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Abstract— Evolutionary or genetic algorithm mimics nature's principles of evolution to find
the optimal solution to any problem that is compatible with its mechanism. The genetic
algorithm (GA) is one of the most well-known heuristic methods for resolving computing
problems. We discover that Darwinian evolution's characteristics have been expressed after
studying the GA. It has actually had a number of achievements in various areas of life's
demands. The magic square (MS), which is an array of positive integers (1, 2, n) configured so
that the sum of the n numbers in any principal diagonal, horizontal, or vertical line is always
the same number, was correctly obtained for this study using a GA. In particular, evolutionary
algorithms have been utilized as a way to find the best MS solution. How successfully does
GA optimization accomplish the MS is the research subject. This study has successfully
established a way to build Latin Squares that can adapt to variable sizes (N x N), allowing them
to handle Latin Squares of various lengths. This novel method offers a more adaptable method
for dealing with Latin Squares of any scale, diverging from the traditional emphasis on specific
numbers or defined dimensions.
Keywords— MS; GA,; fitness function; evolution; Optimization.
1. Introduction

The GA that was built to find the MS has produced positive results. GA has imitated
Darwin's theory of natural selection and evolution, which holds that life evolves slowly and
gradually from non-life or simple life (simple solution in GA) into optimal life (optimal
solution in GA). It will be quite difficult to describe problems where the GA and construction
are not properly suited. However, the design of the MS is extremely apparent, and a GA might
potentially improve it. In order to acquire a wide variety of solutions, crossover operation has
been used. The algorithm has been implemented using the structure of vertical and horizontal
arrays.
2. Darwin's Theory

GA has replicated two key elements of Darwin's theory: natural selection and the
evolutionary process. According to Darwin's Theory of Evolution, the origin of life was either
non-life or simple life (a simple solution in GA), and the growth of life has been a slow, gradual
process (optimal solution in GA). In other words, complicated makes naturally developed over
time from more straightforward lines (Darwin, 1859). Minor advantageous genetic mutations
are kept and gathered by natural selection. Let's say that a member of classes developed a trait.
For instance, it developed wings and acquired flight skills. Its children would inherit those
traits, which would then be passed down to their children, and so on. The inferior (traits)
members of a class would gradually disappear, and only the superior (traits) members of the
class would survive. Natural selection refers to the preservation of traits that enable a class to
compete more successfully in the wild. It more closely resembles domestic breeding. Human
breeders have dramatically altered domestic animal populations throughout history by selecting
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particular species to breed. Breeders gradually eliminate unfavorable characteristics over time.
Additionally, over time, natural selection gradually eliminates the inferior class. Here is an
example that will provide further information. There is a population of rabbits in the wild, some
of which are intelligent, some of which are not, and some of which are swift, some of which
are not. Foxes are more likely to eat the slower, dumber rabbits. The quick and intelligent ones,
however, have a better chance of surviving and reproducing to produce a new generation of
rabbits. Of course, some of the less intelligent and slower rabbits may survive, perhaps by
chance, but their numbers will be lower than those of the quick and intelligent ones. Natural
selection, of which foxes are a part, is what leads to the smart and quick rabbits being much
more prevalent in the wild than other sorts of animals over time since there are more parents
of their type (Michalewicz, 1996) (Michalewicz & Fogel, 2004).

3. Optimization

Finding the most advantageous parameters for a given model is the goal of the problem-solving
technique known as optimization. The optimizer is aware of the model, which takes inputs and
produces outputs. Typically, the problem can be framed so that we aim to minimize the model's
output value or the output of a function that converts the model's output into a fitness score.
Because of this, the procedure is frequently referred to as minimization. It becomes clear that
this is helpful when thinking about how to optimize a circuit's design in order to reduce power
usage. To do this, the optimizer searches for parameter combinations that allow the model to
provide the optimum output given a given input. Analytical techniques can be used to optimize
when dealing with simple mathematical models, frequently by computing the derivative of the
functional model. However, these techniques are challenging to apply to complicated models
that have noisy behavior. Additionally, it is impossible to employ such procedures because the
analytical model is not always known. Algorithms that are effective at resolving these types of
optimization issues can be found in the discipline of evolutionary computation (EC), which is
a subset of computational intelligence (CI), which is in turn a subset of artificial intelligence
(Al) (Dahlberg, 2017).

