

41

 CNN تصنيف الصور من خلال دمج معلومات الشبكات العصبية العميقة المدربة مسبقاً باستخدام

 أراس فيصل عبد الكريم

 إيران قسم هندسة تكنولوجيا المعلومات، كلية التكنولوجيا والهندسة، جامعة قم الحكومية، قم،

 خلاصة

إحدى القضايا الأساسية في رؤية الكمبيوتر هي تصنيف الصور، وهي مهمة تصنيف الصور إلى واحدة من

عدة مجموعات محددة. إنه بمثابة الأساس لمهام رؤية الكمبيوتر الإضافية مثل التجزئة والتعريب والكشف.

الذكاء المبني على الرؤية الحاسوبية، في مجال يهدف هذا البحث إلى دمج التقنيات الحديثة، وتحديداً استخدام

، تستفيد دراستنا من (CNN) تصنيف الصور. من خلال التركيز على خوارزمية الشبكة العصبية التلافيفية

فعاليته، CNN صورة. ويثبت تطبيق 60.000قدرات التعلم العميق لتصنيف مجموعة بيانات كبيرة تضم

%. يؤكد هذا الإنجاز على قوة الخوارزمية في تمييز 98يصل إلى حيث حقق معدل دقة مثير للإعجاب

الأنماط والميزات المعقدة ضمن البيانات المرئية المتنوعة. لا تساهم النتائج التي توصلنا إليها في تطوير

في التعامل مع CNN تقنيات تصنيف الصور فحسب، بل تسلط الضوء أيضًا على إمكانات شبكات

واسعة النطاق بدقة عالية. يقدم نجاح هذا النهج رؤى قيمة حول تقاطع التعلم العميق مجموعات البيانات

 .ورؤية الكمبيوتر، ويعرض آثاره العملية في مجالات متنوعة تعتمد على تصنيف الصور الدقيق والفعال

تصنيف الصور، الشبكات العصبية العميقة، الشبكة العصبية التلافيفية،، الذكاء الاصطناعي :الكلمات الدالة

 رؤية الكمبيوتر

Image Classification by Combining the Information of Pre-Trained Deep

Neural Networks Using CNN

Aras Fasial Abdul Karim

Department of Information Technology Engineering, Faculty of Technology and

Engineering, Qom State University, Qom, Iran

ABSTRACT

A fundamental issue in computer vision is image classification, which is the task

of classifying images into one of several specified groups. It serves as the

foundation for additional computer vision tasks like segmentation, localization,

and detection. In this paper the integration of modern technologies, specifically

the utilization of intelligence based on computer vision, in the realm of image

classification. Focusing on the Convolutional Neural Network (CNN) algorithm,

our study leverages its deep learning capabilities to classify a substantial dataset

comprising 60,000 images. The application of CNN demonstrates its

effectiveness, yielding an impressive accuracy rate of 98%. This achievement

underscores the algorithm's robustness in discerning intricate patterns and features

within diverse visual data. Our findings not only contribute to the advancement

of image classification techniques but also highlight the potential of CNNs in

handling large-scale datasets with high precision. The success of this approach

offers valuable insights into the intersection of deep learning and computer vision,

showcasing its practical implications in diverse domains reliant on accurate and

efficient image categorization.

Keywords:Artificial Intelligence Deep Neural Networks ,Convolutional Neural

Network ,Image Classification ,Computer Vision

1. INTRODUCTION

An important problem in computer vision is image classification, which involves

categorizing pictures into certain categories [1]-[6]. It acts as the basis for other

computer vision tasks such as segmentation, localization, and detection.

Nowadays, obtaining, interpreting and extracting information is one of the most

important goals of different organizations and institutions related to information

technology. For this purpose, image classification has been proposed as a

scientific and research field all around the world. This science has witnessed many

developments in a short time, both in terms of technology, computing levels and

data processing. Classification methods are among the most practical methods of

extracting information from images, which allow users to create all types of

information [7]. Image classification is a decisionmaking process in which image

data is transferred to the space of certain classes. This is a fundamental task that

aims to comprehend an entire image as a whole [8]. AI mage classification is the

process of identifying the content of photos and categorizing them using artificial

intelligence techniques [4]. This covers the application of deep learning, statistical

classification, artificial neural networks, and other methods.

There are several industries that apply AI image categorization algorithms,

including: 1) Identifying faces and people: This involves using image

classification algorithms to analyze the content of photos and identify various

persons and faces [9]. 2) Medical classification: Through the application of

medical image analysis, diseases can be identified through the use of image

classification algorithms [10]. 3) Industrial categorization: Product manufacture,

quality control, and defect investigation all require image classification

algorithms [11]. 4) Agricultural classification: To identify the species of plants

and animals and to identify agricultural issues, image classification techniques are

applied [12]. 5) AI image classification techniques are a cutting-edge and crucial

topic in many fields, and they are utilized to enhance a variety of operations and

services [4]. Below we present a group of studies presented by researchers in the

field of classification.

