𝑡) = 𝑣𝑥(𝑡) 𝑠𝑖𝑛(𝜃(𝑡)) − 𝑑𝜔(𝑡)𝑐𝑜𝑠 (𝜃(𝑡))    (23) 

𝜃̇(𝑡) =  𝜔(𝑡)                                                      (24) 

𝑣̇𝑥(𝑡) =  
𝑚𝑑

𝑚̃
𝜔2(𝑡) +

1

𝑚̃𝑟
(𝜏1(𝑡) + 𝜏2(𝑡)) +

𝘨1(𝑥, 𝑦, 𝜃, 𝑣𝑥, 𝜔)                                                (25) 

𝜔̇(𝑡) = − 
𝑚𝑑

𝐼
𝜔(𝑡)𝑣𝑥(𝑡) +

𝐿

2𝐼𝑟
(𝜏2(𝑡) + 𝜏1(𝑡)) +

𝘨2(𝑥, 𝑦, 𝜃, 𝑣𝑥, 𝜔)                                                (26) 

Where; 

𝑚̃ = 𝑚 +
2𝐽

𝑟2
; 

𝐼 = 𝐼 + 𝑚𝑑2 + [
𝐿2

𝑟2
] 𝐽; 

𝜔(𝑡): Robot’s angular velocity; and  

𝘨1and 𝘨2: are uncertainty functions affecting robot 

dynamics. 

 

3. Design of Discontinuous Sliding Mode 

Controller 
The first step in designing the controller is to 

differentiate Eq. (22) and (23) with respect to time 

and rearrange in the following form; 

 

𝑥̈(𝑡) = 𝑓1(𝑥, 𝑦, 𝜃, 𝜐𝑥 , 𝜔) + 𝑢1(𝑡)𝑐𝑜𝑠(𝜃(𝑡)) −

𝑑𝑢2(𝑡)𝑠𝑖𝑛(𝜃(𝑡)) + g̃1(𝑥, 𝑦, 𝜃, 𝜐𝑥 , 𝜔)                  (27) 

 

𝑦̈(𝑡) = 𝑓2(𝑥, 𝑦, 𝜃, 𝜐𝑥 , 𝜔) + 𝑢1(𝑡)𝑠𝑖𝑛(𝜃(𝑡)) −

𝑑𝑢2(𝑡)𝑐𝑜𝑠(𝜃(𝑡)) + g̃2(𝑥, 𝑦, 𝜃, 𝜐𝑥 , 𝜔)           (28) 

 

Where; 

𝑢1(𝑡) =
1

𝑚̃𝑟
(𝜏1(𝑡) + 𝜏2(𝑡))               (29) 

𝑢2(𝑡) =
1

2𝐼𝑟
(𝜏2(𝑡) − 𝜏1(𝑡))                               (30) 

𝑓1 = (
𝑚

𝑚̃
− 1) 𝑑𝜔2𝑐𝑜𝑠(𝜃(𝑡)) + (

𝑚𝑑2

𝐼
−

1) 𝜔𝜐𝑥𝑠𝑖𝑛(𝜃(𝑡))                                                (31) 

𝑓2 = (
𝑚

𝑚̃
− 1) 𝑑𝜔2𝑠𝑖𝑛(𝜃(𝑡)) + (

𝑚𝑑2

𝐼
−

1) 𝜔𝜐𝑥𝑐𝑜𝑠(𝜃(𝑡))                                               (32) 
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g̃1 = g1cos(θ(t)) − dg2sin(θ(t))                    (33) 

g̃2 = g1sin(θ(t)) − dg2cos(θ(t))                    (34) 

With this step has been done, it is needed to 

compensate the nominal dynamics in Eq. (27) and 

(28), this can be done by using the following 

feedback linearization control laws [11]; 

[
𝑢1

𝑢2
] = [

𝑐𝑜𝑠(𝜃(𝑡)) −𝑑 𝑠𝑖𝑛(𝜃(𝑡))

𝑠𝑖𝑛(𝜃(𝑡)) 𝑑 𝑐𝑜𝑠(𝜃(𝑡))
]

