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ABSTRACT: In this paper, some of the fuzzy second-order Caputo's- Katugampola fractionals which included also
the first-order Caputo's- Katugmpola fractionals have been presented with analytic interesting results to explain the
solution in fuzzy real numbers and distinguish space included the type of functions which suitable to the problem
formulations which are under the studied. all the fuzzy results are supported by the numerical solutions used later on.
The interesting illustrative examples for the application of some classes of fuzzy Caputo- Katugampla fractional order
differential equations with 0 < < 1 and explained their systems (n, m) where n, m=1,2, moreover the tables of
different parameters and fractional orders have been given in detail as different values of a fuzzy parameter. All tables
are represented by figures that are given for the first time. Coupled figures for each table refer to the lower and upper
of the fuzzy solution. The algorithm of reproducing kernel Hilbert space is used with their steps and Gram-Schmidt
orthogonalization process to obtain the approximate solution

Keiwords: Caiuto— Katugampla, Riemann-Liouville, Gram-Schmidt, reproducing kernel, Riemann- Hadamard

1. INTRODUCTION

Fractional calculus is exactly the extension of classical ordinary differential and integral calculus, where integrals and
derivatives have an arbitrary real order. Since the 17th century, after that they introduced several different derivatives
such as Riemann-Liouville, Hadamard, Grunwald-Letnikov, Caputo, see [29,33,38], where its own advantages and
disadvantages. The appropriate fractional derivative or integral have been chose it depends on the system was considered,
with respect to that we find many researchers devoted to different fractional operator’s equations. the interesting issue is
how to generalized fractional operators. So U. Katugampola presented new interesting types of fractional operators,
which generalized both fractional derivatives operators of the Riemann-Liouville and Hadamard fractional operators find
recent references [25,26,27].

The Gram-Schmidt orthogonalization process have been used to implement RKHSM [7,41]. Since this process take a lot
of time to run the algorithm, we make it unstable numerically for that here we act in a way and put in another way this
process. Many approaches combine the methods introduced in [7,8]. More specifically, see [7,41]. On the other hand if
not the orthogonalization process, the nonlinear problem used in RKSHM is applied successfully to solve their problems.
Zaremba introduced the Reproducing Kernel Hilbert spaces (RKHS) in the early 20" century, where they mocked to
study boundary value problems for biharmonic and harmonic functions as well as Aronzajn and Bergman in the mid-
century studied a general theory or RKHS, first RKHS have seen increasing use for solving ordinary differential equation
and partial differential, integral, and problems in optimal control , statistics and dynamical system moreover, RKHS
have been studied of serval researchers (e.g., Akgul & Grow, Yao, and Yousefi) after Cui and Lin developed RKHS
with piecewise polynomial kernels Hilbert space on W;'[a,b] and Wz(m'")[a, b]. The important useful of a fuzzy

simulation is the technological issues discussion. Many reseahers applied fuzzy set theory in various disciplines, including
control systems, robotics, knowledge-based systems, image processing, industrial automation, power engineering,

12*Corresponding author: alihj97@ uomustansiriyah.edu.iq
https://wjps.uowasit.edu.ig/index.php/wjps/index


https://wjps.uowasit.edu.iq/index.php/wjps/index
https://doi.org/10.31185/wjps.593
https://orcid.org/signin
https://orcid.org/signin
https://wjps.uowasit.edu.iq/index.php/wjps/Licensing

Ali et al., Wasit Journal for Pure Science Vol. 4 No. 1 (2025) p. 12-28

consumer electronics management, artificial intelligence/expert systems, and operation research. The fractional calculus
has been assumed for solving challenging phenomena and sustainability due to its beneficial qualities such as non-
locality, high dependability, inheritance, and analyticity [9,36].

The modification of fractional was considered to develop a solution of inhomogeneous equation. Various researchers
have created the fractional derivative and fractional differential equation (FDES), including Caputo, Liouville, Letnikov,
Hadamard, Riez. Abel, Caputo Fabrizio, Grunwald, and Atangana-Baleanu [32,24] in their discussion. FDEs have been
used in several interested interactions in acoustics, science electromagnetics, viscoelasticity, material and
electrochemistry [35,14]. Minggen etal. in [30,31], introduced Reproducing Kernel Hilbert space (RKHS) and developed
in approximate theory, learning theory, statistics, complex analysis, and machine group representation, the theory
Reproducing Kernel Hilbert Space Method (RKHSM) is a component of a kernel-based approximation method that was
applied for solving nonlinear boundary value problems [28-12], generalized singular nonlinear Lane-Emden type
equation [12], integrodifferential equation [41-3], integrodifferential fractional equation [2], Bratus problem [20]. In [5],
Ricardo Almeida and Agnieszka B. Malinowska studied Caputa-Katugampola differential equations.

The novel reproducing kernel algorithm was used for fined the approximate solutions introduced in [1], also numerical
solution of coupled system of fractional order in [37]. The nonlinear integral equations classes and its applications as
well as solving second order fuzzy integro- differential equations by using kernel Hilbert space method in [23],[13]. The
new reproducing kernel Hilbert spaces method studied in the semi-infinite domain for approximate solution investigated
in [16]. The dirichlet partial integrodifferentiall equations have been solved by using the computational algorithm in [6],
Moreover, Hifer- katugampola fractional differential equations and their existence and uniqueness are presented in [10].
The reliable method for the fuzzy solution of problems included the system of fuzzy fractional equations, has been studied
in [15]. The fuzzy fractional Kortewege-de varies equation with double parameters was studied in [41]. The main goal
of their study is to study the interest issue approximate solution of 0 < a < 1 of Fuzzy Caputo's- Katugmpola
fractional differential equations with some important detailed by necessary and sufficient conditions which explained all
the results with their procedure of analytic for systems types such as different (n,m)-system and studied on some regular
and suitable inner product spaces of analytic solution and using an efficient method such as reproducing kernel Hilbert
space method and which reproducing depended on presented problem which is under studied and type of related spaces
that used in the application problem formulation which modeled by fuzzy fractional order differential equations with
different fractional orders can be extended later on .see also[22,40].