4. Optimization Algorithms Classifications

There is a need for robust, adequate, and global algorithms to solve optimization problems
such as computer science and engineering problems. To deal with these problems, there are
two classifications of algorithms: stochastic and deterministic algorithms. The first one usually
provides approximate solutions but is not optimal. The latter, probabilistic algorithms are often
recommended to be used probabilistic algorithms. It does not give for sure the optimal solution.
In fact, it generates a randomly highly accurate solution with better performance (Agrawal et
al., 2022).

5. Evolutionary Algorithm (EA)

The focus of evolutionary computation is on natural process-inspired problem-solving
algorithms. The fundamental tenet of the area is to apply biological Darwinian evolution's
mathematical models to optimization issues. Imagine that an organism functions as a "input"
to the "model™ of its natural environment and produces a "output” in the form of offspring to
demonstrate how useful this is. Through repeated iterations, biological evolution purges the
population of organisms, preserving only the fit individual, to develop species that steadily
improve their environmental adaptation. However, evolutionary computation is not just limited
to Darwinian evolution; it also covers a wide range of techniques that draw inspiration from
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other natural phenomena like cultural evolution and animal behavior. Populations are the basis
of evolutionary algorithms. In optimization issues, a population is a group of individuals that
has a vector of parameters that the model we want to optimize can accept and use to produce
an output. A process is used to initialize the population with a random set of parameter vectors
that should uniformly cover the model's whole parameter range. Once the first population has
been assessed, an iterative process is initiated and continues until a workable solution is
discovered. This cyclical process involves choosing, changing, and assessing the current
population. During selection, a group of individuals who exhibit promising traits are chosen to
survive into the population's next generation. They are then examined after being randomly
altered to add diversity to the population. Each iteration of this process results in the creation
of a new generation of the population, and it continues indefinitely until a solution is discovered
or another restriction is met (Dahlberg, 2017).
6. Genetic Algorithm (GA)
One of the most popular optimization metaheuristics methods to solve computational problems
is the genetic algorithm (GA). It mimics Charles Darwin’s theory of evolution that gets
controlled by natural selection. It works by the principle that the fittest or the one which is so
compatible with the natural conditions is the most one to get survived. It is a stochastic and
adaptive search method that has been developed by John Holland. Numerous challenging
numerical optimization problems have been successfully solved using GA. Problems with
system identification, signal processing, and path planning have all been effectively solved
using it. Comparing GA to traditional search algorithms, one of the main benefits of using it is
that they operate on a population of solutions rather than just a single point. As a result, GA
results are more reliable and precise. The answer offered by GA is more ideal and
comprehensive in scope. Local optima, such as those produced by Newton or gradient descent
algorithms, are less likely to trap GA. No derivative fitness criterion information is needed for
GA. This makes it a great fit for situations involving both continuous and discrete optimization.
Furthermore, GA is less sensitive to measurement noise and ambiguity (Agrawal et al., 2022).
6.1 GA Steps:

1- Generate initial population.

2- Fitness evaluation.

3- Selection.

4- Crossover and Mutation.

5- Formation of a new population.

6- Termination (Agrawal et al., 2022).
GA works by initiating generations and each generation contains a number of chromosomes
(individuals). Each individual contains genes that represent a solution to a problem. The
process of evolution is applied to each individual to get new offspring and that depends on
choosing the good one or the one that fit the solutions after combining them. The process of
combining and choosing fit chromosomes continues to find the optimal solution which is the
optimal chromosome. A population of individuals is used in the GA search process, and each
one is assessed according to its fitness value. Higher-fit individuals are chosen to have offspring
that have many, but not all, of their parents' characteristics. Utilizing genetic operators such as
crossover and mutation to accomplish this search process. Genetic search algorithms differ
from traditional search algorithms in a few key ways:
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1- GA carries out the search utilizing a coded solution rather than the actual solutions.

2- GA evaluates individuals based on their fitness function rather than the derivative of the
function and are based on a population of possible solutions rather than just one.

3- GA employs probabilistic operators rather than deterministic ones, such as crossover and
mutation (Agrawal et al., 2022).