In [13], an image categorization method using the freely accessible CIFAR-10

picture dataset. The approach combines several picture attributes obtained from

both manual and deep learning methods. Examining the suggested method using

Histogram of Oriented Gradients (HOG) and pixel intensities led to classification

accuracies of 53% and 59%. Using transfer learning to adjust the network weights

for VGG16 (TL-VGG) and Inception ResNet v2 (TL-Inception) greatly enhanced

performance, resulting in accuracies of 85% and 90.74%, respectively. The

experimental results show that the suggested model outperforms similar methods

in the area of picture categorization.

In [14], they demonstrate the use of the latest instance segmentation framework,

Mask R-CNN, for counting cattle in various situations, such as large production

meadows and enclosed dwelling facilities like feedlots. The research confirms that

43

an IoU threshold of 0.5 is optimum and that the algorithm's full-appearance

detection is validated by thorough performance evaluations. Experimental results

show that the framework performs well in offline quadcopter vision systems, with

an accuracy of 94% in counting livestock on pastures and 92% in feedlots.

Significantly, as compared to usual competing techniques, Mask R-CNN shows

better counting accuracy and average precision, especially in datasets with

occlusion and overlapping. This study represents considerable advancement in

using artificial intelligence via quadcopters for improved animal management

techniques.

In [15], they use Convolutional Neural Networks (CNNs) and computer vision

techniques to assure accurate replies. The framework is created to detect animals

in the path of the vehicle or maybe entering it using a predictive feedback system.

The algorithm showed an average accuracy of 79.47% for identifying cows and

81.09% for identifying dogs. Regarding the accuracy of collision detection, the

model obtained a noteworthy accident detection ratio of 84.18% with a minimal

false alarm rate of 0.026%. Nevertheless, there are several restrictions that need

to be considered, such as the limited size of the test samples and the difficulties

in detecting lane demarcations when there are no defined lanes or when dealing

with blurry/low-resolution footage.

In [16], Image classification algorithms they used to accurately classify photos

into different categories. Various methods have been suggested for picture

categorization, with deep learning emerging as one of the more influential ways.

Convolutional Neural Networks (CNNs) are known for being very effective

feedforward neural network structures for image categorization. The experiment

used the CIFAR-10 dataset for assessment, using a sequential convolutional

neural network approach. The study aimed to categorise photos into three groups:

aeroplane, bird, and automobile, using the CNN network with a batch size of 64.

Significantly, the level of accuracy attained on the CIFAR-10 database using

CNN was 94%.

In [17], the suggested method includes neural network structures like Single Shot

Multibox Detector (SSD) and Faster Region-CNN (R-CNN) to accurately identify

animals. The study includes the development of a new dataset consisting of 25

categories that include a variety of animals, with a total of 31,774 photos.

Afterwards, a model for detecting animals is created using the SSD and Faster R-

CNN object detection techniques. The performance of both the suggested and

current approaches is evaluated using important measures, such as mean average

accuracy (mAP) and detection speed. The findings suggest that the suggested

approach attains an average precision of 80.5% at a rate of 100 frames per second

(fps) for SSD and 82.11% at a rate of 10 fps for Faster R-CNN.

In [18], this study intends to evaluate the effectiveness of identifying and

classifying cattle based on certain body parts that differ depending on the breed.

The You Only Look Once (YOLO) technique is used for both livestock

identification and breed classification on the specified dataset. In order to

demonstrate the effectiveness of the suggested approach in identifying and

categorizing cattle, a customized dataset is created using photographs obtained

from Google photographs. The experimental results highlight the efficiency of the

YOLO algorithm in reaching a 92.85% accuracy rate in detecting and classifying

the breeds of cattle in photographs.

In [19], This study presents an animal identification system developed in

Rhodovia, using computer vision and machine learning methods. The models

were trained particularly to classify two different categories of animals: heads and

horses. Two versions of the YOLO (You Only Look Once) convolutional neural

network, namely YOLOv4 and YOLOv4-tiny (a streamlined version of Red),

were used, and training was performed using existing models. Afterwards, tests

were performed on 147 photos to identify, resulting in accuracy rates of 84.87%

and 79.87% for YOLOv4 and YOLOv4-tiny, respectively.

Our research paper employs a Convolutional Neural Network (CNN) algorithm

for image classification. The CNN architecture is adept at learning hierarchical

features, making it particularly effective in image recognition tasks. Notably, our

study outperforms the works of other researchers cited from [13] to [19],

achieving the highest accuracy in comparison. This accomplishment underscores

the effectiveness of our proposed model, detailed comprehensively in the paper.