The reproducing kernel method has been used with fuzzy Caputo’s-Katugmpola fractional order integral equations with
different choosing of fractional order. The technical was a generalization of fuzzy Caputo’s fractional order differential
equations. The convergence of approximate solutions explained by a series of continuous functions approaches converge
to an exact solution. The approximate solution was computed by applying the Gram-Schmidt orthogonal process. We
introduced the effectiveness and efficiency of the method by some illustrative examples of presented fuzzy fractional
differential equations with a maximum of order of 1 or 2. The orthogonal functions are computed by using the producing
kernel method depending on the integral operator and reproducing kernel. The parameters of Caputo’s- Katugmpola
derivative and the parameter of fuzzy set made a good approximation with different values and clear the efficiently of
the method by figures and some tables for all system types with different values of fractional orders.

2. BASIC DEFINITIONS AND CONCEPTS:
The following concepts and elementary results for Caputo — Katugampola fractional are very interesting for complet
the new results and illustrative examples.
Lemma (2.1),[11]:
Letp € (0,1)and y > 0, the to side of Caputo — Katugampola fractional
derivatives of function f € C[a, b]given by

AP0 = oL e = )P (), (1)
ADEY () = L [1(sY — )P f(s)ds @)

Lemma (2.2),[11]:
Let Re (@) = 0,n = [Re(a)] + 1 and f€ C[a, b]
1. IfRe(a) # 0 or x€ N, then
UV (x) = f(x), D EITF () = f(x).
2. IfRe(a) # 0 orRe( ) € N, then

Ckpoy oy = _ oMY@ (V= \TTE ey oy = _ ) (Yo
KDY IV f() = fO0) = =T (55) L HD T () = ) — TP ()

3. If0<x< 1wehave K[V CEDXY £(x) = f(x) — f(a),
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KIp™ DY f(x) = f(x) — f(b)
4. LetRe (a) > 0,n = —[—Re(x)], k1Y € AC}[a,b](I,”" f € AC}[a, b]). Then

(chrx.y Clé]oc,y)f(x) =f(x) — Z;-lzl ;::j::) f(@ (xy;ay)a—l
(Cklboc,yDboc,y)f(x) — f(x) _ Z;l:l(_l)j rl()ol::z) f(b) (by;xy)a—l

Definition (2.3),[43]
Let X be a collection of objects denoted generically by x then a fuzzy set A in X is a set of ordered pairs: A =
{(x, ug(x)) Ix € X}, where pz(x)is called the membership function or grade of membership (also the degree of
compatibility) of x in A that maps X to the membership space M when 0,1 this only points belong to is M , A
nonfuzzy and pgis identical to the characteristic of nonfuzzy set.
Definition (2.4),[21]:
A fuzzy number is a fuzzy set 7:R — [0,1] which satisfies:
1. T is upper semi-continuous
2. T (x) = 0 outside some interval [a, d].
3. Therearereal numbersbh, c:a < b < ¢ < d for which
a. T (x) is monotonic increasing on [a, b],
b. 7 (x) is monotonic decreasing on [c, d],
c. Tx)=1b<x<c.
0,if x<a
i.e.T(x)z{f(x) a<x<bh ,
1, b<x<c
Where f is an increasing function and is called the left side

While if T (x) = {Og(x), c f x>sdd

Where g is a decreasing function and is called right side.

* T iscalled symmetric fuzzy number if 7'(z + x) = T (z — x)for all x belong to R, where z = %
»  The set of all the fuzzy number is denoted by E*.
= IfT(x) inthe interval [a, b] and [c, d] is linear then it is called a trapezoidal fuzzy number (which we
will discuss later) and we write T (x) = (a, b, ¢, d).
Definition (2.5),[22]:

An arbitrary fuzzy number parametric form is represented by an ordered pair of Function (T(r),ﬂ"(r)) ,r €[0,1],

which satisfy the following requirement:
1. T (r)is a bounded left-continuous non-decreasing function over [0,1].

2. T(r)is a bounded left-continuous non-increasing function over [0,1].
3. @ST(r); 0<r<li.
Remark (2.6).[22]:
A crisp number « is simply represented by
Tr) =TT =a0<r<1.

Also T = (T, T)is called a symmetric fuzzy number in parametric from if

Te(r) = % is a real constant for all » € [0,1].
Theorem (2.7),[13]:
Let F: [a, b] = Rg be continuous fuzzy function, where [F(t)]" =  [F,(t), For (O)]. If Fi,.(t)and F,,.(t) are
integrable functions over[a, b] ,then
[ F(t)dt € Ry and,, [f;’ F(t)dt]r = [f: F (D), [ FZr(t)dt]
Definition (2.8),[23]:
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A Hilbert space W™ [a, b] is defined as Wi [a, b] = {u(t): u(t), u’(t),,, u™ D (t) are absolutely continuous, u™(m) €

1*[a,b] and u(a) = u'(a) = -~ = u™ V(t) = 0 whenever m # 1. Whilst the inner product and the norm in
W7 a, b] are defined by
(0, 1Oy = I u (@l (@) + [ ul (Ouf (Dt ©)

ANnd [lug (O llwgn = {ug (), u, (t))Wzm where u;,u, € W;*[a, b].

