Fully π - P – Stable Rings

Areej M. Abduldaim (1)

Received on:17/6/2009 Accepted on:5/11/2009

Abstract

M.S.Abbas [1] introduced and studied the concept of fully stable Rmodules and called a ring R is fully stable (pseudo-stable) if it is fully stable (pseudo - stable) R-module. And A.M.Abdul-Daim [2] introduced and studied the concept of fully π - stable rings as a generalization of fully stable rings.

The purpose of this paper is to generalize the concept of fully pseudo – stable rings to fully π – pseudo - stable rings . Some properties and characterizations of fully π - pseudo - stable rings are obtained. A condition is given such that a fully π – pseudo – stable ring is fully π – stable.

$\pi - p$ – line of line π

الخلاصة:

في [1] قدم ودرس لأول مرة مفهوم الموديولات التامـة الاستقرارية (الاستقرارية الكاذبة) وسميت الحلقة R بأنها تامة الاستقرارية (الاستقرارية الكاذبة) اذا كانت تامــة الاستقرارية (الاستقرارية الكاذبة) كموديول على نفسها و في [2] قدم ودرس الأول مرة مفهوم الاستقرارية التامة من النمط - 11 كتعميم للاستقرارية التامة .

ان الغرض من هذا البحث هو تعميم مفهوم الاستقرارية الكاذبة التامة الي الاستقرارية الكاذبة التامة من النامط - π . درست بعض الصفات والخصائص للاستقرارية الكاذبة التامة من النمط $\pi-$. واعطى الشرط بحيث تكون الاستقرارية الكاذبة التامة من النمط π استقرارية تامة من النمط π .

Introduction

In this paper, R represents a commutative ring with identity and all modules are left unitary.

M.S.Abbas [1] was introduced the concept of a fully stable R-module and then introduced the concept of a fully pseudo-stable (fully *p*-stable) module as a generalization of a fully stable module.

(1) Definition

An R-module M is said to be fully stable module, if for each Rhomomorphism $\alpha: N \rightarrow M$ of any submodule N of M into M, we have α $(N) \subseteq N$. A ring R is fully stable if it is a fully stable R- module.

(2)Definition

An R-module M is said to be fully p - stable if for each R-

* Applied Science Department, University of Technology /Baghdad

monomophism $\alpha: N \rightarrow M$ of any submodule N of M into M, we have α (N) $\subseteq N$. A ring R is fully pseudo stable (fully p-stable) if and only if it is a fully p-stable R-module [1].

In [2] the concept of a π – stable rings is investigated which includes the class of fully stable rings and that of π – regular rings.

(3)Definition

A ring R is called fully π –stable if and only if for each element x in R, there exists a positive integer n such that for every R-homomorphism $\alpha : Rx^n \to R$ we have $\alpha(Rx^n) \subseteq Rx^n$.

In an analogous manner, we introduce now a class of rings larger than the class of fully π –stable rings.

(4)Definition

Let R be any ring. An element x in R is called π - pseudo – stable (abbreviated π -p stable) if there exists a positive integer n such that for every R-monomorphism $\alpha: Rx^n \to R$ we have $\alpha(Rx^n) \subseteq Rx^n$.

A ring R is called fully π – pseudo – stable if and only if every element in it is π – pseudo – stable.

It is clear that every π – stable element of an arbitrary ring is π -p-stable. Hence every fully π –stable rings is fully π -p-stable, we conjecture the converse is not true, but we recall that a non zero R-module M is said to be uniform if each non zero submodules of M has non zero intersection with every non zero submodule of M. A ring R is uniform if it is uniform R-module, then we have the following:

(5) Proposition

Every fully π - p-stable uniform ring is fully π -stable ring.

Proof

Thus

Let R be a fully π - p-stable uniform ring. For any element x in R there exists a positive integer n and for every R - homomorphism

 $f:Rx^n \to R$. If ker (f) = (0), there is nothing to prove. Otherwise, let

y \in ker $(f) \cap$ ker $(I_{Rx}^n + f)$ then f(y) = 0 and $(I_{Rx}^n + f)(y) = 0$. Now, y = y + f (y) = $(I_{Rx}^n + f)(y) = 0$.

 $\ker(f) \cap \ker(I_{R_x}^n + f) = (0)$, but R is uniform, hence $\ker(I_{R_x}^n + f) = (0)$, that is.

is, $(I_{Rx}^n + f)$: $Rx^n \to R$ is an R-monomphism. Since R fully $\pi - p$ - stable, then $(I_{Rx}^n + f)(Rx^n) \subseteq Rx^n$, hence $f(Rx^n) \subseteq Rx^n$.

W. D. Weakly [3] was introduced the concept of terse module. An *R*-module is said to be terse iff distinct submodules are not isomorphic. He proved that for an *R*-module to be terse, it is enough to have the property that distinct cyclic submodules are not isomorphic.

A ring R is terse if and only if it is terse R – module. The following is a generalization for terse rings.

(6) Definition

A ring R is called π -terse iff for any two elements x and y in R there exists a positive integer n such that if $Rx^n \neq Ry$ implies $Rx^n \cong Ry$.

