Fully π - P – Stable Rings # Areej M. Abduldaim (1) Received on:17/6/2009 Accepted on:5/11/2009 ### **Abstract** M.S.Abbas [1] introduced and studied the concept of fully stable Rmodules and called a ring R is fully stable (pseudo-stable) if it is fully stable (pseudo - stable) R-module. And A.M.Abdul-Daim [2] introduced and studied the concept of fully π - stable rings as a generalization of fully stable rings. The purpose of this paper is to generalize the concept of fully pseudo – stable rings to fully π – pseudo - stable rings . Some properties and characterizations of fully π - pseudo - stable rings are obtained. A condition is given such that a fully π – pseudo – stable ring is fully π – stable. # $\pi - p$ – line of line π #### الخلاصة: في [1] قدم ودرس لأول مرة مفهوم الموديولات التامـة الاستقرارية (الاستقرارية الكاذبة) وسميت الحلقة R بأنها تامة الاستقرارية (الاستقرارية الكاذبة) اذا كانت تامــة الاستقرارية (الاستقرارية الكاذبة) كموديول على نفسها و في [2] قدم ودرس الأول مرة مفهوم الاستقرارية التامة من النمط - 11 كتعميم للاستقرارية التامة . ان الغرض من هذا البحث هو تعميم مفهوم الاستقرارية الكاذبة التامة الي الاستقرارية الكاذبة التامة من النامط - π . درست بعض الصفات والخصائص للاستقرارية الكاذبة التامة من النمط $\pi-$. واعطى الشرط بحيث تكون الاستقرارية الكاذبة التامة من النمط π استقرارية تامة من النمط π . ## Introduction In this paper, R represents a commutative ring with identity and all modules are left unitary. M.S.Abbas [1] was introduced the concept of a fully stable R-module and then introduced the concept of a fully pseudo-stable (fully *p*-stable) module as a generalization of a fully stable module. ## (1) Definition An R-module M is said to be fully stable module, if for each Rhomomorphism $\alpha: N \rightarrow M$ of any submodule N of M into M, we have α $(N) \subseteq N$. A ring R is fully stable if it is a fully stable R- module. #### (2)Definition An R-module M is said to be fully p - stable if for each R- ### * Applied Science Department, University of Technology /Baghdad monomophism $\alpha: N \rightarrow M$ of any submodule N of M into M, we have α (N) $\subseteq N$. A ring R is fully pseudo stable (fully p-stable) if and only if it is a fully p-stable R-module [1]. In [2] the concept of a π – stable rings is investigated which includes the class of fully stable rings and that of π – regular rings. # (3)Definition A ring R is called fully π –stable if and only if for each element x in R, there exists a positive integer n such that for every R-homomorphism $\alpha : Rx^n \to R$ we have $\alpha(Rx^n) \subseteq Rx^n$. In an analogous manner, we introduce now a class of rings larger than the class of fully π –stable rings. #### (4)Definition Let R be any ring. An element x in R is called π - pseudo – stable (abbreviated π -p stable) if there exists a positive integer n such that for every R-monomorphism $\alpha: Rx^n \to R$ we have $\alpha(Rx^n) \subseteq Rx^n$. A ring R is called fully π – pseudo – stable if and only if every element in it is π – pseudo – stable. It is clear that every π – stable element of an arbitrary ring is π -p-stable. Hence every fully π –stable rings is fully π -p-stable, we conjecture the converse is not true, but we recall that a non zero R-module M is said to be uniform if each non zero submodules of M has non zero intersection with every non zero submodule of M. A ring R is uniform if it is uniform R-module, then we have the following: #### (5) Proposition Every fully π - p-stable uniform ring is fully π -stable ring. #### **Proof** Thus Let R be a fully π - p-stable uniform ring. For any element x in R there exists a positive integer n and for every R - homomorphism $f:Rx^n \to R$. If ker (f) = (0), there is nothing to prove. Otherwise, let y \in ker $(f) \cap$ ker $(I_{Rx}^n + f)$ then f(y) = 0 and $(I_{Rx}^n + f)(y) = 0$. Now, y = y + f (y) = $(I_{Rx}^n + f)(y) = 0$. $\ker(f) \cap \ker(I_{R_x}^n + f) = (0)$, but R is uniform, hence $\ker(I_{R_x}^n + f) = (0)$, that is. is, $(I_{Rx}^n + f)$: $Rx^n \to R$ is an R-monomphism. Since R fully $\pi - p$ - stable, then $(I_{Rx}^n + f)(Rx^n) \subseteq Rx^n$, hence $f(Rx^n) \subseteq Rx^n$. W. D. Weakly [3] was introduced the concept of terse module. An *R*-module is said to be terse iff distinct submodules are not isomorphic. He proved that for an *R*-module to be terse, it is enough to have the property that distinct cyclic submodules are not isomorphic. A ring R is terse if and only if it is terse R – module. The following is a generalization for terse rings. #### (6) Definition A ring