Theorem (2.9),[23]:

Functional space W3"[a, b] is Reproducing Kernel Hilbert space.

Now, it is taken away that expression from the reproducing kernel Hilbert space function R, (t) € WJ"[a, b].
Based on the essay, it is easy to prove that R, (t) id answer of the following generalized differential equation [30]:

9%M R (t)
B (—nm =68t - x),
3Ry (a) _io1 2R (@)
i DT s =0 (4)
aZm—i—lRy(b) _ 0
gezm—i-1

i=01...m—-1,
Where § is Dirac’s delta function. While x # t, R, (t) is the answer of the following constant linear homogenous
differential equation with 2m order:

T —nm =0, ©)

ath
With a boundary condition
1 aZ‘m—i—lRy(a) _

3'-y(@ _  i\m-i-
att ( 1) gr2m—i-1 0,
aZm—i—lR (b) )
T_i_yl=0. i=01,..m—1 (6)
Equation (6) is characteristic where is ¢2™ = 0 in equation (6). Then the general solution of Equation (6) is
Time(oett  t<x
R, (t . 7
3 ){zl?m di()t"t,  t>x %

Where coefficient ¢;(x)and d;(x),i = 0,1, .., 2m, could be calculated by solving

The following_linear equations:

ARy (x+0) _ 3Ry (x—0) i=01 om — 2

att att
92M IR, (x+0)  8FMTIR,(x—0)\ _ nm 8
grzm-1 - grzm-1 =(E=D", (C))
0iR}’(a) _ (_1)m—i—1 02m_i_1Ry(a) =0
att gt2m—i-1 ’
aZm—i—lR ) .
mzmi—i—ylzo’ l=0,1,...,m—1,
aZm—i—lR b .
{”ZTi—yl()zo’ l=0,1,...,m—1,

Theorem (2.10),[24]:
The space W, [0,1] is reproducing kernel space. That is for any fixed x € [0,1]
There exists R, (x,y) € W}[0,1] such that u(x) = (u(y), R;(x,y)), forany u(x) € W;[0,1]. The reproducing kernel
R, (x,y) can be denoted by:
1+y, <x,
Ry (x) = {1 +§c}, i < x.
The following algorithm to solve differential and fractional differential equations by using reproducing kernel method
2.1. Algorithm:
Stepl: fixa < xand t < bif t < x,set R (t) =1+t
Else set R, (t) =1+ x.
(-1

Step2: fori=1,2,--,N set x;, = T
Set ¥, (x) = LRy (D p=x,-
Step3: fori =j =1, thenset B, =

1 1

Wl oo
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1

Else gjj = ——; Zy=(Wpy) ifi=j#1
/||1/)i||2—2;¢_=112i2k
-k 2y By — .
Eles By = =26l 7, = (i) if i #]
/nwuw—z;;ﬁsz
Step4: for i = 1,2,++-, N set ,(x) = ¥k _1 B ().
Step5: set ug(xq) = u(xy).
Step6: setn =1
M set IBn = ZZ:l ﬂnklpk—l(xk)-
Step8: up(x) = Yi=1 By, (x).
Step9: if n < N thensetn =n + 1 and go to step 7. Eles stop  (7)

3. PROBLEM FORMULATION
Consider the following F- CKFDE
(*DEP%)(t) = KE®), ON(F 1), 1< B <2t >a
X(to) = [%o, %o € Mg, %(to) = [0, %o] )
where K: [t X t,, to + a] = gsuch that :
1) [K(tx(®] = [Kir (X170, %20 (0)1), Koy (x1-(£), X, (0]
[N(x(£))] = [Ny (x17-(6), X37- (£), 1), Noy (1, (1), %21 (£), )]
2) forany e > 0thereisad > 0 such that
| K17 (o, ¥, N1 (x, ¥, £) — Ky (X1, y1- t1) Nip (31, 1, £1)| < €and
|K2r (%, 7, ON2 (%, y, ) — Kor (X4, ¥4, 1) N2 (Xq, y1, 1) < & for
allr € [0,1], whenever (X, Y, t), (x1,y1,t1) € Ry X [to, o + a]
, ||(x, v, t) — (xq, ¥4, t1)||m3 < dand K;.and K, are uniformly bounded on any bounded set
3) Thereisan L >0 such that |K;, (x5, ¥5, t2) Ny (X2, V2, t5) —
K17 (1, Y1, ) Niyr (1, Y1, 651K (62, Y2, 82) Nip (32, ¥2) — Kip (X2, Y2, t2) Ny (x4, y1) +
K17 (X2, Y2, t2) N1y (X1, 1) — kg (1, Y1, 64
< K (2, 2, ) IN1- (2, ¥2) — Ny (e, YOI + [Kyyr (32, V2, t2) — Kip (g, Y1, | INg (g, y0) | <
LiMax{|x; — x|, |y, —y11} +
Max{l|x, — x4, |y, — y1lL,
€ [0,1]and | Ky, (x2, Y2, t2) N1y (X2, Y2, t2) — Kir (o, Y1, t1) Ny (X1, Y1, 6) < L Max{|x; — x4], 12, —
z,|}or all r € [0,1].
Then the F-CKFDE (9) is equivalent to the system of ordinary fractional differential equations (OFDEs):

(Cthﬁ}pxlr)(t) = Ky (017 (2), X2, (), )Ny (xlr ®, x2r(t))
(“DEL x5 ) () = Ko (ray (1, X (6), )Ny (31 (), %0 (1))
X17r(to) = Xo17 X2 (E0) = Xo2r

if x(t) is [(1) — B] — differentiable. if x(t)[(2) — B] — sifferentiable,
Then (2.1) is equivalent to the following system of OFDEs:

(*DEL 31 ) (1) = Koy (17 (6), Xar (8), DN (07 (8, %2 (1))

(CkDfépxzr)(t) = K1y (17 (2), %2, (), )Ny (xlr ®, x2r(t))
Using this theorem. a F-CKFDE can be converted to a system of ODEs of fractional order. Then a numerical method can
be applied to solve the resulting system.
Now we define a fuzzy Caputo-Katugampola fractional derivative of order 8 € (0,1)for a fuzzy function F: [a, b] -
N z,moreover, we give some
properties of the mentioned fractional H-derivative.
Definition (3.2),[4]:
Let V,U € Jtg . If there exsist an element & € N such thatV = U + d,then
we say that & is the Hukuhara difference (H-difference) of Uand V denoted by
vou
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Definition (3.3),[4]:

Let K be a fuzzy function on [a, b], then the r-cut function on [a, b] is an interval-valued function k,:[a, b] -

N defined by K,.(x) = [K(x)]", vr € [0,1]. Hence

K. (xX) = [Ky,-(x), K- (x)]where k,,.and k,, are real valued function on [a, b]
given by K;.(x) = min{K,(x)} and K,,.(x) = max{K,.(x)}, vr € [0,1]L
Definition (3.4),[4]:

A mapping K: [a, b] - N is said to be Hukuhara differentiable, or simply H

-differentiable, at x. € [a, b]if there is a fuzzy number K’ (x.) such that
K(xo+h)OK (x0) K (x0)OK (xo—h)

K'(x.) = Limy,_ o+ exist and are equal

to K’ (x-)which is called the H — derivative

and Lim,,_+

Definition (3.5),[4]:
LetK : (a,b) —» Ng and x, € (a, b). We say that K is strongly generalized
differentiable at x, if there exists an element K'(x) € RNy, such that

1. Forall h > 0 sufficiently small, there exists K (x, + h) © K (x,),there exists K(x,) © K(x, — h) and the

limits
Jim, K(x0+h})191((x0) = lim, K(Xo)@:(xo—h) = K'(x,),
2. For all h > 0 sufficiently small, there exists K(x,) © K(x, + h),there exists K(x, — h) © K(x,) and the
limits
hlim+ K(xO)e_IZ(XO-'-h) — lim+ K(xo—h_)h@K(Xo) = k'(x,),
-0 h—-0
3. For all h > 0 sufficiently small, there exists K (x, + h) © K(x,), there exists K(x, — h) © K(x,) and the
limits
N, KOO _ y K0 WO _ ey,
-0 h—0
4. For all h > 0 sufficiently small, there exists K (x,) © K(x, + h), there exists K (x,) © K(x, — h) and the
limits
llm K(Xo)eK(X0+h) — llm K(XO)eK(xO_h) - k!(x )
h-0* —h h-o0t h 0

Definition (3.6),[4]:

let B € (0,1]and F:[a, b] — 9 be such thatF € CF[a, b] N LF[a, b], the first
order Caputo's — Katugmpola H-derivative of F at t € (a, b)is defined as

(KDELF)(t) = ﬁ’fﬁ [L@ =) PP (@Ddrt > a (10)
we say that F is [(m, n) — B] — differentiable for m,n € {0,1} if (2.2)
exists and F is (m, n)-differentiable.
Definition (3.7):
Let f;[a,b] = R and f € ACF[a, b] N LF[a, b] be a fuzzy set-value function

oB
r@a-p)
differentiable at x, when

B.p _ s p(x+h)Oge(x)
(4D F)(x) = lim P20,

and p(x) =

Were
B

(UDEPFL) () = [ [ (7 = sP) P, (s)ds |
P

(EDEPF) () = |
Lemma (3.8).[15];

r(1-p) fat(tp - Sp)_ﬁF'Zr(S)dS]. (12)

Let u: [a, b] = Ry be a fuzzy-valued function, where [u(t)], = [uy4(t), u,,(t)] for each a € [0,1].
1- If uis (1)-differentiable, then u, , and u, , are differentiable function and

[Dllu(t)]a = [ui,a (t)v ué,a(t)]

2- If uis (3)-differentiable, then u, , and u, , are differentiable function and

fat(tp —sP)"PF'(s)ds,t > a. And then f is side to be H-Caputo- Katugampola fuzzy fractional
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[D3u(®)]y = [uhe (), uio(©)].
Lemma (3.9),[15];

Let D{u or Du:[a, b] > Ry be a fuzzy -valued function where [u(t)], = [uyq(t), uzq(8)] for each a € [0,1].
1- If Diu is (1)-differentiable, then u'y,andu',, are differentiable function and [u"(t)], =

[uf o (), us o (8)]

2- If Dlu is (2)-differentiable, then u'y,andu’,, are differentiable function and [u"(t)], =

[u7a (), uia (D]

3- If D}u is (1)-differentiable, then u',,andu’,, are differentiable functions and [u''(t)],

N GRMNEG)

4- If Dju is (2)-differentiable, then u',, andu',, are differentiable functions and [u"(t)],

[uf o (), us o (8)]

Theorem (3.10);

Let 8 € (0,1)and F € ACF[a, b]be such that [K(x)]" = [K,(t), K5, (t)],7 € [0,1]. Then the first order Caputo's-

Katugmpola H-differentiable exists almost everywhere on (a, b) and
1) if Kis (1,1)- differentiable, then [(C"fo)(t)]r =

B / B !
P t K'qr(®) p t Kar(t) _ rrcknBp knB.P
\/I—ﬁ fa (tp_Tp)B dT' \/T-ﬁ fa (tp_Tp)ﬁ dT - [(C Da+ KIT)(t)' (C Da+ KZT(t))]

2) if Fis (1,2)-differentiable, then [(C"fol((t))]r =

B ! B !
p t K ar(t) p t K'1r(t) _ rrckpbp B.p
Vi-B fa (tP—1P)B dr, Vi-B fa (tP—1P)B dr = [(° Da+ Kar (), (CTDa‘“ Ky ()] .

