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Abstract  
   In this paper, differential transformation method is applied to construct analytic 
solutions of the boundary value problems for linear and non-linear 4th order non-
homogenous differential equations. The differential transformation method is 
tested using three physical model problems. Results are presented in tables and 
figures. It was appeared in comparing results of the differential transformation 
method with Rung- Kutta , and RK-Butcher solutions that the differential 
transformation method is more reliable and effective in solving linear and non-
linear differential equations. 
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موثوقية وكفاءة استخدام طريقة التحويل التفاضلي في حل المعادلات التفاضلية 
 الخطية وغير الخطية من المرتبة الرابعة لمسائل القيمة الحدية

الخلاصة  

تم في هذا البحث استخدام طريقة التحويل التفاضلي في حل مسائل القيمة الحدية للمعادلات       
تم تطبيق طريقة التحويل التفاضلي لحـل. ية من المرتبة الرابعةالتفاضلية الخطية وغير الخط

اربعة مسائل تطبيقية ومقارنة النتائج مع الطرائق العددية الأخرى مثل طريقة رانج كوتا مـن
تم عرض النتائج على شكل جداول . بوتشر من المرتبة السادسة -المرتبة الرابعة و رانج كوتا

ة التحويل التفاضلي ذات كفاءة ودقة عالية في حل مسـائللوحظ إن طريق. ومخططات بيانية
   .القيمة الحدية للمعادلات التفاضلية الخطية وغير الخطية من المرتبة الرابعة

Introduction  
Several models of mathematical 
physics and applied mathematics 
contain boundary value problems 
BVPs in the 4th order linear and 
nonlinear ordinary differential 
equations (ODEs) [1].  

      Consider the non-homogenous 
4th order (ODEs) [1]: 
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subject to the following conditions: 
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where λγβα ,,,  are constants and 

)(),( xgxf  are continuous on [a , b]. 
Different analytical and numerical 
methods were used to solve the 4th 
order (ODEs) this can be concerned 
by Kapur [1]. Some of the numerical 
methods applied by Ortner [2] gave 
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an approximate solution. Okey [3] 
used the GEM (Green Element 
Method) to solve these problems. 
        In this paper we apply the 
differential transformation method 
DTM to solve BVPs with their 
condition, Eqs. (1) under the 
conditions (2). Special program is 
designed to apply the proposal 
method. Three physical problems   
are solved using differential 
transformation method DTM. Results 
are presented by tables and figures to 
compare solutions and errors with 
Rung-Kutta (RK4) [4] and RK-
Butcher [5] methods. It seems from 
comparison errors, that the 
differential transformation method is 
more reliable and effective in solving 
linear than non-linear differential 
equations. 

Differential Transformation Method 
DTM 

The differential transformation of the 
kth derivatives of function )(xy  is 
defined as follows [6]: 
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and )(xy  is the differential inverse 
transformation of )(kY  defined as 
follows: 
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kxxkYxy              (4)                                                                                      

for finite series of  k = N , Eq.(4) can 
be written as: 

∑
=
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N

k

kxxkYxy
0

0 )).(()(             (5)                                                                                       

The following theorems that can be 
deduced from Eqs.(3) and (5)[7 ]: 
Theorem 1. If )()()( xhxgxy ±=  
,then )()()( kHkGkY ±= . 

Theorem 2. If )(.)( xgxy α=  ,then 
)(.)( kGkY α= . 

Theorem 3. If 
dx

xdgxy )()( =  ,then 

)1().1()( ++= kGkkY . 

Theorem 4. If 
m

m

dx
xgdxy )()( =  ,then 

)().!/)!(()( mkGkmkkY ++= . 
Theorem 5. If )().()( xhxgxy =  
,then )()()(

0
lkHlGkY k

l
−= ∑ =
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Theorem 6. If mxxy =)(  ,then 
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. 
Theorem 7. If ).exp()( xxy α=  ,then 

!/)( kkY kα= . 
Theorem 8. If ).sin()( λα += xxy  
,then 

)2/sin()!/()( λπα += kkkY k . 
Theorem 9. If ).cos()( λα += xxy  
,then 

)2/cos()!/()( λπα += kkkY k . 
Numerical applications 
    Four physical problems of 
boundary value problems with linear 
and non-linear fourth order non-
homogenous differential equations 
are solved. Results are presented in 
tables and figures for comparison 
solutions and errors between DTM 
and Exact, RK4, RK-Butcher to 
assign the effectiveness and accuracy 
of the Differential transformation 
method. 
Example (1) 
Consider the following boundary 
value problem of 4th order linear 
(ODEs) : 
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                                                     (6)                                  
subject to the boundary conditions:  
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
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)1sin(.2)1()1(
0)1()1(

// yy
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            (7) 

 
This problem was studied by Shahid 
[8] by using quintic spline as a 
numerical method. The analytic 
solution of the given problem 
is )sin()1( 2 xxy −= . By taking 
differential transformation of both 
sides of Eqs.(6) the following 
recurrence relation is obtained:  
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The boundary conditions in Eq.(7) 
can be transformed at 00 =x  as: 
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For N =7 and by using the recurrence 
relations in Eqs.(8) and the 
transformed boundary conditions in 
Eqs.(9), the following series solution 
up to )( 8xO  is obtained :  
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                                                      (10)                                            
then from Eqs. (10) a system of 
equations can be written as follow: 
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 Solving the system (11), the 
following constants can be obtained:  
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       Results are summarized in table 
(1) that represents the comparison 
between solutions and errors for 
using DTM, RK4, and RK-Butcher 
for solving the problem. Figure (1) 
represents solutions of methods.      
        
