

Some Properties of Fuzzy Connected Space Defined on a Fuzzy Set

Muna Ahmed Hamad* 🕒 and Hassan Abid Al Hadi Ahmed 🕒

Department of Mathematics, College of Science University of Diyala, Iraq

*<u>munaahmedhamad@gmail.com</u>

This article is open-access under the CC BY 4.0 license(<u>http://creativecommons.org/licenses/by/4.0</u>)

Received: 15 July 2023 Accepted: 12 October 2023 Published: January 2025

DOI: https://dx.doi.org/10.24237/ASJ.03.01.818B

<u>Abstract</u>

The primary objective of this paper is to introduce the new definitions of fuzzy separation and fuzzy connectedness in fuzzy topological space, such as (fuzzy $\tilde{s}^*\tilde{g}$ - separation, fuzzy ($\tilde{s}^*\tilde{g} - \tilde{\alpha}$) separation, fuzzy $\tilde{s}^*\tilde{g}$ - connected, fuzzy ($\tilde{s}^*\tilde{g} - \tilde{\alpha}$) connected) by using the definitions of fuzzy $\tilde{s}^*\tilde{g} - (\tilde{s}^*\tilde{g} - \tilde{\alpha})$ open sets and learning the interactions between them. We also explore a fuzzy hereditary and fuzzy topological properties and show that fuzzy $\tilde{s}^*\tilde{g} - (\tilde{s}^*\tilde{g} - \tilde{\alpha})$ connectedness is not a fuzzy hereditary property but a fuzzy topological feature.

Keyword:- f. $\tilde{s}^*\tilde{g}$.s (fuzzy $\tilde{s}^*\tilde{g}$ – separated), f.($\tilde{s}^*\tilde{g} - \tilde{\alpha}$).s ,f. $\tilde{s}^*\tilde{g}$.c(fuzzy $\tilde{s}^*\tilde{g}$ – connected), f. ($\tilde{s}^*\tilde{g} - \tilde{\alpha}$). c, fuzzy $\tilde{s}^*\tilde{g}$ –home, fuzzy ($\tilde{s}^*\tilde{g} - \tilde{\alpha}$) home.

Introduction

The concept of fuzzy set was introduced by Zadeh[1]. And the fuzzy topological space was introduced by Chang [6]. And Fuzzy connected sets in fuzzy topological spaces introduced by Chaudhuri [2].

Introduced fuzzy connected spaces defined as a fuzzy topological space \tilde{X} is said to be fuzzy disconnected space if \tilde{X} can be expressed as the union of two disjoint non – empty fuzzy open subsets of \tilde{X} . Otherwise, \tilde{X} is fuzzy connected space. In this work, we recall some basic concept that we need in our work we introduce a new definition fuzzy $\tilde{s}^*\tilde{g}$ - separation, fuzzy ($\tilde{s}^*\tilde{g} - \tilde{\alpha}$) separation, fuzzy $\tilde{s}^*\tilde{g}$ - connected, fuzzy ($\tilde{s}^*\tilde{g} - \tilde{\alpha}$)- connected space using definitions fuzzy

 $(\tilde{s}^*\tilde{g} - \tilde{\alpha})$ open sets and study the relations among them .At last we show that fuzzy $(\tilde{s}^*\tilde{g} - \tilde{\alpha})$ connected is not – fuzzy hereditary property but fuzzy topological property. Through this paper
the fuzzy topological space (\tilde{X}, \tilde{T}_X) and (\tilde{Y}, \tilde{T}_y) (or simply \tilde{X} and \tilde{Y}) when \tilde{A} is a fuzzy subset of (\tilde{X}, \tilde{T}_X) , int (\tilde{A}) , $\tilde{CL}(\tilde{A})$ which denote the interior and closure of a fuzzy set \tilde{A} .

1- Basic concepts of fuzzy set

Definition (1-1) [1]:- The membership function $\mu \widetilde{A} : \widetilde{x} \rightarrow [0, 1]$ defines a non-empty set \widetilde{X} . and a fuzzy set \widetilde{A} in \widetilde{X} . Thus we may describe this fuzzy set as.

 $\widetilde{A} = \{(x, \mu \widetilde{A}(x): x \in X, \mu \widetilde{A}(x) \le 1\}$

I^xStands for the collection of all fuzzy sets in \widetilde{X} ., when I^{\tilde{x}} = { \widetilde{A} : \widetilde{A} is fuzzy set in \widetilde{X} }

Definition (1-2) [1]:- The set of all $x \in \widetilde{X}$ such that a fuzzy set $\mu \widetilde{A}(\widetilde{x}) > 0$ and designated by the symbol $S(\widetilde{A})$ is the support of a fuzzy set \widetilde{A} .

Definition (1-3):- A fuzzy point \widetilde{P}_x^r in x is a unique fuzzy set whose membership function is given by $\widetilde{P}_x^r(y) = \begin{cases} r, \text{ if } x = y \\ 0, \text{ if } x \neq y \end{cases}$

When $0 < r \le 1$, y is the support of $\widetilde{P}_x^r(x)$.

Definition (1-4) [1]:- If $S(\tilde{A})$ is a finite set, then a fuzzy set \tilde{A} is described as a finite fuzzy set. **Remark** (1-5):-

1- A non-empty set \widetilde{X} is referred to as a crisp set since it is a fuzzy set with membership $\mu_{\widetilde{x}}(x) = 1$, $\forall x \in \widetilde{X}$.