3) if Kis (2,1)-differentiable, then [(C"fok(t)]r =

pf ft Kiar o p#
Vi-g Ja @r=yB “T g

4) ifkis (2,2)- differentiable, then [(C"fol((t)] =

t Kiir , ,
[y o v = [(*DEE K5 ) (©), (FDI Ky ) (0]

B B

p t_Knr(t) p t_Kipr — [rckpB.p ckpB.p

\/T_B fa (tp_Tp)B dT’ \/I_B fa (tp_,[p)ﬁ dT - [( Da+ K].T)(t)’ ( Da+ KZT)(t)]
proof:

1) Since the other cases are analogous if h >0, Ke [0,1]
Since k is (1,1)- differentiable
[K(t+R)Ok®)]" = [K 1,(t + h) — Ky, (8), K 5, (¢ + h) — Kz ()]
and multiplying by 1/h, we have
[KE+h)OK®)]" _ (K 1r(t+h)=K 17(t) Kar(t+h)=Kapr(t)
h =1 h ! h 1
similarly, we obtain
[KMOK(t-]" _ [K 1r(O)-K 1+(t-h) K zr(t)—Kzr(t—h)]
h - h ’ h
1 r_ PPt Ky PPt Ko ()
[(Dl.lK(t)] - [ﬁ_g fa (tP—-TP)B dr, Vi-B fa tP-1P)B dr]
passing to the limit, we have
(LKL = [*DEYK 170, *DIY K 2 (0)]
2) if Kis (2,1)- differentiable. Then
[K@®OK(t + )] = [K'5 (¢t + k) — Kor (0), K'1 (£ + h) — Ky (D]
and multiplying by 1/h, we have
[ K(t)eK(t+h)]r — [K Zr(t"’h)_K Zr(t) Klr(t+h)_K1T(t)]
h - h ’ h
similarly, we obtain

[K®OK(t-m)]" — [K 2r()—K 2r(t—h) K 1r(t)—K1r(t—h)]

h h ! h
B 4 B !
1 r_ _P t Kap(t) P t K'q1r(8)
[Dl’zF(t)] T Vi-p fa (tP—1P)B dr, Vi-B fa tP-TP)B dr

passing to the limit, we have
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[DLF (O] = [*DEYK 2 (8), *DEY K1, (D]
3) if kis (1,2)- differentiable
[K(+R)OK(O]']" = [K'2-(t + h) — Ky (0), K"y (E + h) — K (2)]
and multipliying by 1/h, we have
[KE+h)O KM _ (K or(t+h) =K 27 (t) Krir(t+h) =K1 (t)
h =1 h ! h ]
similarly, we obtain
[K(®OK(t-h)]" _ [K’ZT(t)—K’zT(t—h) K’lr(t)—Krlr(t—h)]
h - h ’ h

PPt Ky PPt K'i(®)
[DZ FO] = J‘ B fa (tP—-TP)B dr, Vi-g fa (tP—1P)B dr

passing to the limit, we have

[(D3F (O] = [*DELK 2 (D), *DEY K1, (D]

4) if k is (2,2)- differentiable. Then

[K(t+hOK(®)] = [K 1,(t+h) — Ky (0), K 5 (t + h) — K5, (8)]

and multipliying by 1/h, we have

[K(t+h)® K(D]" _ [K’lr(r+h)—1<’1r(t) K'Zr(t+h)—102r(t)]
h - h ’ h

similarly, we obtain

[K@®O K- _ K'1r()=K'17(t=h) K'pr(t)—Kkar(t—h)
h =1 h ’ n 1

_ Pt k() pPt  Kiar

[(DZ ZF(t)]r \/— B fa (tP- ‘L'P)»B dT;\/— B fa tP- Tp)B dr

passing to the limit, we have

[(D3F (O = [*DELK' 11 (D), *Dg K oy (D]

this completes the proof theorem

Theorem (3.11):

let 8 € (0,1]and K € ACF[a, b].

1) if K is (1,1)-differentiable then,

(£, *DEPK)(x) = K(x)- K( ()

2) if Kis (1,2)-differentiable then,

3) (15, FDEFK) = (—K(x) — K(a))
4) ifkis (2,1)-differentiable then,

(15, *DEFK) (%) = (—KG) — k(a))

5) if Kis (2,2)-differentiable then,
(12, kpPPK) (x) = K(x) — k(a)

proof:
Let(K(®)]" = [Kir (%), K5 (x)]for all r € [0,1]then we have the real valued

function k,, and k.,

(7, DL Kiy) () = Ky ()and (I, DY Koy ) () = K ().