6.2 Process of Evolution:

The fitness of each member of the initial population is calculated to begin the evolutionary process
of GA. The following actions are taking while the stopping requirement is still not yet met:

1- Select an individual utilizing some selection processes for reproduction (i.e. tournament, rank,
etc.).

2- Use the crossover and mutation operations to produce a progeny.

Based on the application, the crossover and mutation probabilities are chosen. The newest
generation, compute. This process will come to an end in case either the best answer is discovered,
or the maximum number of generations has been achieved (Agrawal et al., 2022).
7. Magic Square (MS)

An unidentified mathematician invented the MS originally in China. The first MS of order
three was called Lo Shu. It tells the tale of a flood that occurred in China before three thousand
years ago. At that time, people attempted to make an offering to the enraged river deity, but he
did not respond. Every time they offered a suggestion, a turtle would emerge from the
riverbank. One day a boy noticed a mark on the turtle's back that represented the numbers 1
through 9. The numerical quantities were arranged in a line, with 15 added to each square of
numbers. People at the moment discovered that the amount they had given wasn't the proper
one (Swaney, n.d.).

7.1 MS Kinds
It can be classified depending on construction way into three types:
1- Additive MS: it is the standard one and its elements are arranged in a way when we find the
sum of the columns, rows, and diagonals gives equal sums (S) as shown in Table 1.
2- Multiplicative MS: it contains elements that get arranged along columns, rows, and diagonals
to multiply to get a magic product called (p) as shown in Table 2.
3- Additive-multiplicative MS: it contains elements respectively arranged along columns, rows,
and diagonals to get added and multiplied for obtaining (S) and (P) as shown in Table 3
(Johnson, 2005).
Table (1): 5 x 5 additive MS with magic sum 65

1712411 |8 |15
23|5 |7 |14]16
4 |16 |13]20|22
101121921 |3
11]18]25|2 |9

Table (2): 3 x 3 multiplicative
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MS with p 4096

128 | 1 32
4 16 | 64
8 256 | 2

Table (3): 8 x 8 additive multiplicative MS : S (840), P (2,058,068,231,856,000).

64 |83 117102 |15 |76 | 200 | 203
19 |60 232 17554 |69 |153 |78
216 [ 1617 |17 |52 [171190 |58 |75
135|114 |50 |87 |[184 189 |13 |6
150 | 261 |45 |38 |91 |[136|92 |27
119 1104 | 108 |23 |[174 225 |57 |30
116 | 25 1331120 |51 |26 |162|203
39 |34 138 | 243 1100 | 29 | 105|152

It can be classified depending on the elements involved into two types:

Non-repetitive MS: it contains elements that are different from each other and not repeated. it
is the same as standard MS and the number of its elements is the number of columns multiplied
by the number of rows as shown in Table 4.

Repetitive MS: it contains elements that have to be used in all columns, rows, and diagonals,
one time in each one for all of them without getting repeated in all columns, rows, and
diagonals. in this type of MS, the number of elements is equal to the number of rows and equal
to the number of columns. also, the number of elements is less than the number of rows
multiplied by the number of columns as shown in Table 5 (Johnson, 2005).

Table (4): 3 x 3 non-repetitive MS with magic sum 15.

816
3157

IS
(o)
N

Table (5): 5 x 5 repetitive MS with magic sum 30.

WV |©
OO|W|IN|O®
~N[Oo|o|oT|w
W | |01
gIoo|Oo|w|

It can be classified depending on its order into two types:

Even order MS: it has equal rows and columns and its order of n is equal to 2k with k being
bigger or equal to number 2 as shown in Table 6.

Odd order MS: it has equal rows and columns and its order of n is equal to 3k with k being
bigger or equal to number 1 as shown in figs 1, 2, 4, and 5 (Johnson, 2005).
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Table (6): 4 x 4 even-order MS with magic sum 34.

1 114|118
1217 |2 |13
6 19 [16]3
1514 |5 |10

We can say that figures 1, 2, 4, and 5 are related to an odd order, whereas figures 3 and 6 are
of an even order. figure 3 is a non-repetitive of even order and additive-multiplicative MS
(Johnson, 2005).