2- A membership function $\mu_{\widetilde{\emptyset}}(x) = 0$, $\forall x \in \widetilde{X}$ is called an empty set and denoted by $\widetilde{\emptyset}$.

Definition (1-6) [1]:- Let \tilde{C} be a fuzzy set in the non-empty set \tilde{X} and \tilde{P}_x^r be a fuzzy point. If $\mu \tilde{P}_x^r \leq \mu \tilde{C}(x)$ for every $x \in X$ and indicated by $x \in S(\tilde{C})$, then \tilde{P}_x^r is said to be in \tilde{C} or that \tilde{C} includes \tilde{P}_x^r .

Definition (1-7) [1]:- Let \widetilde{A} and \widetilde{B} by fuzzy sets of a universal set \widetilde{X} then

- $1\text{-}\widetilde{A} \subseteq \ \widetilde{B} \ \text{iff} \ \mu_{\widetilde{A}}(x) \leq \ \mu_{\widetilde{B}}(x) \ , \ \forall \ x \in \widetilde{X}$
- $2\text{-}\widetilde{A} = \ \widetilde{B} \ \text{iff} \ \ \mu_{\widetilde{A}}(x) = \ \ \mu_{\widetilde{B}}(x) \ \text{for all} \ x \in \widetilde{X}$
- 3 With a membership function of $\mu_{\widetilde{A}^{C}} = 1 \widetilde{A}_{\widetilde{A}}(x)$, \widetilde{A}^{C} is the complement of a fuzzy set \widetilde{A} .

4 - $\tilde{C} = \widetilde{A} \cup \widetilde{B}$ iff $\mu_{\widetilde{C}}(x) = max \{ \mu_{\widetilde{A}}(x) , \mu_{\widetilde{B}}(x) \}$, $\forall \ x \in \widetilde{X}$

5 - $\widetilde{D} = \widetilde{A} \cap \widetilde{B}$ if and only if $\mu_{\widetilde{D}}(x) = \min \{ \mu_{\widetilde{A}}(x), \mu_{\widetilde{B}}(x) \}, \forall x \in \widetilde{X}$

6 - More specifically, for a family of fuzzy sets { \widetilde{A}_{α} : $\alpha \in \Lambda$ where Λ is the any index set }

The union $\tilde{C} = \bigcup_{\alpha \in \Lambda} A\alpha$ and the intersection $\tilde{D} = \bigcap_{\alpha \in \Lambda} A\alpha$ and defined respectively by

 $\mu_{\widetilde{\mathsf{C}}}(x) = \sup_{\alpha \in \wedge} \left\{ \mu_{\widetilde{\mathsf{A}}}(x); x \in \widetilde{\mathsf{X}} \right\}$

 $\mu_{\widetilde{D}}(x) = inf_{\alpha \in \wedge} \ \{ \mu_{\widetilde{A}}(x); x \in \widetilde{X} \ \}$

Definition (1-8):- A fuzzy subset \widetilde{A} of fuzzy space \widetilde{X} is said to be

1- fuzzy $\tilde{s}^*\tilde{g}$ - closed set if $\mu \overline{\tilde{A}}(x) \le \mu \tilde{u}(x)$ wher $\tilde{A} \le \tilde{u}$ and $\mu \tilde{u}(x) \le \mu(\overline{\operatorname{Int}(\tilde{u})(x)})$, the set of all f. $\tilde{s}^*\tilde{g}$.c. subsets in \tilde{X} is signified by $\tilde{S}^*\tilde{G}$ C(\tilde{X}).

The complement of an f. $\tilde{s}^*\tilde{g}$.c (fuzzy $\tilde{s}^*\tilde{g}$ – closed) is said to be f. $\tilde{s}^*\tilde{g}$.o.s , the collection of all fuzzy $\tilde{s}^*\tilde{g}$ - open subsets in \tilde{X} is designated by the symbol $\tilde{S}^*\tilde{G}$ O(\tilde{X}).

2- The fuzzy $\tilde{s}^*\tilde{g}$ - closure of \tilde{A} represents by $\tilde{s}^*\tilde{g}$ –($\overline{\tilde{A}}$) is the intersection of all f. $\tilde{s}^*\tilde{g}$. c. subset of \tilde{X} which contains \tilde{A} .

3- A f. $\tilde{s}^*\tilde{g} - \tilde{\alpha}$.o.s if $\mu \tilde{A}(x) \leq \mu$ int $(\tilde{s}^*\tilde{g} - \overline{\tilde{A}}(x))$, the complement of an fuzzy $\tilde{s}^*\tilde{g} - \tilde{\alpha} -$ open set is defined to be f. $\tilde{s}^*\tilde{g} - \tilde{\alpha}$.c, the family of all f. $\tilde{s}^*\tilde{g} - \tilde{\alpha}$.o. subsets of \tilde{X} is denoted by $\tilde{T}^{\tilde{s}^*\tilde{g}-\tilde{\alpha}}$. The intersection of all fuzzy $\tilde{s}^*\tilde{g} - \tilde{\alpha} -$ closed sets containing \tilde{A} is represented by the symbol $\tilde{cl}_{\tilde{s}^*\tilde{g}-\tilde{\alpha}}(\tilde{A})$.