Now if K is (1,1)-differentiable or (2,2)-differentiable, then by theorem (3.10),

we can write [(**D?, K)(2)]" = [(*DE, K,,) (%), (*DP, K,,)(x)]. Hence

(13, *DIPKICO] ™ = [(1, DG, Kyp) (), (15, Df, Kar) (9] =
[Kyiy (), K21 ]. SO (I, *DFP K () = K (x) — K(a) if K is (1,1)- differentiable and (I°, *D¥PK)(x) = K (x) — K (a)
if k is (2,2)- differentiable
Now, if K is (1,2)-differentiable or (2,1)- differentiable then from theorem(3,1) We have, [(C"D @] =
[(*DE, K1) (), (D, K1) (x)]. So
(15, *DEL KGO ™ = (U5, DE Kir) (), (15, DY, Kpr) ()] =

19



Ali et al., Wasit Journal for Pure Science Vol. 4 No. 1 (2025) p. 12-28

[Kir (X), Ko (x)].Hence (15, *DPPKY(x) = —K(x) —K(a) if K
(1P *DPPKY(x) = —K (x) — K(a) if K is (2,1)- differentiable.

is (1,2)- differentiable  and

4. EXTENSION PROBLEM FORMULATION
Consider the following F-CKFDEs of the from
(C"Dﬁ Px)(t) = F®)x(©) + Kx(6), ON(x, 1), 1< <2,t>a (13)
%(a) = [%o, xo| € Np, %(a) = [%o, %o,
where £(t) is a continuous fuzzy function with nonnegative values on [0,1],
k:Rp X [a,b] = Rgis a linear or nonlinear continuous fuzzy function, and o € Rg. An (m, n) — solution of (2.5)is an
¢[(m, n) — B] — differentiable
function x: [a, b] — R that satisfies (2.5). To solve this problem, we convert it to a based on the selection of the
derivative type. This system will be called (m, n)-system. Let
R(X(t)' t)]v(x' t) [Kerlr(Xlr' Xor t)' erNZr(Xlr' Xor t)]' [x(t)]r
[x1r (D), X2 (D], [x(@)]" = [x4:(2), X2 (a)] = [0y, az,], be the r — cut
Representations of K (x(t), t)N(x,t) and x(t).This (13) can be translated to one
of the following systems:
(1,1)-system
(CkD xlr)(t) - flr(t)xlr(t) + kerlr(xlr(t) x2r(t) t)
(CkD %2 )(€) = for ()%, (0) + kg Npy (1, (), X2, (£), 1),
x1r(a) = ayy, Xor (@) = Ay
*1r(a) = dyy, Xor (@) = dpr
(1,2)-system
(CkD Px2) () = fir () X1, () + ko Ny (1, (8), X5, (), 1),
(CkD Px1) () = for (0250 (8) + Ky Nop (1, (), X5, (8), 1),
x1r(a) = ayy, Xor (@) = Ay
X1r(a) = dyy, Xor(@) = dypr
(2,1)-system
(CkD %20 ) () = for ()20 (8) + kipNyp (1 (£), %20 (£), 1),
(CRD xlr)(t) - flr(t)xlr(t) + erNZr(xlr(t) x2r(t) t)
x1r(@) = ayy, X2r(@) = gy
*1r(@) = dyr, Xar(@) = dyr
(2,2)-system
(CkD Px17) () = for ()%, (£) + k1p Nyy (- (8), %20 (1), 1),
(CRD x2r)(t) - flr(t)xlr(t) + erNZr(xlr(t) x2r(t) t)
x1r(@) = ayy, X2r(@) = gy
*1r(@) = dyp, Xar(@) = dyy
Definition (4.1),[15]:
Let k: [a, b] » N be a fuzzy function and n, m € {1,2}. One says k is an (n, m)-
solution for problem (13) on [a, b], if DA kD3 .k exist on [a, b] andDZ,,k(t) + a - Dik + b - k(t) = o(t), k(0) =
o, DIk(0) = a4
Theorem (4.2),[17]:
Let [x(t)]" = [X1p X2r]be an (m, n) — solution of (13) Then x,,- (t)and x,,.(t)
solve (m, n)-system for n, me {1,2}. Moreover, if x;,-(t) and x,.(t) solve the (m, n) — system for eachr €
[0,1], [x1.(t), X5 (t)] has valid level sets , and x(t) is ¢[(m, n) — B] — diff, then x(t) is an (m, n) solution of (13).

proof:
Suppose that [x(t)]"is the (m, n) — solution of equation (13), according to the lemma (3.9) then Df;and D3 ,x(t)exist

and satisfy problem (13) and by Lemma 3.8and 3.9 and substituting x,,, X,and their derivatives in
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problem (13), we get the (m, n)-system corresponding to the (m, n)- solution, now since [x(t)]" = [Xqp, Xz ]is(m,n) —
differetiable fuzzy function , by theorem 3.8 and 3.9 we can compute Djk and D3 ,,k(t)according X', X', Due to
the fact that x, ., X, solve (m, n) — system from defintion (4.1),it comes that x(t) is an (m, n)- solution for (13).

5. Hlustrative Numerical Fuzzy Fractional Order0 < g < 1 Examples:

In this Section the interesting examples are explained the efficiently of the_reproducing kernel Hilbert
space algorithm for different fractional orders such as 0 < 8 < 1 and different systems (n, m) where
n, m=1,2.

Example (5.1):
Consider the following
(*DELYY () = 8+ y(b), 0<B<1p>0te[01] (14)
§ =y(0) =[0.2a + 0.8,1.2 — 0.2¢] a € (0,1) where  § are the fuzzy number whose «a -cut

representation is [0.2a + 0.8,1.2 — 0.2a] Depending on the type of differentiability, we have the following system
(DI Y1a)(®) = 0.2a + 0.8+ y14(0), :
system(1,1) (*DELy0)(£) = 1.2 = 0.2 + Y2, (8)
Y1(0) =02a + 0.8, y,, =1.2-02 -«

(*DEy1a)(®) = 1.2 = 02a + Y2q (8),
system(1,2) 4 (D%, 3, )(t) = 0.2 + 0.8 + Y1, ()
Y1¢(0) = 0.2a + 0.8, y,, = 0.2a + 0.8
Solution:
By using the reproducing kernel Hilbert space method for N=25.