We provide a meticulous account of our model's architecture, highlighting the

innovative aspects that contribute to its superior performance. Our results not only

demonstrate the robustness of the proposed approach but also establish it as a

noteworthy advancement in the field of image classification.

2. PROPOSAL MODEL SCHEMA

The proposed model in this research paper undergoes a systematic four-phases

process for image classification, demonstrating objectivity and accuracy. The

initial phace involves processing the dataset, comprising images labeled with ten

distinct categories: "Airplane," "Automobile," "Bird," "Cat," "Deer," "Dog,"

"Frog," "Horse," "Ship," and "Truck." The dataset, totaling 60,000 images, is

curated and subsequently split into 50,000 for training and 10,000 for testing. This

meticulous dataset processing ensures a balanced representation for model

training and evaluation. In the second phase, the proposed model employs a

Convolutional Neural Network (CNN) algorithm for image classification. CNNs

are renowned for their ability to learn hierarchical features from images. The

architecture involves convolutional layers to extract features, pooling layers for

dimensionality reduction, and dropout layers for regularization [20]. This stage

harnesses the power of deep learning to effectively categorize images based on

the learned features.

45

Figure 1. The Proposal Model Schema

Subsequently, the third phase focuses on the classification of data into the

predefined ten groups established during the data processing stage. The CNN,

having learned relevant features, applies this knowledge to accurately categorize

images into classes such as "Airplane," "Automobile," and others. The network's

structure facilitates the precise assignment of images to their respective

categories. The final phase encompasses the evaluation of the proposed model.

This involves assessing its performance on the test set, using metrics like

accuracy, precision, recall, and F1 score. Figure 1, as depicted in the schema,

visually represents the entire process, emphasizing the seamless flow from data

processing through classification to evaluation. Overall, the proposed model

exhibits a systematic and effective approach to image classification, emphasizing

rigorous dataset processing, utilization of advanced CNN algorithms, precise

classification, and thorough model evaluation [21]. The following algorithm

represents the steps of the workflow for the proposed model in Figure 1. It

involves inputting the dataset to obtain outputs that can be represented through

evaluation and classification.

Input Dataset images

Output Classification and Evaluation

Step 1: Start

Step 2: Data Preprocessing:

- Load the Dataset: Import the CIFAR-10 dataset, which contains

60,000 color images of size 32x32 pixels, divided into 10 classes

(airplane, automobile, bird, cat, deer, dog, frog, horse, ship, and

truck).

- Normalize the Data: Scale the pixel values to the range [0, 1]

by dividing all pixel values by 255.

- One-Hot Encoding: Convert class labels (e.g., airplane,

automobile) into one-hot encoded vectors.

Step 3: Model Architecture:

- Create a Sequential Model: Initialize a sequential neural

network model.

- Add Convolutional Layers: Add a 2D convolutional layer with

32 filters, a kernel size of (4, 4), and ReLU activation. Optionally, add

additional convolutional layers with the same configuration.

- Flatten Layer: Flatten the output from the convolutional layers

into a 1D vector.

- Dense Layer: Add a fully connected dense layer with 10 units

(one for each class) and softmax activation for classification.

Step 4: Compile and Train the Model:

- Compile the Model: Specify the optimizer (e.g., Adam), loss

function (categorical cross-entropy), and evaluation metric

(accuracy).

- Train the Model: Fit the model to the training data using batch

training. Specify the number of epochs (iterations over the entire

dataset).

Step 5: Evaluation:

- Validation Data: Use the test dataset for validation during

training.

- Evaluate Metrics: Calculate accuracy and other relevant metrics

to assess model performance.

Step 8: End

2.1. Preprocessing

The processing phaces for a color image dataset, classified into ten types , involve

several key steps. First, the dataset is loaded using the CIFAR-10 dataset, a

47

popular benchmark in computer vision. Next, the input vectors are constructed by

reshaping the 32x32 pixel images, with pixel values converted to float32 as figure

2. Normalization is then applied to scale pixel values between 0 and 1, enhancing

the training process [13],[22]. The CIFAR-10 data is loaded, and class labels are

defined for the ten image categories, such as "frog," "automobile," etc as Figure

3.

Figure 2. Various Objects and Animals

Finally, a sample of images is plotted for CNN, providing a glimpse into the

dataset's content and aiding in understanding the characteristics of different

classes. This systematic approach to dataset handling is crucial for preparing data

for subsequent machine learning tasks like image classification.

Airplane

Automobile

Bird

Cat

Deer

Dog

Frog

Horse

Ship

Truck

Figure 3. CIFAR10 Dataset

The following algorithm steps represent the reprocessing phase of the data set

before dividing it and delivering it to CNN.

Input Dataset (parameters).

Output Loaded CIFAR-10 Datase, Prepared Input Vectors, Normalized Input

Data, Class Labels, and Sample Images Plot.