Definition (1-9):- A function $f: \mu \tilde{X} \to \mu \tilde{y}$ allegedly is fuzzy $\tilde{s}^*\tilde{g} - (\tilde{s}^*\tilde{g} - \tilde{\alpha})$ continuous iff the fuzzy inverse image of each f.o.s (fuzzy open set) of \tilde{Y} is a f. $\tilde{s}^*\tilde{g} - (\tilde{s}^*\tilde{g} - \tilde{\alpha})$. o. subset of \tilde{X} .

2- Fuzzy connectedness in a fuzzy topological space.

We introduce the concept of fuzzy $\tilde{s}^*\tilde{g} - (\tilde{s}^*\tilde{g} - \tilde{\alpha})$ - connected space and study some of their properties. Also we study that fuzzy $\tilde{s}^*\tilde{g} - (\tilde{s}^*\tilde{g} - \tilde{\alpha})$ - connected is not hereditary property but fuzzy topological property.

Definition (2-1):- Uncertain topological space if two disjoint f. $\tilde{s}^*\tilde{g}$.o. subsets \tilde{E} and \tilde{F} of \tilde{X} exist, then \tilde{X} is a fuzzy $\tilde{s}^*\tilde{g}$ – separation space. However, min { $\mu \tilde{E}(x), \mu \tilde{s}^*\tilde{g} - \overline{\tilde{F}}(x)$ } = $\tilde{\emptyset}$ and min { $\mu \tilde{F}(x), \mu \tilde{s}^*\tilde{g} - \tilde{cl}(\tilde{E})(x)$ } = $\tilde{\emptyset}$

Definition (2-2):- A fuzzy topological space \tilde{X} is a fuzzy $\tilde{s}^*\tilde{g} - \tilde{\alpha}$ – separation space iff there exists two disjoint fuzzy $\tilde{s}^*\tilde{g} - \tilde{\alpha}$ – open subsets \tilde{F} and \tilde{E} of \tilde{X} , whenever min { $\mu \tilde{E}(x)$, $\mu \tilde{c}\tilde{l}\tilde{s}^*\tilde{g} - \tilde{\alpha} (\tilde{F})(x)$ } = $\tilde{\emptyset}$ and min { $\mu \tilde{F}(x)$, $\mu \tilde{c}\tilde{l}\tilde{s}^*\tilde{g} - \tilde{\alpha} (\tilde{E})(x)$ } = $\tilde{\emptyset}$.

Remark (2-3):-

1-Every fuzzy open set is an $\tilde{s}^*\tilde{g}$ - $(\tilde{s}^*\tilde{g} - \tilde{\alpha})$ – open set but the converse is not true.

Also a fuzzy separation space is fuzzy $\tilde{s}^*\tilde{g} - (\tilde{s}^*\tilde{g} - \tilde{\alpha})$ – separation space.

But the converse is not true

2- Fuzzy $\tilde{s}^*\tilde{g}$ – open sets and f. $\tilde{s}^*\tilde{g} - \tilde{\alpha}$ -open set are in general independent, so we'll get that Each fuzzy $\tilde{s}^*\tilde{g}$ – separation and fuzzy ($\tilde{s}^*\tilde{g} - \tilde{\alpha}$) – separation space are in general independent. **Remark (2-4):-**

1 - Every two disjoint a fuzzy $\tilde{s}^*\tilde{g} - (\tilde{s}^*\tilde{g} - \tilde{\alpha})$ - open subsets of any space, then they are fuzzy $\tilde{s}^*\tilde{g} - (\tilde{s}^*\tilde{g} - \tilde{\alpha})$ – separation.

2 – Every two disjoint a fuzzy $\tilde{s}^*\tilde{g} - (\tilde{s}^*\tilde{g} - \tilde{\alpha})$ – closed subset of any space, then they are fuzzy $\tilde{s}^*\tilde{g} - (\tilde{s}^*\tilde{g} - \tilde{\alpha})$ – separation.

Because (let \tilde{E} and \tilde{F} are disjoint fuzzy $\tilde{s}^*\tilde{g} - (\tilde{s}^*\tilde{g} - \tilde{\alpha})$ – closed subset of \tilde{X} , We already min { $\mu \tilde{E}(x)$, $\mu \tilde{cl}_{\tilde{s}^*\tilde{g}}$ (\tilde{F})(x) } = min { $\mu \tilde{E}(x)$, $\mu \tilde{F}(x)$ } = $\tilde{\emptyset}$ and min { $\mu \tilde{F}(x)$, $\mu \tilde{cl}_{\tilde{s}^*\tilde{g}}$ (\tilde{E})(x) } = min { $\mu \tilde{F}(x)$, $\mu \tilde{E}(x)$ } = $\tilde{\emptyset}$

 $\widetilde{A} = \widetilde{cl} (\widetilde{A})$ iff \widetilde{A} is fuzzy closed

By definition we get that \tilde{E} and \tilde{F} are fuzzy $\tilde{s}^*\tilde{g} - (\tilde{s}^*\tilde{g} - \tilde{\alpha})$ – separation.

Definition (2-5):- Topological space that is fuzzy If \tilde{X} cannot be described as a disjoint union of two non-empty fuzzy $\tilde{s}^*\tilde{g}$ – open sets, then \tilde{X} is said to be fuzzy $\tilde{s}^*\tilde{g}$ – connected.