−1

[
−𝑓1 + 𝜈1

−𝑓2 + 𝜈2

]      

                                                                           (35) 

Using the control law Eq. (35), the nominal terms 

𝑓1 and 𝑓2 will be canceled, so that Eq. (27) and 

(28) became; 

𝑥̈(𝑡) = 𝜈𝑥 + g̃1(𝑥, 𝑦, 𝜃, 𝜐𝑥, 𝜔)                           (36) 

𝑦̈(𝑡) = 𝜈𝑦 + g̃2(𝑥, 𝑦, 𝜃, 𝜐𝑥, 𝜔)                           (37) 

Where; 𝜈𝑥 and 𝜈𝑦 the new control inputs, which will 

counteract the effect of perturbations in the 

dynamics of Eq. (27) and (28), respectively. The 

objective is to design a controller that steers the 

system dynamics to the desired position and 

orientation which are defined by the fictitious leader 

robot dynamics, let’s denote the leader robot 

position and orientation variables as [𝑥𝐿 , 𝑦𝐿 , 𝜃𝐿]𝑇 [in 

this work it is assumed that the leader mobile is 

operated with the nonholonomic dynamics Eq. (22)-

(26)]. On the same time, the formation of a group of 

robots is controlled with respect to leader mobile 

robot; therefore we define the following change of 

coordination; 

 

𝑒𝑥 = 𝑥(𝑡) − 𝑥𝐿(𝑡) − 𝑙𝑥,            𝑡 ≥ 0               (38) 

𝑒𝑦 = 𝑦(𝑡) − 𝑦𝐿(𝑡) − 𝑙𝑦,            𝑡 ≥ 0               (39) 

Where; 𝑙𝑥 and 𝑙𝑦 are steady state differences of 

robot with respect to the leader’s coordinate 

position. The proposed sliding mode functions are 

chosen as linear functions in the following forms; 

 

𝑠𝑥 = 𝑐𝑥𝑒𝑥 + 𝑒̇𝑥,           𝑐𝑥 > 0                           (40) 

𝑠𝑦 = 𝑐𝑦𝑒𝑦 + 𝑒̇𝑦,           𝑐𝑦 > 0                           (41) 

 

Where the sliding manifolds for each coordinates 

dynamics are defined as the sets 
{𝑠𝑥 = 𝑐𝑥𝑒𝑥 + 𝑒̇𝑥 = 0}                                       (42) 

{𝑠𝑦 = 𝑐𝑦𝑒𝑦 + 𝑒̇𝑦 = 0}                                       (43) 

Within these two sets each coordinate phase 

trajectory, the switching function (i.e.𝑠𝑥 or 𝑠𝑦) lines 

will be asymptotically stable, this can be easily 

proofed by using a Lyapunov function candidates 𝑉𝑥 

and 𝑉𝑦, on the following way; 

 

For the x-axis coordinate dynamics; 

                                                                                   

𝑉𝑥 =
1

2
𝑠𝑥

2                                                            (44) 

The time derivative of this Lyapunov function 

should be negative for asymptotic stability 

condition is [14], 

𝑉̇𝑥 = 𝑠𝑥 𝑠̇𝑥 < 0 

     =  𝑠𝑥[𝑐𝑥𝑒̇𝑥 − 𝑥̈𝐿 + 𝜈𝑥 + g̃1] < 0                        (45) 

 

Where the first and second time derivatives of the 

x-axis coordinate error 𝑒𝑥 are substituted to 

constitute 𝑠̇𝑥. To achieve the above stability 

condition, the transformation 𝜂is introduced; 

 

𝜂 = 𝑐𝑥𝑒̇𝑥 − 𝑥̈𝐿 + 𝜈𝑥 + g̃1                                     (46) 

 

To derive the control law we equate Eq. (47) to the 

following discontinuous form; 

 

𝜂 = −𝑘𝑥 𝑠𝑖𝑔𝑛(𝑠𝑥),       𝑘𝑥 > 0                                  (47) 

 

Which will lead to the following control law; 

 