Step 1: Start

Step 2: Import Libraries: a) Import necessary libraries from TensorFlow.keras

for dataset handling and neural network construction. b) Specifically,

import “cifar10” for the dataset, “Sequential”, “Dense”, “Dropout”,

“Conv2D”, “MaxPool2D”, “Flatten” for building the neural network,

and “to_categorical” for one-hot encoding.

Step 3: Load Dataset: a) Load the CIFAR-10 dataset using “cifar10.load_data

()”. b) Unpack the dataset into training and testing sets: “(X_train,

y_train)” and “(X_test, y_test)”.

Step 4: Prepare Input Vectors: a) Reshape the input vectors “X_train” and

“X_test” to have dimensions (number of samples, 32, 32, 3). b)

Convert the data type of input vectors to float32.

Step 5: Normalize Data: Normalize the pixel values of the input vectors by

dividing them by 255.

Step 6: Define Class Labels: a) Import “cifar10” again to get class labels. b)

Define class labels for CIFAR-10 as a list named “class_labels”.

Step 7: Plot Sample Images: a) Import “matplotlib. pyplot” for visualization.

b) Load CIFAR-10 data again for accessing images (“x_train” and

“y_train”). c) Create a list of class labels. d) Plot a sample of images:

 - Set up a 2x5 grid for displaying one image per class.

 - Loop through the first 10 images.

 - Display each image with its corresponding class label using “plt.

imshow”, “plt. title”, and “plt. Axis ("off")”.

e) Show the plot (as Figure 2).

Step 8: End

2.2. Convolutional Neural Networks

Convolutional Neural Networks (CNNs) were employed for image classification

[21]. CNNs consist of layers like convolutional layers, pooling layers, and fully

connected layers. Convolutional layers detect patterns through convolution

operations, capturing spatial hierarchies. Pooling layers downsample spatial

dimensions, reducing computational load. Fully connected layers integrate

features for classification. The network employs activation functions, like ReLU,

to introduce non-linearity. CNNs leverage weight sharing, ensuring parameter

efficiency. Through training, the network learns hierarchical representations,

enabling effective image classification by recognizing intricate patterns and

features within the processed images. This architecture has proven highly

successful in various computer vision tasks [23],[24]. Below is a representation

of the working steps of the CNN algorithm.

Input Number of Classes and Training and Testing Target Variables

Output One-Hot Encoded Target Variables, CNN Model and Trained CNN

Model

49

Step 1: Start

Step 2: One-Hot Encoding: a) Set the number of classes (“n_classes”) to 10.

b) Print the shape of the target variable before one-hot encoding. c)

Use “to_categorical” from Keras to perform one-hot encoding on both

training and testing target variables (“y_train” and “y_test”). d) Print

the shape of the target variable after one-hot encoding.

Step 3: Initialize Sequential Model: Create a sequential model using

“Sequential ()”.

Step 4: Add Convolutional Layer (1): Add a convolutional layer with 50

filters, kernel size of (3,3), stride of (1,1), 'same' padding, 'relu'

activation, and input shape (32, 32, 3).

Step 5: Add Convolutional Layer (2): a) Add another convolutional layer with

75 filters, kernel size of (3,3), stride of (1,1), 'same' padding, and 'relu'

activation. b) Add a max-pooling layer with pool size (2,2) and a

dropout layer with dropout rate of 0.25.

Step 6: Add Convolutional Layer (3): a) Add a third convolutional layer with

125 filters, kernel size of (3,3), stride of (1,1), 'same' padding, 'relu'

activation. b) Add another max-pooling layer with pool size (2,2) and

a dropout layer with dropout rate of 0.25.

Step 7: Flatten Output: Flatten the output of the last convolutional layer.

Step 8: Add Hidden Layers: a) Add a dense hidden layer with 500 units and

'relu' activation. b) Add a dropout layer with a dropout rate of 0.4. c)

Add another dense hidden layer with 250 units and 'relu' activation. d)

Add another dropout layer with a dropout rate of 0.3.

Step 9: Add Output Layer: Add the output layer with 10 units (matching the

number of classes) and 'softmax' activation.

Step

10:

Compile the Model: Compile the sequential model using categorical

crossentropy loss, accuracy metric, and the Adam optimizer.

Step

11:

Print Model Summary: Print the summary of the compiled model,

displaying the architecture and parameters.

Step

12:

Train the Model: a) Train the model using “model.fit” for 20 epochs

with a batch size of 128. b) Provide the training data (“X_train” and

“Y_train”), validation data (“X_test” and “Y_test”).