(i-e there are two fuzzy $\tilde{s}^*\tilde{g}$ that are open subsets of \tilde{X} , \tilde{E} and \tilde{F} , provided that min $\{\mu \tilde{F}(x), \mu \tilde{E}(x)\} = \tilde{\emptyset}, \max \{\mu \tilde{F}(x), \mu \tilde{E}(x)\} \neq \tilde{X}.$

If a fuzzy topological space \tilde{X} does not attain fuzzy $\tilde{s}^*\tilde{g}$ – connected space, it is alleged to be fuzzy $\tilde{s}^*\tilde{g}$ – disconnected space.

Definition (2-6):- An undefined topological space Fuzzy $\tilde{s}^*\tilde{g} - \tilde{\alpha}$ – connected is a description of \tilde{X} if it cannot be described as a disjoint union of two non-empty fuzzy $\tilde{s}^*\tilde{g} - \tilde{\alpha}$ – open sets.

(i-e there exists two fuzzy $\tilde{s}^*\tilde{g}-\tilde{\alpha}$ – open subsets \tilde{E} and \tilde{F} of \tilde{X} provided that min { $\mu\tilde{F}(x), \mu\tilde{E}(x)$ } = $\tilde{\emptyset}$, max { $\mu\tilde{F}(x), \mu\tilde{E}(x)$ } $\neq \tilde{X}$.

Uncertain topological space If \tilde{X} does not reach fuzzy $\tilde{s}^*\tilde{g} - \tilde{\alpha}$ – connected space, then it is fuzzy $\tilde{s}^*\tilde{g} - \tilde{\alpha}$ – disconnected space ".

Remark (2-7):- 1- "Every fuzzy $\tilde{s}^*\tilde{g} - \tilde{\alpha}$ – open set is $\tilde{\alpha}$ – f.o.s"

so every fuzzy $\tilde{s}^*\tilde{g} - \tilde{\alpha}$ – connected space is $\tilde{\alpha}$ – f.connected space .

2 – For each fuzzy $\tilde{s}^*\tilde{g}$ – connected and fuzzy $\tilde{s}^*\tilde{g} - \tilde{\alpha}$ – connected space are in general independent. As in the example (2-8)

3 – A fuzzy connected space is fuzzy $\tilde{s}^*\tilde{g} - (\tilde{s}^*\tilde{g} - \tilde{\alpha})$ – connectedness space.

4 – Unspecified subset it is claimed that \widetilde{A} of \widetilde{X} is a fuzzy $\widetilde{s}^*\widetilde{g} - (\widetilde{s}^*\widetilde{g} - \widetilde{\alpha})$ disconnected set if it is the union of two non-empty fuzzy $\widetilde{s}^*\widetilde{g} - (\widetilde{s}^*\widetilde{g} - \widetilde{\alpha})$ segregated sets with the symbol $\widetilde{s}^*\widetilde{g} - (\widetilde{s}^*\widetilde{g} - \widetilde{\alpha})$ in them. This leads to the statement that \widetilde{A} is fuzzy $\widetilde{s}^*\widetilde{g} - (\widetilde{s}^*\widetilde{g} - \widetilde{\alpha})$ connected If it isn't fuzzy or unconnected, it's $\widetilde{s}^*\widetilde{g} - (\widetilde{s}^*\widetilde{g} - \widetilde{\alpha})$.

Example (2-8):-

 $\mathbf{1} - \text{let } \tilde{X} = \{ (6, 0.3), (7, 0.3), (8, 0.3), (9, 0.3) \}$

On $\tilde{T} = \{ \tilde{X}, \tilde{\emptyset}, \{ (6, 0.3), (7, 0.3), (8, 0.3), (9, 0.0) \}, \{ (6, 0.3), (7, 0.3), (8, 0.0), (8, 0.0) \}$

(9, 0.0)}. Then \tilde{X} is fuzzy $\tilde{s}^*\tilde{g}$ – connected space (because there exists two fuzzy $\tilde{s}^*\tilde{g}$ – open subsets \tilde{F} and \tilde{E} of \tilde{X} such that $\tilde{F} = \{ (6, 0.3), (7, 0.0), (8, 0.0), (9, 0.0) \}$

And $\tilde{E} = \{ (6, 0.0), (7, 0.3), (8, 0.0), (9, 0.0) \}$ whenever min $\{ \mu \tilde{F}(x), \mu \tilde{E}(x) \} = \tilde{\emptyset}$ and max $\{ \mu \tilde{F}(x), \mu \tilde{E}(x) \} \neq \tilde{X}$, but not fuzzy $\tilde{s}^* \tilde{g} - \tilde{\alpha}$ - connected.

 $\mathbf{2} - \operatorname{let} \tilde{\mathbf{X}} = \{ (1, 0.5), (2, 0.5), (3, 0.5), (4, 0.5) \}$

On $\tilde{T} = \{ \tilde{X}, \tilde{\emptyset}, \{ (1, 0.5), (2, 0.0), (3, 0.0), (4, 0.0) \}$

Hence \tilde{X} is fuzzy $\tilde{s}^*\tilde{g} - \tilde{\alpha}$ – connected and \tilde{X} is fuzzy $\tilde{\alpha}$ – connected space, fuzzy $\tilde{s}^*\tilde{g}$ – unconnected space.

Theorem (2-9):- A fuzzy subset \tilde{E} of \tilde{X} is fuzzy $\tilde{s}^*\tilde{g} - (\tilde{s}^*\tilde{g} - \tilde{\alpha})$ – disconnected if it is defined as a union of two non-empty fuzzy $\tilde{s}^*\tilde{g} - (\tilde{s}^*\tilde{g} - \tilde{\alpha})$ – separated subsets of.

