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Abstr act

Local and Glabal uniqueness theorem of solutions of the differential equation

X"(t) = f(t,x(t),x (t),..., x" P (1))

O<t<a, a>0

have been obtained, which are applications of Bihari's and Gronwall's inequalities.
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X"(t) = f(t,x(t),x (t),..., x" P (1))

I ntroduction
Consider the differential equation of
the type

@) = f(t,x(t),X 0),..x2)  tTJ
with X (©) ="

]=0%..,n-1

(D)

where J=[0,a) ,a>0,

F1 137 RYR 50d R™ denotes the
real n-dimensional Euclidean space,
%", i =01, -1

positive constants, Liu and Ge[ 2]
based on the coincidence degree
method of Gaines and Mawhin [3].

O<t<a, a>0

Jsis S5 sl Slaal jial Gadad

Proved that (1) has at least one solution
U. Elias [4] proved the existence of
global at least one solution to (1).

In this paper Bihari's inequality is
applied to obtain local uniqueness and
Gronwall's inequality to obtain global
uniqueness of solution to (1).

It is important mentioning that Baihov
D. and Simeonov [1] showed it

that the solution of (1) is of the form:

_ 5 XP(0),; , \(t- 9"
x(t)—ja:0 i +0 -
f (s,X(8),X(9),...,x" (s))ds
(2
with O<t<a ,a>0 and
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x'7(0) areinitial constants

2- Local Uniqueness:

In this section, a local uniqueness
result is proved by applying Bihari's
inequality theorem.

Bihari's Inequality Theorem [1]
Suppose the following conditions
holds:

1 a(t)is positive continuous function
=[a,b)
2_Kj(t,s),j :l2’3"”’n,are non

negative continuous functions for
afs£tEb which are no

decreasing in t for any fixed
s.3.gj(u)’J =12...n ae  non
decreasing continuous functions in
R+,With 9; (>0 for u>o0 and
g(au) Er(a)w(u) o, @a>0,u30

were r(a)is non negative continuous
R

function in "+ which is positive for
u>0.

4.u(t) is non negative continuous
function in J and

u(t) £ a(t) +§ 3 i (99 (u(S)ds,tT 3

then
u(t) £ aty ,.,(0G;(G,@) +

U, (@)Y (),
alt) )d< (t,s)ds

where

u

' d
G, (u) = Oﬁ ,u>0,(u, >0)

Theorem 1: (Local Uniqueness)
Theinitial value problem (1) hasa
unique solution on theinterval O<t<a,
if thefunction f is continuous in the
region

O<t<a,

06, Gt

and such that

[FOXX X5 = (G e Y

n-1 . .
£ é f j(|X(J) _ y(J)|)
j=0

where f (u)is a continuous non
decreasing function on O<u<A, with
F (0)=0, b>0and A is a positive
constant .

Proof:
Let x(t) and y(t) betwo
solutions to (1) which are defined in

neighborhood at the right of L That is

(t) n- lX(J)(O)” .\ t\(t_ S)n_l.
i< 0 J! o (n- 1)
f (s,X(8),X(9),...,x" (s))ds
(t) 1 (J)(O) . \(t- S)n 1
i= 0 j! o (n-1
f(s (), Y (9, y" l(s))ds

Thisleads easily to

| (J)(O) y(l)(o)

x(t) - y(t)| £ ai

(- 9™
(-1
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| f(s,X(8),X(S),X (9) XD (s)) ds- discussed with theaid of Gronwall's
ST e inequality, which seems by the
f(s,¥(5),Y(S),Y (5),...,y" 2(5)) d# following theorem.

Gronwall's I nequality Theorem [6]

- Leta(t),b(t)andu ﬁt) be continuous
51 -
X(®)- y@©)|£ a0|x“)(0)' yP )]+ functionsin 3= 12| and let b(t) bea
]= —
n-1t nonnegativeinJ_[a ,b] and a(t) is
3 d,t F-(xj- Nds . _[a,b]
a i y nondecreasing in J=1%" "1 suppose
oo t
Levt= X" Y then ut) £at) + P)u(e)ds ,ti J
Doe’[+ Then |
hat @(s)ds R
é n—l|f J(V(S))dSLa I’(t) be U(t) £ a(t) e ,t I vJ
i=0¢ .
the right hand side of the above Theorem (2) (Global uniqueness
inequality, then theorem)
V(t)fr(t) and Assume that:

Bl _ _ 1. f isacontinuous function in theregion
x(0)- y" (O)t’] + Req (L XX X 1o X0
j=0

):0<t<a,
|(x,x',x",. x Y (xoxox0 xf)”l))} £b

n-1t
Q n-1 R
ja:()od’t |fj(r(s))ds } 1 Wwhere Wis an open
: ‘ (n-1 n+
Since _ (t,x,x,...,x l)in R™ with a, b>0.
xP(0) =yP0) " | then 2. f satisfy Lipschitz condition with
: Ly (n-1)
5 dt 1f ) reSpectto(X’X’X"“’X l),
r(t) £1 +a " I’(S) ds ' (n-11y _ ' (n-11
oo |f(t,x,x,...,x )- ft,y, ¥,y )|
for some | >0 EL% D
By using Bihari's inequality yields §0|X -y

For some positive constant L, then the

rt) £l y . ,()G;'(G, () + solution of (1) is unique.

i t) ! Proof
rn( ){ n—1( ))dtn—l ds

| Let x () and y (t) be two solutions to
If | ® O then r(t)<0 and since r(t)>0 (1) then

then r(t)=0 and hence x(t)=y(t).
3 Global Uniqueness

The global uniqueness for the
initial value problem (1) will be
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x(t)= 5 Oy -9
= 0 J! o (n- 1)
f(s,X(8),X(9),...,x" (s))ds
1 (J)(O) t\(t- S)n-l
y(t) = 9 0 0o(n_ o
f(s¥(s), Y (9),....y" (9)ds

From which we get

IX(t)- y(t) £ faj

t\ (t' S)n—l
(-1

| £(5,%(8), X (8), X (9),...x" ¥ (s)) ds-

F(S,Y(9),Y(9),Y (9),-,y" V() g
- v gl + A€ 9"
J XD@- Y+ ﬁ
t(t_S)(n—l)

‘)é(j)(O)- y(j)(0)< +

0 (n' :D!

nit)
c3lt
j J!

Lg;j(x(s)- y(s))(j)‘ Bds
e u

n-1+]
£ 5]-
i= J|

éj(x(s) y(s))‘”\ s
e=

Let

(x(0) - y(o))(j)‘ + dt(n- 1)|

i .
tj_ ‘X(J)(O) _ y(J)(O)‘ +
!

523

t"- L

v(t) = Ej(x(t)- y(t))“’\
4

Then

X(t)- y(t)| £ aj

t
o9 ds

0

Let r(t) equal to theright hand side of
the aboveinequality ,then

v(s) £r(9)
©£8|5 (0 - )|+ ¢ ri9as

By the above inequality (Gronwall's
inequality)

t

(- y@) e

Since X(J)(O) - y(j)(o)
r(t)£0
. IX(t)- y@®)|Er(t)£0

Then [X(®)- YO £0 and since the
absolute value larger than or equal to
zero then )
X(t):y(t) tlJ

4- Conclusions

It is easy to note that the uniqueness
of a special cases solution (n=1 or n=2)
can be obtain by using Bihari's and
Gronwall's inequality which is give the
work more accuracy and easer .

nltJ
r(t)£a

] then
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