Example (2)  
Consider the following boundary 
value problem of 4th order linear 
(ODEs) : 
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dx
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subject to the boundary conditions:  
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        This problem was studied by 
Sayed Tauseef [9] by applying the 
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homotopy perturbation method. The 
analytic solution of the given problem 

is 
xexy )1( −=  . By taking differential 

transformation of both sides of 
Eq.(3.8) the following recurrence 
relation is obtained: 
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                                                 (15) 
For N=9, the following definition to 
y(x) can be obtained: 
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The boundary conditions in Eq.(14) 
can be transformed at 00 =x  as: 
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For N = 9, we get the following 
equations: 
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By solving Eqs. (18)  then the 
solution can be obtained : 
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       Results are summarized in table 
(2) that represents the comparison 
between solutions and errors for 
using DTM, RK4, and RK-Butcher 

for solving the problem. Figure (2) 
represents solutions of methods.      
 
Example 3  
Consider the boundary value problem 
of linear 4th order (ODEs) 
represented by: 

111)(4)(
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subject to the boundary conditions:  
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        This problem was studied by [8] 
by applying the spline method. The 
exact solution of the given problem 
is: 
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By taking differential transformation 
of both sides of Eq.(20) the following 
recurrence relation is obtained:  
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for N=8, the following definition to 
y(x) can be obtained : 
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The boundary conditions in Eq.(22) 
can be transformed at 00 =x  as: 
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It seems from Eqs. (26) that 01 =a , 
and 03 =a , but 00 =a  and 02 =a  are 
calculated from the following 
equations: 
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by solving Eqs.(27)  then : 
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and the solution : 
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     Results are summarized in table 
(3) that represents the comparison 
between solutions and errors for 

using DTM, RK4, and RK-Butcher 
for solving the problem. Figure (3) 
represents solutions of methods.               
        
Example (4) 
 Consider the following 4th order 
non-linear boundary value problem 
[1]: 

10)(. 2
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subject to the boundary conditions 
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The exact solution is given by  

xexy =)(                                                                                                         
                                                  (31) 
         This problem was studied by 
[10] by applying the variational 
iteration decomposition method 
(VIDM).  
     By applying the differential 
transformation method using 
theorems 1, 2, 4, and 5 to Eq. (29) the 
recurrence relation can be evaluated 
as follows: 
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The boundary conditions in Eqs. (30) 
can be transformed at 00 =x  as: 
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Then: 
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         For N=8 and by using the 
recurrence relations in Eq. (32) and 
the transformed boundary conditions 
in Eqs. (35) and (36), the following 
set of equations obtained: 
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By solving Eqs. (37) we get 

1668383.0)3(,4998566.0)2( == YY  
Then: 
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                                                    (38) 
     Results are summarized in table 
(4) that represents the comparison 
between solutions and errors for 
using DTM, RK4, and RK-Butcher 
for solving the problem. Figure (4) 
represents solutions of methods.      
Results and Conclusion 
 The differential transformation 
method was studied for solving 
boundary value problems of 4th order 
non-homogenous linear and non-
linear Differential Equations. 
Differential transformation method 
gave good agreements and reliable 
for solving differential equations. 
     This result appeared when 
comparing errors of the differential 
transformation method with RK4, and 
RK-Butcher methods, for solving 
problems in the Numerical Examples. 
Sometimes errors of DTM are greater 

than errors of RK4 and RK-Butcher 
that is due to truncation errors of the 
required order of the solution.   
      Finally differential transformation 
method was an effective and reliable 
technique in solving Boundary Value 
Problems of 4th order Differential 
Equations in the required conditions. 
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Table (1) Results of solving the problem in example (1). 

 
 
 
 
 
 

X Exact 
Solution 

 

DTM 
(N=9) 

Solution 

DTM 
Error 

RK4 
Solution 

h=0.1 

RK4 
Error 

RK-
Butcher 
Solution 

h=0.1 

RK-
Butcher 

Error 

0.1 .9946538 .9946536    1.788139E-07 .9946542 3.576E-07 .9946581 4.351E-06 
0.2 .9771222 .9771218    4.172325E-07 .977123 7.748E-07 .9771916 6.967E-05 
0.3 .9449012 .9449          1.132488E-06 .9449024 1.251E-06 .94526 3.592E-04 
0.4 .8950948 .895093      1.847744E-06 .8950967 1.907E-06 .8962532 1.158E-03 
0.5 .8243606 .8243582    2.384186E-06 .8243633 2.682E-06 .8272503 2.890E-03 
0.6 .7288475 .7288443    3.159046E-06 .7288511 3.635E-06 .7349727 6.126E-03 
0.7 .6041257 .6041222    3.516674E-06 .6041306 4.827E-06 .6157312 1.160E-02 
0.8 .4451081 .4451046    3.457069E-06 .4451143 6.258E-06 .4653665 2.026E-02 
0.9 .2459601 .2459573   2.846122E-06 .2459681 8.016E-06 .279182 3.322E-02 
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Table (2) Results of solving the problem in example (2).     