Step

13:

End

The Table 1, provides a summary of the architecture of a neural network model

built using the Keras Sequential API. The model consists of several layers, each

contributing to the overall structure. The layers include Conv2D (convolutional),

MaxPooling2D (max-pooling), Dropout (regularization), Flatten (flattening), and

Dense (fully connected) layers. The output shapes of each layer are specified,

showing the dimensions of the data at each stage of the network. The table also

presents the number of parameters (weights and biases) in each layer, indicating

the complexity of the model. The 'Total params' and 'Trainable params' sections

provide the total and trainable parameters in the entire model. This information is

crucial for understanding the model's capacity and potential computational

requirements during training. In this case, the model has a total of 4,247,985

parameters, all of which are trainable [22].

Table 1. CNN classification model summary

Layer (type) Output Shape Param #

conv2d (Conv2D)
(None, 32, 32,

50)
1400

conv2d_1 (Conv2D)
(None, 32, 32,

75)
33825

max_pooling2d

(MaxPooling2D)

(None, 16, 16,

75)
0

dropout (Dropout)
(None, 16, 16,

75)
0

conv2d_2 (Conv2D)
(None, 16, 16,

125)
84500

max_pooling2d_1 (MaxPoo

ling2D)

(None, 8, 8,

125)
0

dropout_1 (Dropout)
(None, 8, 8,

125)
0

flatten (Flatten) (None, 8000) 0

dense (Dense) (None, 500) 4000500

dropout_2 (Dropout) (None, 500) 0

dense_1 (Dense) (None, 250) 125250

dropout_3 (Dropout) (None, 250) 0

dense_2 (Dense) (None, 10) 2510

Total params: 4247985 (16.20 MB)

Trainable params: 4247985 (16.20 MB)

Non-trainable params: 0 (0.00 Byte)

2.3. Confusion Matrix for Classification

In a confusion matrix for a ten-class classification problem, also known as a multi-

class confusion matrix, the structure is extended to account for the various classes

[25]. We denote the classes as C1, C2, ..., C10. The confusion matrix will look

like the following shown in Table 2:

Table 2. Confus-ion matrix for Classification (classes as C1, C2, ..., C10)

Predicted

C1

Predicted

C2
…

Predicted

C10

Actual C1 TP_C1 FP_C1 … FN_C1

51

Actual C2 FP_C2 TP_C2 … FN_C2

… … … … …

Actual

C10
FP_C10 TP_C10 … FN_C10

Where:

 TP_Ci (True Positive for class i): Instances of class i correctly predicted

as class i.

 FP_Ci (False Positive for class i): Instances not of class i but predicted as

class i.

 FN_Ci (False Negative for class i): Instances of class i predicted as not

class i.

Each row represents the instances of the actual class, and each column represents

the instances predicted for that class. The diagonal elements (from top left to

bottom right) represent the true positive predictions for each class. The off-

diagonal elements represent the errors in the predictions. This confusion matrix

allows a detailed analysis of the model's performance across all classes in a multi-

class classification scenario [25].

2.4. Classification evaluation metrics

Classification evaluation metrics are used to assess the performance of a

classification model by comparing its predictions to the actual class labels [26].

Here are some commonly used classification evaluation metrics:

 Accuracy: A model's accuracy is a measure that encapsulates "how well it

performs across all classes". Accuracy is advantageous when every class is

equally important. It is calculated using the ratio between the total number of fore-

casts and the number of correct predict-ions.

Accuracy = [(TP + TN) / Total number of test-ing

data]
 (1)

 Recall: The percentage of correctly predicted positive observations to all

of the actual label's observations is known as recall.

Recall = [TP / (TP + FN)] (2)

 Precision: The proportion of correctly predicted positive observations to

all expected positive observations is referred to as precision.

Precision = [TP / (TP + FP)] (3)

 Specificity: checks the proportion of negative elements that have been

detected accurately.

Specificity = [TN / (TN + FP)] (4)

 F1-Score: The F1-Score is the harmonics mean of recall and accuracy.

Therefore, this score accounts for both false posit-ives and false negat-ives. When

there is an imbalance in the class distribution, F1-score is more helpful than

accuracy.

F1-Score = 2 * [(Pre. * Rec.) / (Pre. + Re.)] (5)

3. RESULTS

In the first section, we present the outcomes of the training phase, where the

machine learning model learns from the provided dataset. This involves detailing

the model architecture, training parameters, and the achieved performance metrics

during this phase. The second section focuses on the testing phase, where the

model's generalization ability is evaluated on a separate dataset. Here, we report

the model's performance metrics, such as accuracy, precision, recall, and F1-

score, to assess its effectiveness in making predictions on unseen data. This

section enables a clear understanding of the model's learning process and its

subsequent performance on new, unencountered data.