𝜈𝑥 = −𝑐𝑥𝑒̇𝑥 + 𝑥̈𝐿−𝑘𝑥 − g̃1 − 𝑠𝑖𝑔𝑛(𝑠𝑥)               (48) 

 

Where; 

𝑘𝑥 > 𝑐𝑥|𝑒̇𝑥| + |𝑥̈𝐿| + |g̃1| +

𝑚𝑎𝑥 (g̃1(𝑒𝑥 , 𝑒𝑦, 𝑒𝜃, 𝜐𝑥 , 𝜔))                                    (49) 

 

For the y-axis coordinate dynamics; 

Following the same above argument, we design the 

second control law 𝜐𝑦, 

𝜈𝑦 = −𝑐𝑦𝑒̇𝑦 + 𝑦̈𝐿−g̃2 − 𝑘𝑦 𝑠𝑖𝑔𝑛(𝑠𝑦)                  (50) 

Where; 

𝑘𝑦 > 𝑐𝑦|𝑒̇𝑦| + |𝑦̈𝐿| + |g̃2| +

𝑚𝑎𝑥 (g̃2(𝑒𝑥, 𝑒𝑦, 𝑒𝜃, 𝜐𝑥 , 𝜔))                                  (51) 

Since the both control laws (Eq. (48), and Eq.(50)) 

has discontinuous term, this will cause a chattering 
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Figure 2: The block diagram for the x- and y- axes control laws. 

 

appeared when the trajectory enters the manifold, to 

alleviate the chattering effect, one of the approaches 

used is to replace the signum function with a 

sigmoidal function like the saturation function [13]; 

therefore the control laws (Eq. (48), and Eq.(50) are 

modified in the following way; 

𝜈𝑥 = −𝑐𝑥𝑒̇𝑥 + 𝑥̈𝐿−g̃1 − 𝑘𝑥  𝑠𝑎𝑡(
𝑠𝑥

𝜇⁄ )                  (52) 

𝜈𝑦 = −𝑐𝑦𝑒̇𝑦 + 𝑦̈𝐿 − g̃2−𝑘𝑦 𝑠𝑎𝑡 (
𝑠𝑦

𝜇⁄ )             (53)  

Where the parameter 𝜇 > 0 is chosen small enough. 

Here, in our design, it is assumed to have the 

boundary layer thickness to be the same for both 

controllers, but there is no problem of using 

different boundary layers thickness for each 

controller. In Figure (2), the schematic block 

diagram of control laws (52) and (53) are shown to 

illustrate the controller structure. 

 

4. Design of Continuous Sliding Mode 

Controller Based on Conditional 

Servocompensator 

In the previous section, we designed a 

discontinuous sliding mode control laws to steer 

each mobile robot agent. To overcome the problem 

of chattering behavior that arises due to the 

inclusion of discontinuous terms in control laws, 

we approximated the signum functions with a 

saturation functions. This approach is known as a 

boundary layer method [14]. This will remove the 

chattering, but this will come into the expense of 

scarifying the feedback performance, since an 

error steady state will not equal to zero in finite 

time, instead the trajectory will approach the 

manifold asymptotically. However, Seshagiri and 

Khalil [12] had proposed a solution to this 

dilemma by augmenting the feedback control 

system with a conditional integral 

servocompensator. Unlike the idea of reference 

[11], where the author has used a traditional 

integral servocompensator, which has the problem 

of performance degradation due to the effect of 

integral “windup”. So replacing this traditional 

integral with a “conditional” one have shown its 

effect on recovering the performance of an ideal 

(discontinuous) sliding mode controller efficiently 

[12]. The conditional integrator from its name; 

provides integration action only inside he chosen 

boundary layer. In the following steps, we will 

show haw to modify the control laws (Eq. (52) and 

(Eq. (53)) by utilizing the idea of conditional 

integrator. The first step is to introduce the 

following two conditional servocompensators 

[12]; 

𝜎̇𝑥 = 𝑐𝑥𝑜𝜎𝑥 + 𝜇 𝑠𝑎𝑡(
𝑠𝑥

𝜇⁄ ),          𝑐𝑥𝑜 > 0      (54) 