-1\ .
Assume(0 <t <1).(0<x<1and xl-=(m),l=1...N.
x—[ 11115 17 135 11113 7 52 17 3 19 5 7 11 23 ]
.=

Yol Y olta? Y alo? ), a0

’24’12°8’6’24"4"24°3°8712" 24”224 12°8°3" 24" 4”247 6’8" 12" 24’
t+1, t<x,
R(x){x+1,xSt.
For f = (0.25—1) + (0.25—1) - x,and K = (x — t)#~1, N1 = (0.25 — 1),
Where § = 1.8
1 X
G= U—m—fo K(t,X) Nl(U)
PYi(x) = LRy (8)lp=x,
25 1 13 1
1 ,0<x 2w asX Z =X
xX) = xX) = =
v ={,, {y20 ¥ SRR ZIC el
¢4(x)= 1 lps(x) = 1 lpé(x) = 5
x+1,x<-= x+1,x<- x+1,x<—
8 6 24
1!)7(X) = 1 lpS(x) = 7 1/19(3(,') = 1
x+1,x<- x+1,x<— x+1,x<-
4 24 3
Yio(x) = 3 P11 (x) = 5 P1,(x) 11
1,xS§ x+1,x$§ x+1,x<—
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PY13(x) = 1‘!’14(35): 13 P15(x) 7 P16(x) = 5 Pi7(x) =
x+1,x<- x+1,x<— x+1,x<— x+1,x<-
2 24 12 8
FRFEE: L
zlpls(x): 17
x+1,x<- x+1,x<—
3 24
P1o(x) = 3‘,020(95): 19 P (x) = 5 Yo (x) = 7 Pa3(x) =
x+1,x<- x+1,x <= x+1,x<- X X <=
4 24 6 8
23 11 B
12 ’12 — 24 "24 T
Pau(x) =
{x+1, _% x+1,x£§

2 1< x
wZS(x)_{x+1,xS1

1.039738e + 00 1.118872e+ 00 1.187884e + 00 1.255231e+ 00 1.320637e+00 1.383822e+ 00 1.444574e+ 00, 1.502731e+ 00 1.558169e + 00
1.039738e + 00 1.246534e+ 00 1.317523e+00 1.386737e+ 00 1.453877e+ 00, 1.518646e+ 00, 1.580817e+ 00, 1.640219¢+00 1.696718e+ 00
1.039738e + 00 1.246534e+ 00 1.447163e+00 1.518242e+ 00 1.587116e+ 00 1.653470e+00 1.717061e+ 00 1.777707e+00 1.835267e + 00
1.039738e + 00 1.246534e+ 00 1.447163e+ 00 1.649747e+ 00 1.720356e +00 1.788294e+ 00 1.853305e+ 00 1.915196e+ 00 1.973816e + 00
1P =11.039738e + 00 1.246534e+ 00 1.447163e+ 00 1.649747e+ 00 1.853596e+ 00 1.923118e+ 00 1.989549e + 00 2.052684e + 00 2.112366e + 00
1.039738e + 00 1.246534e+ 00 1.447163e+ 00 1.649747e+ 00 1.853596e + 00 2.057942e+ 00 2.125792e+ 00 2.190172e+00 2.250915e + 00
1.039738e + 00 1.246534e+ 00 1.447163e+ 00 1.649747e+ 00 1.853596e +00 2.057942e+ 00 12.262036e + 00 2.327660e + 00 2.389464e + 00
1.039738e + 00 1.246534e+ 00 1.447163e+ 00 1.649747e+ 00 1.853596e +00 2.057942e+ 00 2.262036e +00 2.465148e+ 00 2.528013e+ 00
1.039738e + 00 1.246534e+ 00 1.447163e+ 00 1.649747e+ 00 1.853596e + 00 2.057942e+ 00 2.262036e + 00 2.465148e + 00 2.666562¢e + 00
1 1

Pu=50= Faan
1

By = —; Zy = (i)
/nwiuZ-z;c;ﬁsz

i-1
— Lr=1ZikPkj

ﬁij = 7,_
[pallz-3i2 23,

1.0706 0 0 0 0
1.0706 1.3260 0 0 0
1.0706 1.3260 1.5728 0 0

1.0706 1.3260 1.5728 1.8248 0
_|1.0706 1.3260 1.5728 1.8248 2.0811 0
Bue = 1.0706 1.3260 1.5728 1.8248 2.0811 2.3402 0
1.0706 1.3260 1.5728 1.8248 2.0811 2.3402 2.6008 0
1.0706 1.3260 1.5728 1.8248 2.0811 2.3402 2.6008 2.8615 0
1.0706 1.3260 1.5728 1.8248 2.0811 2.3402 2.6008 2.8615 3.1211 0
11.0706 13260 1.5728 1.8248 2.0811 2.3402 2.6008 2.8615 3.1211 3.3781

(=l R e R )
oo o oo

[« el el NNl
[=NeNeNoNoNo Nl
(=Moo oo No N Nol

The following tables and figures explain the approximant solution of FFC-KDe (14) with different parameters obtained
in the tables, which some time decrease or increase over time also the reproducing kernel Hilbert space method is more
efficiently more clearing and convergent to exact solution with suitable value of N.