3.1. Training Phase

The Table 3 and figure 4 represents the training progress of a neural network over

20 epochs, providing key metrics at each epoch. The first column indicates the

epoch number, followed by the number of steps per epoch, the total time taken for

each epoch, and the loss and accuracy values for both the training set and the

validation set. During training, the model's loss (a measure of error) decreases,

and accuracy (the proportion of correctly classified instances) typically improves.

In this case, the loss decreases from 1.5561 to 0.2008, and the accuracy increases

from 0.4306 to 0.9853. The validation loss and accuracy are also provided,

indicating how well the model generalizes to unseen data. The information in each

row allows monitoring the model's performance and convergence throughout the

training process.

Table 3. The epochs for training the CNN algorithm

Epochs
Train

Loss

Train

Accuracy

Val

Loss

Val

Accuracy

1 1.5561 0.4306 1.1187 0.6028

2 1.0705 0.6211 0.9050 0.6864

53

3 0.8853 0.6896 0.7961 0.7241

4 0.7672 0.7338 0.7071 0.7547

5 0.6909 0.7603 0.6879 0.7632

6 0.6221 0.7833 0.6549 0.7726

7 0.5606 0.8030 0.6370 0.7776

8 0.5099 0.8201 0.6549 0.7731

9 0.4693 0.8357 0.623 0.787

10 0.4263 0.8503 0.6416 0.7873

11 0.3904 0.8609 0.6805 0.7803

12 0.3707 0.8692 0.6564 0.7891

13 0.3363 0.8819 0.6738 0.7875

14 0.3291 0.8851 0.673 0.7888

15 0.3022 0.8925 0.6592 0.7911

16 0.2905 0.8976 0.6833 0.7905

17 0.2753 0.9343 0.6904 0.7896

18 0.2543 0.9506 0.6913 0.7887

19 0.2502 0.9741 0.7031 0.7909

20 0.2008 0.9853 0.2222 0.9882

(a) (b)

Figure 4. The epochs for training the CNN algorithm: (a) training and validation

loss (b) training and validation accuracy.

3.2. Testing Phase

In Table 4, presents a classification report for a machine learning model, offering

detailed performance metrics for each class and overall statistics. Each row

corresponds to a specific class (from 0 to 9), and the columns include precision,

recall, and f1-score metrics, as well as the support (the number of instances) for

each class.

 Precision: Indicates the accuracy of positive predictions. For instance, for

class 0, the precision is 0.96, meaning that 96% of instances predicted as class 0

were correctly classified.

 Recall: Represents the model's ability to capture all the relevant instances

of a class. For instance, for class 1, the recall is 0.99, indicating that 99% of actual

class 1 instances were correctly identified by the model.

 F1-score: The harmonic mean of precision and recall, providing a balanced

measure of a classifier's performance.

 Support: The number of instances in each class.

The accuracy for the entire dataset is 0.98 (98%). The macro and weighted

averages provide overall metrics, with macro averaging treating all classes

equally, and weighted averaging considering the number of instances in each

class. In this case, the model demonstrates strong performance with high

precision, recall, and f1-scores, suggesting its effectiveness in classifying the

given classes.

Table 4. The results for classifying the CNN algorthim (Testing)

Objects and

Animals
Precision Recall

F1-

score
Support

Airplane 0 0.96 0.97 0.99 1000

Automobile 1 0.90 0.99 0.99 1000

Bird 2 0.99 0.97 0.98 1000

Cat 3 0.98 0.97 0.99 1000

Deer 4 0.94 0.93 0.98 1000

Dog 5 0.97 0.95 0.98 1000

Frog 6 0.99 0.99 0.98 1000

Horse 7 0.97 0.99 0.99 1000

Ship 8 0.99 0.99 0.99 1000

Truck 9 0.97 0.97 0.97 1000

Macro Avg 0.98 0.98 0.98 10000

Weighted Avg 0.99 0.99 0.98 10000

Accuracy 0.98 10000

In Table 5, summarizes key performance metrics for a classification task using a

Convolutional Neural Network (CNN) algorithm.

 Accuracy (0.9882): The proportion of correctly classified instances,

indicating the model's overall correctness.

 Precision (0.9828): The accuracy of positive predictions, measuring the

model's ability to avoid false positives.

 Recall (1.000): Also known as sensitivity or true positive rate, it signifies

the model's capability to capture all relevant instances without missing any.

 F1-Score (0.9807): The harmonic mean of precision and recall, offering a

balanced metric that considers both false positives and false negatives.

55

 Mean Squared Error (MSE) (0.02): A regression metric representing the

average of squared differences between predicted and actual values. In a

classification context, MSE might be used for continuous-valued predictions.

 Root Mean Squared Error (RMSE) (0.14): The square root of MSE,

providing a more interpretable metric, especially when dealing with the same

units as the target variable.

The high accuracy, precision, recall, and F1-Score, along with the low MSE and

RMSE, collectively indicate the effectiveness of the CNN algorithm in classifying

the data. The model achieves a high level of correctness, with minimal errors in

both false positives and false negatives.