Proof :- \Rightarrow suppose that \widetilde{E} is fuzzy $\widetilde{s}^*\widetilde{g}$ – disconnected, then $\mu \widetilde{E} = \max \{ \mu \widetilde{A}, \mu \widetilde{B} \}$ where \widetilde{A} and \widetilde{B} are two fuzzy $\widetilde{s}^*\widetilde{g}$ – disjoint non – empty closed sets,

Assume that \widetilde{A} and \widetilde{B} are fuzzy $\widetilde{s}^*\widetilde{g}$ – separated subsets of \widetilde{X} . Min { $\mu \widetilde{A}$, $\mu \widetilde{s}^* \widetilde{g} - \widetilde{cl}(\widetilde{B})$ } = min { min { $\mu \widetilde{A}$, $\mu \widetilde{E}$ }, $\mu \widetilde{s}^* \widetilde{g} - \widetilde{cl}(\widetilde{B})$ } = $\min \{ \ \mu \widetilde{A}(x), \ \mu \widetilde{s}^* \widetilde{g} - \widetilde{cl}_{\widetilde{\iota}^*_{\widetilde{E}}} \ (\widetilde{B})(x) \} = \min \{ \ \mu \widetilde{A}(x) \ , \ \mu \widetilde{B}(x) \ \} = \widetilde{\emptyset} \ ,$ so min { $\mu \widetilde{B}(x)$, $\mu \widetilde{s}^* \widetilde{g} - \widetilde{cl}_{\widetilde{l}_{\widetilde{E}}}(\widetilde{A})(x)$ } = min { $\mu \widetilde{B}(x)$, $\mu \widetilde{A}(x)$ } = $\widetilde{\emptyset}$ \Leftarrow suppose that $\mu \widetilde{E} = \max \{\mu \widetilde{A}(x), \mu \widetilde{B}(x)\}$ where \widetilde{A} and \widetilde{B} are fuzzy $\widetilde{s}^* \widetilde{g}$ – open sets disjoint non – empty fuzzy $\tilde{s}^*\tilde{g}$ – separated subsets of \tilde{X} . we have min { $\mu \widetilde{A}(x)$, $\mu \widetilde{s}^* \widetilde{g} - \overline{\widetilde{B}}(x)$ } = min { min { $\mu \widetilde{A}(x)$, $\mu \widetilde{E}(x)$ } , $\mu \widetilde{s}^* \widetilde{g} - \overline{\widetilde{B}}(x)$ } = $\widetilde{\emptyset}$ and so that min { $\mu \widetilde{B}(x)$, $\mu \widetilde{s}^* \widetilde{g} - \widetilde{cl}_{\widetilde{L}_{\widetilde{n}}}(\widetilde{A})(x)$ } = min { min { $\mu \widetilde{B}(x)$, $\mu \widetilde{E}(x)$ } , $\mu \widetilde{s}^* \widetilde{g} - \overline{\widetilde{A}}(x)$ } = $\widetilde{\emptyset}$, we get that \tilde{E} is the union of non – empty fuzzy $\tilde{s}^*\tilde{g}$ – separated subsets of \tilde{E} , Thus \tilde{E} is fuzzy $\tilde{s}^*\tilde{g}$ – disconnected. In the same way we demonstrate for fuzzy $\tilde{s}^*\tilde{g} - \tilde{\alpha}$ – open set. **Corollary** (2-10):- If a fuzzy space \tilde{X} is fuzzy $\tilde{s}^*\tilde{g} - (\tilde{s}^*\tilde{g} - \tilde{\alpha})$ – separation space, then \tilde{X} is the union of two disjoint non – empty fuzzy $\tilde{s}^*\tilde{g} - (\tilde{s}^*\tilde{g} - \tilde{\alpha})$ – closed subsets of \tilde{X} . **Proof:** - let $\tilde{X} = \max \{\mu \tilde{E}(x), \mu \tilde{F}(x)\}$ where as \tilde{E} and \tilde{F} are fuzzy $\tilde{s}^*\tilde{g}$ – separated sets, then $fuzzy \ \tilde{s}^*\tilde{g} - \overline{\tilde{E}} = min\{\mu \tilde{s}^*\tilde{g} - \tilde{cl}\ (\tilde{E})(x) \ , \ max \ \{\mu \tilde{E}(x) \ , \ \mu \tilde{F}(x)\}\} = max \ \{ \ min \ \{\mu \tilde{s}^*\tilde{g} - \tilde{cl}\ (\tilde{E})(x) \ , \ nax \ \{\mu \tilde{e}(x) \ , \ \mu \tilde{e}(x)\}\} = max \ \{ \ min \ \{\mu \tilde{s}^*\tilde{g} - \tilde{cl}\ (\tilde{E})(x) \ , \ nax \ nax$ $\mu \widetilde{E}(x)$, min { $\mu \widetilde{s}^* \widetilde{g} - \widetilde{cl}(\widetilde{E})(x), \mu \widetilde{F}(x)$ } = min { $\mu \widetilde{s}^* \widetilde{g} - \widetilde{cl}(\widetilde{E})(x), \mu \widetilde{E}(x)$ } = \widetilde{E} (by def. 1-2) so \tilde{E} is fuzzy $\tilde{s}^*\tilde{g}$ – closed set.

Similarly F is fuzzy s̃*g – closed set.

We demonstrate the same style for the fuzzy $\tilde{s}^*\tilde{g} - \tilde{\alpha}$ – open set.