8. Related Work

(Johnson, 2005) describes how Latin squares are used to construct trials with interacting
elements, providing balanced and effective designs. It also investigates its use in statistical
modeling, notably in network-based complicated data structures, and offers a helpful paradigm
for modeling dependent data. Networks are structures that in the context of the paper reflect
connections or interactions between elements. The study demonstrates the value of Latin
squares in network analysis and experiment design. Their adaptability and strong influence in
numerous statistical applications are highlighted. The work also investigates relationships
between Latin squares and other branches of mathematics, like graph theory and block designs,
highlighting their contributions to progress in these branches. Latin squares are used in network
analysis and statistical investigations, and the author uses real-world examples and case studies
to illustrate the principles being discussed. The research concludes by summarizing its major
findings and emphasizing the value of Latin squares in solving challenging network-related
issues. Overall, "The Role of Latin Squares in the Study of Networks" is an invaluable tool for
statisticians and academics working on network and experiment design analyses.

(Yan, 2005) describes a novel approach for creating typical magic squares. The rows, columns,
and diagonals of these magic squares are all consecutive integers beginning with 1, and they
add up to a fixed value. The authors' goal is to propose an original and effective technique for
producing normal magic squares of various orders. The new algorithm is thoroughly explained
in the paper, with each stage of its process being broken down and its advantages and
disadvantages over existing approaches highlighted. The authors explore the fundamental ideas
and characteristics of regular magic squares, which the method uses, and then provide
mathematical analyses and proofs to demonstrate the correctness and efficiency of their
technique. The study also presents actual data and numerical examples showing the
performance of the algorithm in generating normal magic squares of various sizes. The authors
demonstrate the benefits and distinctive characteristics of their novel algorithm by contrasting
it with existing widely used techniques for creating typical magic squares. They underline how
effective a tool it may be for producing typical magic squares. The paper discusses the
significance of normal magic squares in recreational mathematics, number theory, and coding
theory, along with possible extensions to other areas. The development of this novel algorithm,
which provides a creative and effective solution to a traditional mathematical problem, is the
paper's main contribution. The research concludes by summarizing its key findings and
stressing the benefits of the suggested approach for creating normal magic squares of varied
sizes. It emphasizes the algorithm's worth for mathematicians and math fans interested in magic
squares and related disciplines. Overall, "A Novel Algorithm for Constructing Normal Magic
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Squares" gives a novel and efficient method for creating normal magic squares, making it an
important tool for researchers and mathematicians in the investigation of this fascinating
mathematical subject.

(Melas & Karamanos, 2009) intention is to provide a succinct and narrowly focused remark
about diagonally magic squares, emphasizing their unique qualities and properties. An example
of a diagonally magic square is one in which the sums of the numbers in each row, column,
and major diagonal are equal, as well as the sums of the numbers in the secondary diagonals.
This essay examines diagonally magic squares mathematically, explaining how they are made
and why they exist. It examines the requirements and limitations that must be met to create a
diagonally magic square. To further clarify the idea and show how they differ from
conventional magic squares in terms of intriguing qualities, the author also provides properties
and instances of diagonally magic squares. The importance of diagonally magic squares is
highlighted, along with some of the prospective fields in which they could be used, especially
in the realm of mathematical puzzles and problem-solving. By emphasizing this less well-
known variation and throwing light on this distinct subclass of magic squares, the work adds
to the body of literature on magic squares and advances our knowledge of their mathematical
features. The paper outlines its main findings and deductions on diagonally magic squares in
its conclusion. It highlights how crucial more study of this particular kind of magic square is,
as well as any potential mathematical ramifications. Overall, "Note on a Diagonally Magic
Square™ contains insightful information about this special type of magic squares and is likely
to be of interest to mathematicians, researchers, and those who are just fascinated by the
intriguing qualities of magic squares.