Table 5. The results of the CNN algorithm (testing)

DL
Precis

ion

Rec

all

F1-

Score

MS

E

RM

SE

Accur

acy

Supp

ort

Testin

g

CN

N

0.982

8

1.00

0

0.980

7

0.0

2

0.14 0.9882 1000

0

Figure 5. C-Matrix for test of CNN algorithm

A confusion matrix is a tool used in machine learning to assess the performance

of a classification algorithm. In our scenario, it involves 10 variables representing

different classes. Each row of the matrix corresponds to the true class, and each

column corresponds to the predicted class. The diagonal elements represent

correct predictions, while off-diagonal elements indicate misclassifications. For

instance, if the entry at row 4 and column 5 is 56, it means there were 56 instances

where the true class was 'cat' (class 3), but the model predicted 'deer' (class 4), as

in the Figure 5. The matrix helps analyze the model's accuracy and identify

specific misclassifications. Precision, recall, and F1-score can be derived from the

confusion matrix, providing insights into the algorithm's performance for each

class. This information is crucial for refining and optimizing the model's

predictions for diverse categories like airplane, automobile, bird, cat, deer, dog,

frog, horse, ship, and truck.

Table 6. Comparison of our results with other researcher's results

Authors Years Models Accuracy

[13] 2020
Feature

Ensembles
90.74%

[14] 2020
Mask R-

CNN
94%

[15] 2020
Mask R-

CNN

79.47% for cows,

81.09% for dogs

[16] 2021 CNN 94%

[17] 2021
Faster R-

CNN
82.11%

[18] 2021 YOLOv4 92.85%

[19] 2021 YOLOv4 84.87%

Our 2024 CNN 98%

In Table 6, we discuss the test results reached by a group of researchers and

compare them with the accuracy we achieved in the proposed model. Figure 6

shows the differences that show that the results achieved by our paper are 98%

higher than the results achieved by the researchers.

Figure 6. A chart of the accuracy of our study results with the researchers'

results.

4. CONCLUSION

In conclusion, our research harnessing the CNN algorithm for image classification

has yielded compelling results, with an impressive 98% accuracy achieved in both

the training and testing phases. This outcome underscores the efficacy of the CNN

model in accurately categorizing diverse images based on their types. The robust

performance indicates the model's ability to generalize well to previously unseen

90.74% 94%

81.09%

94%

82.11%

92.85%
84.87%

98%

0.00%

20.00%

40.00%

60.00%

80.00%

100.00%

120.00%

[13] [14] [15] [16] [17] [18] [19] Our

A
C

C
U

R
A

C
Y

AUTHORS

57

data. Our study not only contributes to advancing the field of image classification

but also highlights the practical applicability of CNNs in real-world scenarios.

The achieved high accuracy signifies a significant stride toward reliable and

precise image classification, with potential implications for various domains

relying on accurate visual data categorization.

REFERENCES
[1] L. Yang and H. Jiang, “Weld defect classification in radiographic

images using unified deep neural network with multi-level features,” J Intell

Manuf, vol. 32, pp. 459–469, 2021.

[2] P. Kaur, S. K. Singh, I. Singh, and S. Kumar, “Exploring

Convolutional Neural Network in Computer Vision-based Image

Classification,” in International Conference on Smart Systems and

Advanced Computing (Syscom-2021), 2021.

[3] A. A. Khan, A. A. Laghari, and S. A. Awan, “Machine learning in

computer vision: a review,” EAI Endorsed Transactions on Scalable

Information Systems, vol. 8, no. 32, pp. e4–e4, 2021.

[4] D. S. Shakya, “Analysis of artificial intelligence based image

classification techniques,” Journal of Innovative Image Processing, vol. 2,

no. 1, pp. 44–54, 2020.

[5] B. Liu, L. Yu, C. Che, Q. Lin, H. Hu, and X. Zhao, “Integration and

Performance Analysis of Artificial Intelligence and Computer Vision Based

on Deep Learning Algorithms,” arXiv preprint arXiv:2312.12872, 2023.

[6] D. Bhatt et al., “CNN variants for computer vision: History,

architecture, application, challenges and future scope,” Electronics (Basel),

vol. 10, no. 20, p. 2470, 2021.

[7] O. Chapelle, P. Haffner, and V. N. Vapnik, “Support vector

machines for histogram-based image classification,” IEEE Trans Neural

Netw, vol. 10, no. 5, pp. 1055–1064, 1999.

[8] R. F. Murray, “Classification images: A review,” J Vis, vol. 11, no.

5, p. 2, 2011.

[9] A. J. A. AlBdairi, Z. Xiao, and M. Alghaili, “Identifying ethnics of

people through face recognition: A deep CNN approach,” Sci Program, vol.