R is called π -terse iff for any two elements x and y in R there exists a positive integer n such that if $Rx^n \neq Ry$ implies $Rx^n \cong Ry$. In the following proposition we show that the concepts of a π - tersencess and full π - p - stability are coincide. # (7) Proposition A ring *R* is π -terse if and only if it is fully $\pi - p$ - stable ring. #### **Proof** Suppose that R is π —terse ring and there exists an element x in R and R—monomorphism $f:Rx^n \to R$ such that $f(Rx^n) \not\subset Rx^n$ for each positive integer n, then Rx^n and $f(R_x^n) = R_{f(x)}^n$ are two distinct ideals of R. Since R is π -terse ring, then $R_{f(x)}^n = f(Rx^n)$ is not isomorphic to Rx^n which is not true. Hence R is fully π — p stable ring. Conversely, suppose that R is a fully $\pi - p$ - stable ring and R has two elements x and y such that $Rx^t \cong Ry$ but $Rx^t \neq Ry$ for each positive integer t. We can assume that $Rx^t \not\subset Ry$. Then there exists a non – zero element z in Rx^t which is not in Ry. Let $f:Rx^t \to Ry$ be an isomorphism, consider the following two R-monomorphisms, I_{Ry} O $f: Rx^t \to R$ and I_{Rx}^t O $f^1: Ry \to R$, since R is fully $\pi - p$ - stable ring, then $(I_{Ry} \cap f) (Rx^t) \subseteq Rx^t$ and $(I_{Rx}^t \cap f) (Ry) \subseteq Ry$. Now, $z = (I_{Rx}^{t} O f^{1} O I_{Ry} O f)_{(Z)} \in Ry$ which is a contradiction. Proposition (7) together with proposition (5) give: #### (8)Corollary Let R be a uniform ring and π -terse ring, then R is fully π -stable ring. From proposition (7) we see that every fully π -stable ring, is π – terse, hence we have the following proposition: ### (9) Proposition Let R be a fully π – stable ring and let x and y be any two elements in R with Ry a direct summand of R then there exists a positive integer n such that if Rx^n is isomorphic to Ry, then Rx^n is direct summand of R #### **Proof** Since R is fully π – stable ring, then R is π -terse, so if $Rx^n \cong Ry$, then $Rx^n = Ry$, which implies that Rx^n is a direct summand of R. Next, we will characterize fully π – stable rings among fully π -p-stable rings. However, we shall need the following lemma (for its proof, see[1]). # **(10) Lemma** Let M be an R- module and I an ideal of R. Then $ann_M(I) \cong Hom_R(R / I,M)$. ### (11)Theorem Let *R* be a ring. Then the following statements are equivalent:- - (1) R is a fully π stable ring. - (2) R is a π -terse ring and for every element x in R there exists a positive integer n such that $Rx^n \cong Hom_R (Rx^n, R)$. #### **Proof** - (1) implies (2). Assume that R is a fully π -stable ring, then R is π -terse. Since R is fully π stable ring, then for every element x in R there exists a positive integer n such that $Rx^n = ann$ $(ann(Rx^n))$ [2]. By Lemma (10) $ann(ann(Rx^n)) \cong \operatorname{Hom}(R/ann(Rx^n), R) = \operatorname{Hom}(Rx^n, R)$ which implies that $Rx^n \cong \operatorname{Hom}(Rx^n, R)$. - (2) implies (1). Suppose that R is π –terse and for every element x in R there exists a positive integer n such that $Rx^n \cong \operatorname{Hom}(Rx^n, R)$. By Lemma (10) $\operatorname{ann}(\operatorname{ann}(Rx^n)) \cong \operatorname{Hom}(R/\operatorname{ann}(Rx^n), R) \cong \operatorname{Hom}(Rx^n, R)$, then $Rx^n \cong \operatorname{ann}(\operatorname{ann}(Rx^n)) \pi$ tersenss of R implies that $Rx^n = \operatorname{ann}(\operatorname{ann}(Rx^n))$. Hence R is fully π –stable ring. The following corollary follows from proposition (7) which gives a characterization of fully π -stable rings among fully π -p- stable rings. # (12) Corollary The following statements are equivalent for a ring R. - 1) R is a fully π -stable ring. - 2) R is a fully πp stable ring and for every element x in R there exists a positive integer n such that $Rx^n \cong \text{Hom}(Rx^n, R)$. ### Discussion From all the above we have the following:- - (1) Every fully π stable ring is fully π p stable . - (2) Every fully πp stable uniform ring is fully π stable ring. - (3) A ring R is π terse if and only if it is fully πp stable. - (4) A ring R is fully π stable ring if and only if R is fully πp stable ring and for every element x in R there exists a positive integer n such that $Rx^n \cong Hom_R(Rx^n, R)$. #### References - [1] M.S.Abbas:"On Fully Stable Modules ", Ph.D. Thesis ,Univ. of Baghdad,1990. - [2]Areej M.Abdul-Daim :" π -regularity and Full π stability on commutative rings ", M.Sc. Thesis , Al-Mustansiryah Univ.,1999. - [3] W.D. Weakley: "Modules whose distinct submodules are not isomorphic ",Comm. in Algebra,15 (1987)1569-1587.