𝜎̇𝑦 = 𝑐𝑦𝑜𝜎𝑦 + 𝜇 𝑠𝑎𝑡 (
𝑠𝑦

𝜇⁄ ),         𝑐𝑦𝑜 > 0     (55) 

 

Where 𝜎𝑥 and 𝜎𝑦 are the servocompensator states 

for the x-and y-axes, respectively. The above two 

servocompensator integrator equations will be 

active only inside the boundary layers{𝑠𝑥 ≤ 0}, 

and{𝑠𝑦 ≤ 0}, respectively. The surface manifolds 

(Eq. (40) and (41)) have to be modified by the 

inclusion of the servocompensators states in the 

following way; 

𝑠𝑥 = 𝑐𝑥𝑜𝜎𝑥 + 𝑐𝑥𝑒𝑥 + 𝑒̇𝑥,                                 (56) 
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𝑠𝑦 = 𝑐𝑦𝑜𝜎𝑦 + 𝑐𝑦𝑒𝑦 + 𝑒̇𝑦,                                (57) 

 

And the control laws (Eq. (52) and (53) will 

remain unchanged.  Inside the layer the term 

𝑠𝑎𝑡(𝑠
𝜇⁄ ) = 𝑠, and the conditional 

servocompensator reduces to 

                                                                         

𝜎̇𝑥 = 𝑐𝑥𝑜𝜎𝑥 + 𝑠𝑥                                               (58) 

                                                                             

𝜎̇𝑦 = 𝑐𝑦𝑜𝜎𝑦 + 𝑠𝑦                                               (59) 

Where, both Eq. (58) and (59) insures the 

existence of a zero-error invariant manifold for the 

corresponding trajectory. Each of the state of 𝜎𝑥 

and 𝜎𝑦 is 𝑂(𝜇) (order of 𝜇, i.e. 𝜎𝑥 ≤ 𝑘𝑥𝜇𝑠𝑥, and 

𝜎𝑦 ≤ 𝑘𝑦𝜇𝑠𝑦, for some constants 𝑘𝑥𝜇 , 𝑘𝑥𝜇 > 0 [12] 

) for all 𝑡 ≥ 0. Therefore, the trajectories of the 

error functions 𝑒𝑥 and 𝑒𝑦can be made arbitrarily 

close to the trajectories of ideal sliding mode 

controller by making 𝜇 smaller. In other words, the 

continuously implemented sliding mode controller 

ensures in finite time the trajectory will be in the 

neighborhood of the set {𝜎 = 0, 𝑒 = 0}and the 

error states tends to zero as t tends to infinity 

[please refer to Theorem 1 in [12]]. 

 

5. Simulation Results 

In this section, the simulations using 

Matlab/Simulink package is conducted. For the 

sake of comparison, we achieved the simulations 

by considering the same system parameters 

(shown in Table (1)) and simulations conditions as 

in reference [11]. In the following simulations, 

three mobile robots in pursuit to a fictitious leader 

is considered. The leader robot is considered to 

move in the circular trajectory in counter-

clockwise;  

𝑥𝐿 = 3 + 𝑐𝑜𝑠(𝜋𝑡
30⁄ )                                      (60) 

𝑦𝐿 = 3 + 𝑠𝑖𝑛(𝜋𝑡
30⁄ )                                      (61) 

 

The aim of the simulation is that the three robots 

perform coordinated tracking to their respective 

trajectories in order to maintain a rectangular 

formation with respect to the leader robot position. 

The formation distance parameters, initial 

conditions, and controller gains are stated in Table 

(2) below, where all the parameters and gains of 

the controller are tuned after several trials to get 

the best performance. It can be seen in Fig. (3), that 

all the three robots trajectories are following the 

leader robot in circular trajectory as prescribed in 

(Eq. (60) and (61), also the three robots are 

gathered in the square formation as required. In 

Figures (4), (5), and (6), the errors time history for 

the 𝑥, 𝑦 coordinates and the orientation angle 𝜃are 

shown. It can be noticed that compared to the 

results shown in ref. [11] [please refer to Figures 

(7), (8), and (9) therein], the results of this work 

are comparable and even show smoother behavior. 