 
 
 

 
Table(3) Results of solving the problem in example (3).     
X Exact 

Solution 
 

DTM 
(N=8) 

Solution 

DTM 
Error 

RK4 
Solution 

h=0.1 

RK4 
Error 

RK-Butcher 
Solution 

h=0.1 

RK-Butcher 
Error 

0.1 .1239401 .1237337 2.06E-04 0.1239401 7.450581E-9 0.1239401 2.980232E-8 
0.2 .1195382 .1193234 2.14E-04 0.1195382 1.490116E-8 0.1195382 6.705523E-8 
0.3 .1122857 .1120571 2.28E-04 0.1122857 5.960464E-8 0.1122857 1.043081E-7 
0.4 .1023106 .1020631 2.47E-04 0.1023105 1.192093E-7 0.1023106  1.192093E-7 
0.5 .0897962 .0895261 2.70E-04 8.979601E-2 2.011657E-7 8.979622E-2 1.490116E-7 
0.6 .0749849 .0746920 2.92E-04 7.498469E-2 2.831221E-7 7.498498E-2 1.713634E-7 
0.7 .0581836 .0578764 3.07E-04 5.818331E-2 3.762543E-7 0.0581837  1.937151E-7 
0.8 .0397692 .0394753 2.93E-04 3.976877E-2 4.731119E-7 3.976926E-2 2.123415E-7 
0.9 .0201953 .0199804  2.14E-04 2.019481E-2 5.550683E-7 2.019539E-2 2.253801E-7  

 
Table (4) Results of solving the problem in example (4). 
    

X 

Exact 
Solution 

 

DTM 
(N=8) 

Solution 

DTM 
Error 

RK4 
Solution 

h=0.1 

RK4 
Error 

RK-Butcher 
Solution 

h=0.1  

RK-Butcher 
Error 

0.1 1.105171 1.10517 1.192093E-6 1.105171 1.192093E-7 1.105167 5.364418E-6 
0.2 1.221403 1.221398 4.410744E-6 1.221403 2.384186E-7 1.221333 7.05719E-5 
0.3 1.349859 1.34985 8.46386E-6 1.349858 4.768372E-7 1.3495  3.601313E-4 
0.4 1.491825 1.491813 1.192093E-5 1.491824 5.960464E-7 1.490667 1.15943E-3 
0.5 1.648721 1.648707 1.430511E-5 1.648721 7.152557E-7 1.645833 2.889514E-3 
0.6 1.822119 1.822104 1.478195E-5 1.822118 1.072884E-6 1.816  6.120682E-3  
0.7 2.013753 2.013741 1.144409E-5 2.013751 1.430511E-6 2.002167 1.1588E-02 
0.8 2.225541 2.225537  4.053116E-6 2.225539 2.145767E-6 2.205333 2.020979E-2 
0.9 2.459603  2.459612  8.583069E-6 2.459601  2.622604E-6 2.4265  3.310585E-2  

 
 
 

X Exact 
Solution 

 

DTM (N=7) 
Solution 

DTM  
Error 

RK4  
Solution 

h=0.1 

RK4  
Error 

RK-
Butcher  
Solution 

h=0.1 

RK-Butcher  
Error 

0.1 -.098835 -.09940 5.66E-04 -.0988333 1.7E-06 -.0988350 9.611E-07 
0.2 -.190722 -.191809 1.06E-03 -.1907191 3.4E-06 -.1907226 8.493E-07 
0.3 -.268923 -.2704219 1.48E-03 -.2689183 5.1E-06 -.2689234 6.854E-07 
0.4 -.327111 -.3288676 1.76E-03 -.3271048 6.6E-06 -.3271115 4.172E-07 
0.5 -.359569 -.3613873 1.88E-03 -.3595611 8.0E-06 -.3595693 8.940E-08 
0.6 -.361371 -.3630317 1.60E-03 -.361362 9.2E-06 -.3613713 2.980E-07 
0.7 -.328551 -.329843 1.21E-03 -.3285408 1.0E-05 -.3285513 7.748E-07 
0.8 -.258248 -.2590237 7.75E-04 -.2582373 1.0E-05 -.2582486 1.341E-06 
0.9 -.148832 -.1490891 2.5E-04 -.1488207 1.1E-05 -.1488327 2.011E-06 
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Figure (1) Solutions of methods for example (1) 

 
       
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure(2) Solutions of methods for example(2) 
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                              Figure(3) Solutions of methods of example(3) 
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Figure (4) Solutions of methods of example(4) 
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