In the following proposition we show that the concepts of a π - tersencess and full π - p - stability are coincide.

(7) Proposition

A ring *R* is π -terse if and only if it is fully $\pi - p$ - stable ring.

Proof

Suppose that R is π —terse ring and there exists an element x in R and R—monomorphism $f:Rx^n \to R$ such that $f(Rx^n) \not\subset Rx^n$ for each positive integer n, then Rx^n and $f(R_x^n) = R_{f(x)}^n$ are two distinct ideals of R. Since R is π -terse ring, then $R_{f(x)}^n = f(Rx^n)$ is not isomorphic to Rx^n which is not true. Hence R is fully π — p stable ring.

Conversely, suppose that R is a fully $\pi - p$ - stable ring and R has two elements x and y such that $Rx^t \cong Ry$ but $Rx^t \neq Ry$ for each positive integer t. We can assume that $Rx^t \not\subset Ry$. Then there exists a non – zero element z in Rx^t which is not in Ry. Let $f:Rx^t \to Ry$ be an isomorphism, consider the following two R-monomorphisms, I_{Ry} O $f: Rx^t \to R$ and I_{Rx}^t O $f^1: Ry \to R$, since R is fully $\pi - p$ - stable ring, then $(I_{Ry} \cap f) (Rx^t) \subseteq Rx^t$ and $(I_{Rx}^t \cap f) (Ry) \subseteq Ry$.

Now, $z = (I_{Rx}^{t} O f^{1} O I_{Ry} O f)_{(Z)} \in Ry$ which is a contradiction.

Proposition (7) together with proposition (5) give:

(8)Corollary

Let R be a uniform ring and π -terse ring, then R is fully π -stable ring.

From proposition (7) we see that every fully π -stable ring, is π – terse, hence we have the following proposition:

(9) Proposition

Let R be a fully π – stable ring and let x and y be any two elements in R with Ry a direct summand of R then there exists a positive integer n such that if Rx^n is isomorphic to Ry, then Rx^n is direct summand of R

Proof

Since R is fully π – stable ring, then R is π -terse, so if $Rx^n \cong Ry$, then $Rx^n = Ry$, which implies that Rx^n is a direct summand of R.

Next, we will characterize fully π – stable rings among fully π -p-stable rings. However, we shall need the following lemma (for its proof, see[1]).

(10) Lemma

Let M be an R- module and I an ideal of R. Then $ann_M(I) \cong Hom_R(R / I,M)$.

(11)Theorem

Let *R* be a ring. Then the following statements are equivalent:-

- (1) R is a fully π stable ring.
- (2) R is a π -terse ring and for every element x in R there exists a positive integer n such that $Rx^n \cong Hom_R (Rx^n, R)$.

Proof

- (1) implies (2). Assume that R is a fully π -stable ring, then R is π -terse. Since R is fully π stable ring, then for every element x in R there exists a positive integer n such that $Rx^n = ann$ $(ann(Rx^n))$ [2]. By Lemma (10) $ann(ann(Rx^n)) \cong \operatorname{Hom}(R/ann(Rx^n), R) = \operatorname{Hom}(Rx^n, R)$ which implies that $Rx^n \cong \operatorname{Hom}(Rx^n, R)$.
- (2) implies (1). Suppose that R is π –terse and for every element x in R there exists a positive integer n such that $Rx^n \cong \operatorname{Hom}(Rx^n, R)$. By Lemma (10) $\operatorname{ann}(\operatorname{ann}(Rx^n)) \cong \operatorname{Hom}(R/\operatorname{ann}(Rx^n), R) \cong \operatorname{Hom}(Rx^n, R)$, then $Rx^n \cong \operatorname{ann}(\operatorname{ann}(Rx^n)) \pi$ tersenss of R implies that $Rx^n = \operatorname{ann}(\operatorname{ann}(Rx^n))$. Hence R is fully π –stable ring.

The following corollary follows from proposition (7) which gives a characterization of fully π -stable rings among fully π -p- stable rings.

(12) Corollary

The following statements are equivalent for a ring R.

- 1) R is a fully π -stable ring.
- 2) R is a fully πp stable ring and for every element x in R there exists a positive integer n such that $Rx^n \cong \text{Hom}(Rx^n, R)$.

Discussion

From all the above we have the following:-

- (1) Every fully π stable ring is fully π p stable .
- (2) Every fully πp stable uniform ring is fully π stable ring.

- (3) A ring R is π terse if and only if it is fully πp stable.
- (4) A ring R is fully π stable ring if and only if R is fully πp stable ring and for every element x in R there exists a positive integer n such that $Rx^n \cong Hom_R(Rx^n, R)$.

References

- [1] M.S.Abbas:"On Fully Stable Modules ", Ph.D. Thesis ,Univ. of Baghdad,1990.
- [2]Areej M.Abdul-Daim :" π -regularity and Full π stability on commutative rings ", M.Sc. Thesis , Al-Mustansiryah Univ.,1999.
- [3] W.D. Weakley: "Modules whose distinct submodules are not isomorphic ",Comm. in Algebra,15 (1987)1569-1587.