In Figures (7) and (8), it is shown the time history 

for the switching manifolds for the corresponding 

robots in the 𝑥 and 𝑦 directions, respectively. The 

results show that all the surfaces converge to the 

origin in finite time less than 10 sec. Finally the 

control actions 𝑢 in both x- and y-axis directions 

are demonstrated in Figures (9) and (10), 

respectively.  

 

6.  Conclusions 

In this paper focuses on the problem of controlling 

a group of mobile robots to create specific 

formation or shape.  The steps for solving this 

problem are starting by deriving the model of each 

mobile robot and make it suitable for the controller 

design process. The next step was to compensate 

for the nominal dynamics in the model, this was 

done using a feedback linearization control law. 

Which in turn, will inject the new control variables 

that will counteract the effect of uncertainty 

functions in the model. Using first the classical 

ideas of designing a discontinuous sliding mode 

controller, a component wise procedure is 

conducted to derive the discontinuous version of 

the controller. Then, we provide a way for 

modifying the control laws and sliding surfaces to 

achieve a continuous version of the controller by 

augmenting conditional servocompensator 

integral equations acting with the feedback system. 

Comparing the results with the one we have in ref. 

[11], the simulation results shown comparable 

results with smoother profiles with finite-time 

convergence for the tracking errors to zero. 

 
Table 1: Robot parameters 

 

Parameter Value 

𝑚 2.83 𝑘g 

𝐼 0.0226𝑘g 

𝐽 
5.1
× 10−5𝑘g 

𝐿 0.315 𝑚 

𝑑 0.078 𝑚 

𝑟 0.045 𝑚 
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Figure 3: Phase Portraits for the three mobile robots 

agents with respect to the leader robot. 

 

Figure 4: Simulation of error states in the x-axis 

direction 𝒆𝒙 for the three robots. 

 

Figure 5: Simulation of error states in the y-axis 

direction 𝒆𝒚 for the three robots. 

 

Figure 6: Simulation of error states of the 

orientation 𝒆𝜽 for the three robots. 

 

Figure 7: Simulation of switching manifolds in the x-

axis direction 𝒔𝒙 for the three robots. 

 

Figure 8: Simulation of switching manifolds in the x-

axis direction 𝒔𝒚 for the three robots. 

 

Figure 9: Simulation of control actions in the x-axis 

direction 𝒖𝟏 for the three robots. 

 

Figure 10: Simulation of control actions in the y-axis 

direction 𝒖𝟐 for the three robots. 
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Table 2: Formation distances, initial conditions, and controller parameters 

Formation Distances 

𝑙1 [−3 0]𝑇 

𝑙2 [−3 −3]𝑇 

𝑙3 [0 −3]𝑇 

Initial Conditions 

[𝑥1(0) 𝑦1(0) 𝜃1(0)]𝑇  [−3 6 −3𝜋
4⁄ ]

𝑇
 

[𝑥2(0) 𝑦2(0) 𝜃2(0)]𝑇 [−1.5 0 −𝜋
6⁄ ]

𝑇
 

[𝑥3(0) 𝑦3(0) 𝜃3(0)]𝑇 [9 −1 −𝜋
4⁄ ]

𝑇
 

Controller Parameters 

𝑐𝑥1 = 𝑐𝑥2 1 

𝑐𝑥3 2 

𝑐𝑦1 = 𝑐𝑦2 = 𝑐𝑦3 1 

𝑐𝑥𝑜1 = 𝑐𝑥𝑜2 = 𝑐𝑥𝑜3 1 

𝑐𝑦𝑜1 = 𝑐𝑦𝑜2 = 𝑐𝑦𝑜3 1 

𝜇 0.01 

𝑘𝑥1 = 𝑘𝑥2 = 𝑘𝑥3 1.1 

𝑘𝑦1 = 𝑘𝑦2 = 𝑘𝑦3 1.1 
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