(Wu & Wu , 2019) explore two remarkable issues in recreational mathematics, knight's tours
and magic squares, and their surprising connection. Knight's tours are a series of moves made
by a knight on a chessboard, visiting each square precisely once, whereas magic squares are
collections of numbers arranged so that the sums of the numbers in each row, column, and
diagonal are equal. The writers' goal is to explore the relationship between knight's tours and
magic squares, providing fresh perspectives on these related ideas. The paper starts with an
overview of knight's tours and discusses alternative construction methods for them on various
chessboard sizes, including time-honored techniques like Warnsdorff's rule and heuristic
algorithms. The intriguing relationship between knight's tours and magic squares is explored
in this study, showing how some knight's tours can be used to create magic squares and vice
versa. This investigation demonstrates the intricate mathematical connections between these
two seemingly unconnected subjects. The relationship between knight's tours and magic
squares is supported by mathematical analysis and arguments, which reveals special and
intriguing characteristics in the generated magic squares. The paper examines potential
generalizations of the study's insights together with its theoretical conclusions and real-world
implications. It demonstrates how the lessons learned from this study can be applied to different
chess piece tours and combinatorial designs. Knight's tours and magic squares are now better
understood thanks to this research's discoveries of intriguing links that add to our understanding
of recreational mathematics. The study concludes by summarizing the main conclusions and
learnings from the analysis, emphasizing the grace and beauty of these mathematical
constructions, and urging future research in this fascinating area. Overall, the study reveals
fascinating parallels between knight's tours and magic squares while also being interesting and
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instructive. For math lovers and others curious to learn more about the world of amusing
puzzles, it makes for a pleasant read.

(Melas and Karamanos , 2009) the Latin and Graeco-Latin square concepts, specific varieties
of combinatorial patterns, are used in the study to propose a modern way for creating magic
squares. The goal of this work is to use Latin and Graeco-Latin squares to offer a novel method
for creating magic squares. In combinatorial mathematics, experimental design, cryptography,
and coding theory, Latin squares are collections of symbols or numbers that are arranged so
that each symbol occurs precisely once in each row and column. By employing two sets of
symbols, Graeco-Latin squares expand on this idea by making sure that each pair of symbols
from the two sets appears precisely once in each row and column. The authors suggest a method
that methodically converts Latin and Graeco-Latin squares into magic squares of various
orders. They show the fascinating linkages between combinatorial designs and magic square
creation and give a complete algorithm and step-by-step instructions for building magic squares
using this method. The paper's main contributions are in providing a new viewpoint on the
construction of magic squares by demonstrating how Latin and Graeco-Latin squares might be
used. For scholars and math lovers who are interested in these mathematical constructions, the
proposed method broadens their toolkit. The paper's conclusions have consequences for a
number of disciplines, including magic squares' applications in coding theory, cryptography,
and recreational mathematics. To create magic squares of various sizes, combinatorial designs
offer a strong and effective method. The study concludes by listing the benefits of the modern
way to making magic squares over more conventional approaches. The technique gives a more
organized and methodical way to make magic squares by integrating Latin and Graeco-Latin
squares, adding to the body of knowledge already known about this age-old mathematical
conundrum. Overall, the study makes an important and original contribution to the subject of
magic squares by offering new perspectives on how they are made and highlighting the exciting
connections they have with combinatorial designs.

In conclusion, the collection of works addressed in the connected research demonstrates the
numerous uses and intriguing characteristics of magic squares. Latin squares are essential for
creating balanced trials and investigating network-based data structures, as Johnson's study
emphasizes. An efficient method for producing regular magic squares is introduced by Sun and
Feng's creative algorithm , while Yan's investigation clarifies the unique characteristics of
diagonally magic squares. The unexpected links between knight's tours and magic squares are
explored in Wu and Wu's work . By utilizing Latin and Graeco-Latin squares to build magic
squares of various orders, Melas and Karamanos' unique methodology offers a novel viewpoint
on their construction. Collectively, these research promote experiment design, network
analysis, and recreational mathematics, furthering the development of mathematical
understanding and its practical applications.

9. Research Methodology

It will be quite challenging to tackle problems whose structures do not fit with those of the GA.
However, the classical MS structures are so distinct that using evolutionary algorithms to
optimize will be a very practical approach. The main aim of this paper is to create method to
obtain classical MS with order n x n by utilizing the steps of evolutionary algorithm (GA). The
method depends on stochastic and diversity to enlarge the solutions space. It uses heuristic
thought and checks the progress periodically to drive the process toward the optimal solution.
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The method receive different n order depending on the user demand. It provides the opportunity
to the program to think and that by trying, checking, and decide to how to pick the current
choice or uses another choice. The structure of classical MS is so convenient to be evolved by
GA. Each row and column could be represented as an chromosome in GA. The swap between
its element represents the crossover and the swap could be between rows, columns, or cells
itself.