As above noted hence that $\tilde{\alpha}$ –fuzzy connected is fuzzy topological property.

Corollary (2-11) :- A fuzzy space \tilde{X} is a union of two disjoint non – empty fuzzy $\tilde{s}^*\tilde{g} - (\tilde{s}^*\tilde{g} - \tilde{\alpha})$ – open subsets of \tilde{X} , then \tilde{X} is fuzzy $\tilde{s}^*\tilde{g} - (\tilde{s}^*\tilde{g} - \tilde{\alpha})$ – disconnected.

Proof: - suppose that $\tilde{X} = \max \{\mu \tilde{E}(x), \mu \tilde{F}(x)\}$ where as \tilde{E} and \tilde{F} are disjoint non – empty fuzzy $\tilde{s}^*\tilde{g}$ – open sets, then $\tilde{E} = \tilde{F}^C$ is fuzzy $\tilde{s}^*\tilde{g}$ – closed. So \tilde{X} is fuzzy $\tilde{s}^*\tilde{g}$ – disconnected.

If P is any property in \tilde{X} . Then we call P hereditary if it appears in a relative fuzzy topological space if we say P is not – hereditary.

Remark (2-12):- It is not a genetic trait for the fuzzy $\tilde{s}^*\tilde{g} - (\tilde{s}^*\tilde{g} - \tilde{\alpha})$ – connectivity.

Similar to the example:

Example (2-13) :- 1) Let $\tilde{X} = \{ (r, 0.12), (s, 0.12), (t, 0.12), (u, 0.12) \}$ And $\tilde{T} = \{ \tilde{\emptyset}, \tilde{X}, \{ (r, 0.12), (s, 0.0), (t, 0.0), (u, 0.0) \}, \{ (r, 0.0), (s, 0.12), (t, 0.12), (u, 0.12) \} \}$ { (r,0.12),(s,0.0),(t,0.4),(u,0.12) }, {(r,0.0),(s,0.0),(t,0.12),(u,0.12) } Then \tilde{X} is fuzzy $\tilde{s}^*\tilde{g}$ – connected space because $\exists \{ (r, 0.12), (s, 0.0), (t, 0.0), (u, 0.12) \} \}$ $\{(r,0.0),(s,0.0),(t,0.12),(u,0.0)\}$ are fuzzy $\tilde{s}^*\tilde{g}$ – open sets such that min { (r,0.0),(s,0.0),(t,0.12),(u,0.0)}, {(r,0.0), $(s,0.0), (t,0.12), (u,0.0) \} = \widetilde{\emptyset}$ and max {(r,0.12),(s,0.0),(t,0.12),(u,0.0)},{(r,0.12),(s,0.0)} $(t, 0.0), (u, 0.0) \} \neq \tilde{X}$. If $\widetilde{A} = \{ (r, 0.12), (s, 0.12) \} \le \widetilde{X} \text{ and } \widetilde{T}_{\widetilde{A}} = \{ \widetilde{\emptyset}, \widetilde{A}, \{ (r, 0.12), (s, 0.0) \}, \{ (r, 0.0), (s, 0.12) \} \}$ Then $(\widetilde{A}, \widetilde{T}_{\widetilde{A}})$ is not fuzzy $\widetilde{s}^*\widetilde{g}$ – connected $\exists \{(r, 0.12), (s, 0.0)\}, \{(r, 0.0), (s, 0.12)\}$ are fuzzy $\tilde{s}^*\tilde{g}$ – open sets whenever min { (r, 0.12), (s, 0.0) }, {(r, 0.0), (s, 0.12) } = $\tilde{\varphi}$ and max { (r, 0.12) (s,0.0) } (r,0.0), (s,0.12) } = \tilde{X} 2) let $\tilde{X} = \{ (k, 0.9), (1, 0.9), (m, 0.9), (n, 0.9) \}$ on $\tilde{T} = \{ (\tilde{\emptyset}, \tilde{X}, \{ (k, 0.0), (1, 0.9), (m, 0.0), (m, 0.0)$ (n, 0.0) } {(k, 0.0), (1, 0.9), (m, 0.9), (n, 0.0) } {(k, 0.9), (1, 0.9), (m, 0.0), (n, 0.0) } {(k, 0.0), (n, 0.0) } $(1,0.9), (m,0.9), (n,0.0)\}, \{(k,0.0), (1,0.0), (m,0.9), (n,0.9)\}, \{(k,0.9), (1,0.9), (m,0.9), (m,0.9), (m,0.9)\}$ (n, 0.0) { (k, 0.0), (1, 0.9), (m, 0.9), (n, 0.9) } } Then \tilde{X} is fuzzy $\tilde{s}^*\tilde{g} - \tilde{\alpha}$ – connected space, but if $\tilde{A} = \{(1,0.9), (m,0.9)\} \leq \tilde{X}$ and $\widetilde{T}_{\widetilde{A}} = \{ \widetilde{\emptyset}, \widetilde{A}, \{ (1, 0.9), (m, 0.0) \}, \{ (1, 0.0), (m, 0.9) \} \}$ so \widetilde{A} is not fuzzy $\widetilde{s}^* \widetilde{g} - \widetilde{\alpha}$ - connected space because $\exists \{ (1, 0.9), (m, 0.0) \}, \{ (1, 0.0), (m, 0.9) \}$ are fuzzy $\tilde{s}^* \tilde{g} - \tilde{\alpha}$ - open sets, Min { (1,0.9), (m,0.0) }, { (1,0.0), (m,0.0) } = $\widetilde{\emptyset} \max \{ (1,0.9), (m,0.0) \}, \{ (1,0.0), (m,0.9) \} =$ $\{(1,0.9),(m,0.9)\}$ **Definition** (2-14):- A map \tilde{f} : $(\tilde{X}, \tilde{T}_{\tilde{X}}) \rightarrow (\tilde{Y}, \tilde{T}_{\tilde{Y}})$ allegedly is fuzzy $\tilde{s}^*\tilde{g} - (\tilde{s}^*\tilde{g} - \tilde{\alpha}) - \tilde{s}^*\tilde{g}$