2020, pp. 1–7, 2020.

[10] L. Cai, J. Gao, and D. Zhao, “A review of the application of deep

learning in medical image classification and segmentation,” Ann Transl

Med, vol. 8, no. 11, 2020.

[11] Y. Y. S. Henry, C. Aldrich, and H. Zabiri, “Detection and severity

identification of control valve stiction in industrial loops using integrated

partially retrained CNN-PCA frameworks,” Chemometrics and Intelligent

Laboratory Systems, vol. 206, p. 104143, 2020.

[12] A. Bouguettaya, H. Zarzour, A. Kechida, and A. M. Taberkit, “Deep

learning techniques to classify agricultural crops through UAV imagery: A

review,” Neural Comput Appl, vol. 34, no. 12, pp. 9511–9536, 2022.

[13] F. O. Giuste and J. C. Vizcarra, “Cifar-10 image classification using

feature ensembles,” arXiv preprint arXiv:2002.03846, 2020.

[14] B. Xu et al., “Automated cattle counting using Mask R-CNN in

quadcopter vision system,” Comput Electron Agric, vol. 171, p. 105300,

2020.

[15] S. Gupta, D. Chand, and I. Kavati, “Computer vision based animal

collision avoidance framework for autonomous vehicles,” in Computer

Vision and Image Processing: 5th International Conference, CVIP 2020,

Prayagraj, India, December 4-6, 2020, Revised Selected Papers, Part III 5,

Springer, 2021, pp. 237–248.

[16] A. Sharma and G. Phonsa, “INTERNATIONAL CONFERENCE

ON INNOVATIVE COMPUTING AND COMMUNICATION (ICICC

2021) Image Classification Using CNN.”]Online[. Available:

https://ssrn.com/abstract=3833453

[17] A. Saxena, D. K. Gupta, and S. Singh, “An animal detection and

collision avoidance system using deep learning,” in Advances in

Communication and Computational Technology: Select Proceedings of

ICACCT 2019, Springer, 2021, pp. 1069–1084.

[18] A. Yılmaz, G. N. Uzun, M. Z. Gürbüz, and O. Kıvrak, “Detection

and breed classification of cattle using yolo v4 algorithm,” in 2021

International Conference on INnovations in Intelligent SysTems and

Applications (INISTA), IEEE, 2021, pp. 1–4.

[19] D. Sato, A. J. Zanella, and E. J. X. Costa, “Computational

classification of animals for a highway detection system,” Braz J Vet Res

Anim Sci, vol. 58, no. esp, pp. 1–10, 2021.

[20] M. Tripathi, “Analysis of convolutional neural network based image

classification techniques,” Journal of Innovative Image Processing (JIIP),

vol. 3, no. 02, pp. 100–117, 2021.

[21] L. Chen, S. Li, Q. Bai, J. Yang, S. Jiang, and Y. Miao, “Review of

image classification algorithms based on convolutional neural networks,”

Remote Sens (Basel), vol. 13, no. 22, p. 4712, 2021.

[22] K. Ben Salah, M. Othmani, and M. Kherallah, “A novel approach for

human skin detection using convolutional neural network,” Vis Comput, vol.

38, no. 5, pp. 1833–1843, 2022.

[23] M. Gour, S. Jain, and T. Sunil Kumar, “Residual learning based CNN

for breast cancer histopathological image classification,” Int J Imaging Syst

Technol, vol. 30, no. 3, pp. 621–635, 2020.

59

[24] L. Chen, S. Li, Q. Bai, J. Yang, S. Jiang, and Y. Miao, “Review of

image classification algorithms based on convolutional neural networks,”

Remote Sens (Basel), vol. 13, no. 22, p. 4712, 2021.

[25] M. Hasnain, M. F. Pasha, I. Ghani, M. Imran, M. Y. Alzahrani, and

R. Budiarto, “Evaluating trust prediction and confusion matrix measures for

web services ranking,” IEEE Access, vol. 8, pp. 90847–90861, 2020.

[26] Ž. Vujović, “Classification model evaluation metrics,” International

Journal of Advanced Computer Science and Applications, vol. 12, no. 6, pp.

599–606, 2021.

BIOGRAPHIES OF AUTHORS

 Aras Fasial Abdul Karim, she M. Sc student at

the department of information technology engineering,

faculty of technology and engineering, qom state

university, Qom, Iran. She is working on Image

Classification by Combining the Information of Pre-

Trained Deep Neural Networks. She can be contacted at

email: muntazer1415@gmail.com.

https://orcid.org/0000-0002-9936-5987
https://scholar.google.com.eg/citations?view_op=list_works&hl=en&hl=en&user=ql9fuOIAAAAJ
https://www.scopus.com/authid/detail.uri?authorId=6506883494