The programing language has been used to solve the problem of MS by GA is java language.
Many arrays have been used to apply the algorithm. Number of methods have been used to
carry out the program such as:

enterMSvalues: method is used to initialize the MS members and it receive the order of MS as
a parameter.

writeResults: method is used to print the result of GA on the screen and it print the results in
each time of GA steps. It useful method that it shows the progress of the program whether it
going up or down toward the optimal solution.

crossover: method to interchange the values between the arrows and columns, which is a Single
Point, the crossover method has been employed. The way crossover works is to pick a random
position for the columns or arrows, then swap all the rooms in that direction between two of
them. To broaden the range of potential solutions and obtain additional diversity, a random
procedure is used.

swap: method was employed to exchange the values of the arrows with the columns after the
initial matrix was completed, with all the arrows organized such that they all have the same
summation for their values.

obtainDiagonal: The desired summation for the matrix's diagonal has been obtained using this
method.

10. Results and Discussion

Several classes from the Java library were imported and used early on in the application. In the
Java library, these classes were arranged into packages to ensure a well-structured approach.
The procedure for creating the final magic square got under way with the completion of GA
stages. Following the rules of object-oriented programming, method strategies were used
throughout the program to make the stages of the algorithm more understandable and
manageable.

Repeated calls to each method were made during the execution of the program in an effort to
gradually converge to the ideal magic square. In particular, the crossover method's evaluation
of the fitness value resulted in a set of instructions connected to the fitness function of the GA.
These instructions evaluated whether the algorithm was heading in the right direction or
veering off course dynamically. These rules guided the program's development as it worked to
find the optimum answer. This key mechanism served as the program’s decision-making hub,
selecting whether to use the same crossover technique or a different random crossover strategy.
This component could be viewed as the program's cognitive hub.

During execution, the program changed from a state where decisions were made arbitrarily to
one where it was getting closer and closer to the perfect decision. Incremental results were
produced as the algorithm iteratively improved its solution. The program prints the magic
square both before and after performing the genetic algorithm, as shown in the visual examples
below:
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| £ TestPanels — O *
Stop
1 2 3 4 0
5 6 I 8 0
9 10 11 12 0
13 14 15 16 0
0 0 0 0 0
Start
Figure 1- shows MS with order 4 x 4 after initiates its values.
| £ TestPanels - [m] x
Stop
1 12 8 13 34
15 6 10 3 34
14 T 11 2 34
4 9 5 16 34
34 34 34 34 34
Start
Figure 2 — shows MS with order 4 x 4 after applying GA.
Here is another example printed:
|£:| TestPanels — O >
1 2 3 4 5 6 7 0 I“"‘L
a 9 10 11 12 13 14 0
15 16 17 18 19 20 21 0
22 23 24 25 26 27 28 0
29 30 | 32 33 34 35 0
36 37 38 39 40 41 42 0
43 44 45 46 A7 48 49 0
o 0 L} o 0 0 o 0
Start

Figure 3— shows MS with order 7 x 7 after initiates its values.
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|Z:| TestPanels — O x
1 43 34 47 15 24 11 175 \ﬂ
12 9 14 28 46 40 26 175
35 32 17 22 38 2 29 175
48 5 36 25 30 18 13 175
4 20 16 23 33 42 37 175
31 21 3a 27 G 41 10 175
44 45 149 3 T 8 49 175
175 175 175 175 175 175 175 175 m

Figure 4- shows MS with order 7 x 7 after applying GA.

11. Conclusion

The Darwinian theory's mechanisms of evolution and natural selection were examined in this

study. The evolutionary algorithms, a techniques for locating the best answer to some problems

in the actual world where these problems have a structure suitable to them, was explored in

relation to how to create the magic square. To carry out its processes, it needs stochastic and

variety. It uses the crossover operation to get a variety of solutions, and it uses the fitness

function as the algorithm's brain to manage everything. The study software was created using

the Java programming language. The results demonstrated that the genetic algorithm is a

successful approach to carrying out and obtaining the magic square, which provided a solution

to the research topic.
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