homeomorphism (fuzzy $\tilde{s}^*\tilde{g}-(\tilde{s}^*\tilde{g}-\widetilde{\alpha})$ – home . for short) if

(1) \tilde{f} is bijective map.

(2) \tilde{f} and \tilde{f}^{-1} are fuzzy $\tilde{s}^*\tilde{g}-(\tilde{s}^*\tilde{g}-\widetilde{\alpha})-\text{continuous}$.

Let P be any property in $(\tilde{X}, \tilde{T}_{\tilde{X}})$ if P is carried by fuzzy $\tilde{s}^*\tilde{g} - (\tilde{s}^*\tilde{g} - \tilde{\alpha})$ – home . to another space ($\tilde{Y}, \tilde{T}_{\tilde{y}}$) we say P is fuzzy topological property.

Now, we introduce the main result about a fuzzy topological property the fuzzy $\tilde{s}^*\tilde{g} - (\tilde{s}^*\tilde{g} - \tilde{\alpha})$ – connected.

Theorem (2-15):- A fuzzy $\tilde{s}^*\tilde{g}$ – connected space is a fuzzy topological property.

Proof: - A $\tilde{f}: (\tilde{X}, \tilde{T}_{\tilde{X}}) \to (\tilde{Y}, \tilde{T}_{\tilde{y}})$ be fuzzy $\tilde{s}^*\tilde{g}$ – home and space \tilde{X} is fuzzy $\tilde{s}^*\tilde{g}$ – connected space.

To demonstrate this, we must $(\widetilde{\Upsilon}, \widetilde{T}_{\widetilde{y}})$ be fuzzy $\tilde{s}^*\tilde{g}$ – connected space.

If $(\tilde{\Upsilon}, \tilde{T}_{\tilde{y}})$ be fuzzy $\tilde{s}^*\tilde{g}$ – disconnected space, then there exists two disjoint non – empty fuzzy $\tilde{s}^*\tilde{g}$ – open subsets of $\tilde{\Upsilon}$, \tilde{E} and \tilde{F} are fuzzy subsets of $\tilde{\Upsilon}$ such that min { $\mu \tilde{E}(x)$, $\mu \tilde{s}^*\tilde{g} - \tilde{\tilde{F}}(x)$ } = $\tilde{\emptyset} = \min \{ \{ \mu \tilde{F}(x), \mu \tilde{s}^*\tilde{g} - \tilde{cl}(\tilde{E})(x) \} = \tilde{\emptyset} \text{ and } \tilde{E} \neq \tilde{\emptyset}, \tilde{F} \neq \tilde{\emptyset} ; \text{ as } \tilde{f} \text{ is fuzzy } \tilde{s}^*\tilde{g} - \text{ continuous },$

Ours has $\tilde{f}^{-1}(\tilde{E}) = \tilde{E}_1$ and $\tilde{f}^{-1}(\tilde{F}) = \tilde{F}_1$ where \tilde{E}_1 and \tilde{F}_1 are fuzzy $\tilde{s}^*\tilde{g}$ – open in \tilde{X} .

 $\text{Min } \{\mu \widetilde{E}_1(x) , \mu \widetilde{s}^* \widetilde{g} - \overline{\widetilde{F}_1}(x) \} = \widetilde{\emptyset} , \min \{ \mu \widetilde{F}_1 , \mu \widetilde{s}^* \widetilde{g} - \overline{\widetilde{E}_1}(x) \} = \widetilde{\emptyset}$

Hence \tilde{X} is fuzzy $\tilde{s}^*\tilde{g}$ – disconnected but that is contradiction

Since max { $\mu \tilde{F}_1(x)$, $\mu \tilde{E}_1(x)$ } = max { $\mu \tilde{f}^{-1}(\tilde{F}_1)(x)$, $\mu \tilde{f}^{-1}(\tilde{E}_1)(x)$ } = $\tilde{f}^{-1}(\max \{\mu \tilde{F}_1(x), \mu \tilde{E}_1(x)\})$

Hence \widetilde{X} is fuzzy $\widetilde{s}^*\widetilde{g}$ – disconnected, $\widetilde{f}^{-1}(\widetilde{Y}) = \widetilde{X}$, we get the assume is not true.

Then $(\widetilde{\Upsilon}\,,\,\widetilde{T}_{\widetilde{y}})$ is fuzzy $\,\,\widetilde{s}^*\widetilde{g}-\text{connected space}$.

Theorem (2-16):- A fuzzy $\tilde{s}^*\tilde{g} - \tilde{\alpha}$ – connected space is a fuzzy topological property.

Proof: - A \tilde{f} : ($\tilde{X}, \tilde{T}_{\tilde{X}}$) \rightarrow ($\tilde{Y}, \tilde{T}_{\tilde{y}}$) be fuzzy $\tilde{s}^*\tilde{g} - \tilde{\alpha}$ - home and space \tilde{X} is fuzzy ($\tilde{s}^*\tilde{g} - \tilde{\alpha}$) connected space . So, we must demonstrate that ($\tilde{Y}, \tilde{T}_{\tilde{y}}$) be fuzzy ($\tilde{s}^*\tilde{g} - \tilde{\alpha}$) connected space If ($\tilde{Y}, \tilde{T}_{\tilde{y}}$) be fuzzy ($\tilde{s}^*\tilde{g} - \tilde{\alpha}$) disconnected space , then there exists two disjoint non – empty fuzzy ($\tilde{s}^*\tilde{g} - \tilde{\alpha}$) – open subsets of \tilde{Y} , \tilde{E} and \tilde{F} are subsets of \tilde{Y} such that min { $\mu \tilde{E}(x)$, $\mu \tilde{c}\tilde{l}_{\tilde{s}^*\tilde{g}-\tilde{\alpha}}(\tilde{F})(x)$ } = $\tilde{\emptyset}$ = min { $\mu \tilde{F}(x), \mu \tilde{c}\tilde{l}_{\tilde{s}^*\tilde{g}-\tilde{\alpha}}(\tilde{E})(x)$ } and $\tilde{E} \neq \tilde{\emptyset}, \tilde{F} \neq \tilde{\emptyset}$, as , \tilde{F} is fuzzy $\tilde{s}^*\tilde{g} - \tilde{\alpha}$ - continuous We already have $\tilde{f}^{-1}(\tilde{E}) = \tilde{E}_1$ and $\tilde{f}^{-1}(\tilde{F}) = \tilde{F}_1$ where \tilde{E}_1 and \tilde{F}_1 are fuzzy $\tilde{s}^*\tilde{g} - \tilde{\alpha}$ - open in \tilde{X} . min { $\mu \tilde{E}_1(x), \mu \tilde{c}\tilde{l}_{\tilde{s}^*\tilde{g}-\tilde{\alpha}}(\tilde{F}_1)(x)$ } = $\tilde{\emptyset}$, min { $\mu \tilde{F}_1(x), \mu \tilde{c}\tilde{l}_{\tilde{s}^*\tilde{g}-\tilde{\alpha}}(\tilde{E}_1)(x)$ } = max { $\mu \tilde{f}^{-1}(\tilde{F}_1)(x), \mu \tilde{f}^{-1}(\tilde{E}_1)(x)$ } = \tilde{f}^{-1} (max { $\mu \tilde{F}_1(x), \mu \tilde{E}_1(x)$ })

Hence \tilde{X} is fuzzy $\tilde{s}^*\tilde{g} - \tilde{\alpha}$ – disconnected, $\tilde{f}^{-1}(\tilde{Y}) = \tilde{X}$, We get that the assumption is not true .Then (\tilde{Y} , $\tilde{T}_{\tilde{y}}$) is fuzzy $\tilde{s}^*\tilde{g} - \tilde{\alpha}$ – connected space.

References

- 1. L. A. Zadeh, Fuzzy Sets Information and Control, 8, 3, 338 353(1965)
- A. K. Chaudhuri, P. Das, Fuzzy connected sets in fuzzy topological spaces, Fuzzy Sets and Systems, 49, 223-229(1992), DOI(<u>https://doi.org/10.1016/0165-0114(92)90327-</u>
 Z)
- K. A. Dib, The fuzzy topological spaces on fuzzy space, Fuzzy Sets and Systems, 108, 103-110(1999), DOI(<u>https://doi.org/10.1016/S0165-0114(97)00308-4</u>)
- G. Balasubramanian, V. Chandrasekar, Fuzzy α-connectedness and fuzzy αdisconnectedness in fuzzy topological spaces, Matematnukn Bechnk, 56, 47-56(2004)
- R. Lowen, Connectedness in fuzzy topological spaces, Rocky Mt. J. Math., 11, 427-433(1981)
- C. L. Chang, Fuzzy Topological Spaces, Journal of Mathematical Analysis and Applications 24, 182-190(1968), DOI(<u>https://doi.org/10.1016/0022-247X(68)90057-7</u>)
- L. A. Gusev, I. M. Smirnova, Fuzzy Sets, Theory and Applications (Survey), Automation and Remote Control, 5, 739-755(1973)
- M. Sarkar, on fuzzy topological space , J .Math. Anal. Appl., 79(2), (1981), DOI(<u>https://doi.org/10.1016/0022-247X(81)90033-0</u>)
- R. Lowen, Fuzzy topological spaces, J. Math. Anal. Appl., 56, 621 633(1976), DOI(<u>https://doi.org/10.1016/0022-247X(76)90029-9</u>)
- Z. Chang You, On connectedness of fuzzy topological spaces, J. Fuzzy Math., 3, 59-66(1992)
- 11. X. Zhao, Connectedness on fuzzy topological spaces. Fuzzy Sets Syst., 20, 223–240(1986), DOI(https://doi.org/10.1016/0165-0114(86)90079-5)
- C. V. <u>Negoita</u>, D. A. Ralescu, Applications of Fuzzy Sets to System Analysis, (John Wiley and Sons, New York, 1975)
- 13. D. L. Foster, Fuzzy topological spaces, J. math. Anal. Appl, 67(2), 549 564(1979)