Example (5.2):

Consider the following
(*DELyy(©) = 6 + 12, 0<B<1p>0te[01] (15)
y(0) = [a,2 - a] a €(0,1)
where § are the fuzzy number whose r-cut
representation is [a, 2 — a].
Depending on the type of differentiability, we have the following systems
(*DEyi) () = a +t2,
(1,1)-systemq (kDF,y, ) (¢) = 2 — a + t2

Vi« =a, y,0 =2—«a
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(CkDf+Y1a)(t) =2—a+t?
(CkDf+Y1a)(t) =a+t?
yla(o) =a, You =2«

(1,2)-system

Solution:
By using the reproducing kernel Hilbert space method for N=25
Assume(0 <t <1).(0<x<1land x; = (I;_Tl),i =1..N.

1
x_[ol1115171351111375217319571123
P =

"24712°8"6’24"4"24’378% 12" 2472724 1278”37 24" 4" 24’ 6’8" 12" 24’
t+1, t<x,

R {x +1Lx<t
For f = 0.25,and K = (x*¢ — t*€)F~1 N1 = (0.25 + t?) - t%¢71,

1

Where 8 = 0.5
G=U-"" _ "K(x) N1(U
=U-——— t,x) -
gamma(0.5) fO tx) C)
wi(x) = LtRx(t)|t=xi
25 1 13 1 9 1 <
(1 ,0=x _)2a =" _ )12 12 = _Js g =% _
l:bl(x) - x + 1 x < 0 II)Z(X) - 1 ¢3( ) - 1 1/)4_()() - 1 lpS(x) -
A= x+1,x<— +1, S—z x+1,x£§
7 1 29 5 5 1 31 7
s e=X 2% 2 sX % =X
1 Pe(x) = 5 Py (x) = 1 Pg(x) = 7 Po(x) =
x+1,x§€ x+1,x<— x+1,xsz x+1,x§§
4 1 11 3 17 5 35 11
3 ,ESX 5 g S 2 ,ESX 22 'ZSX
1 Y1) = 3 Pulx) = s P12(x) 1 Yis() =
x+1,x<- x+1,x<- x+1,x<— x+1,x<—
3 12 24
3 1 37 13 19 7 13 5
2 =% % m PR T s
1 l/)14,(X) = 13 ¢’15(x) - 7 1/)16(9‘:) - 5 lp17(X) -
x+1,x<- x+1,x<— x+1,x<— x+1,x<-
2 24 12
5 2 41 17 7 3 43 19
3 =X 2w ms i asX PP
2 Prg(x) = 17 Pr1o(x) = 3 PYao(x) = 19 PYoq(x) =
x+1,x<- x+1,x<— +1,x<- x+1,x<—
3 24 4 24
11 5 15 7 23 11 47 23
S e=* T s PR T 2w =%
5 Pao(x) = 7 Pr3(x) = 11 Pau(x) = 23 Prs(x) =
x+1Lx<- x+1, = x+1Lx<— x+1lLx<—
6 12 24
{2 ,1<x
x+1,x<1
1.039738e + 00 1.084800e + 00 1.129857e +00 1.175739e + 00 1.222133e+ 00 1.268702e+ 00 1.315097e+ 00, 1.360968e + 00 1.405961e + 00
1.039738e + 00 1.209800e + 00 1.254857e+ 00 1.300739e + 00 1.347133e+ 00 1.393702e+ 00 1.440097e + 00 1.485968e+ 00 1.530961e + 00
1.039738e + 00 1.209800e + 00 1.254857e + 00 1.425739e¢ + 00 1.472133e+ 00 1.518702¢+ 00 1.565097e+ 00 1.610968e+ 00 1.655961e + 00
1.039738e + 00 1.209800e + 00 1.379857e + 00 1.550739e¢ + 00 1.597133e+ 00 1.643702e+ 00 1.690097e+ 00 1.735968e+ 00 1.780961e + 00
P =11.039738e + 00 1.209800e + 00 1.379857e+ 00 1.550739e + 00 1.722133e+ 00 1.768702e+ 00 1.815097e+00 1.860968e+ 00 1.905961e + 00

1.940097e + 00
2.065097e + 00
2.065097e + 00
2.065097e + 00

1.722133e + 00
9.491245e — 01
9.491245e — 01
9.491245e — 01

1.893702e + 00
1.893702e + 00
1.893702e + 00
1.893702e + 00

1.209800e + 00
1.209800e + 00
1.209800e + 00
1.209800e + 00

1.379857e + 00
1.379857e + 00
1.379857e + 00
1.379857e + 00

1.550739e + 00
1.550739¢ + 00
1.550739e + 00
1.550739e + 00

1.039738e + 00
1.039738e + 00
1.039738e + 00
1.039738e + 00

1 1

Pu =10 Tomo
1

Bii = ———;
-1 ,2
lill2-%525 25,

i-1
_ ~Zg=1ZiPxj

Bij = —
[peliz-si2 23,

Ziye = (i, i)

1.0706 0 0 0 0 0 0 0 0 0
1.0706 1.2615 0 0 0 0 0 0 0 0
1.0706 1.2615 1.4504 0 0 0 0 0 0 0
1.0706 1.2615 1.4504 1.6396 0 0 0 0 0 0

By = 1.0706 1.2615 1.4504 1.6396 1.8291 0 0 0 0 0

k ~[1.0706 1.2615 1.4504 1.6396 1.8291 2.0190 0 0 0 0
1.0706 1.2615 1.4504 1.6396 1.8291 2.0190 2.2090 0 0 0
1.0706 1.2615 1.4504 1.6396 1.8291 2.0190 2.2090 2.3991 0 0
1.0706 1.2615 1.4504 1.6396 1.8291 2.0190 2.2090 2.3991 2.5887 0
11.0706 1.2615 1.4504 1.6396 1.8291 2.0190 2.2090 2.3991 2.5887 2.77734

1.985968e + 00
2.110968e + 00
2.235968e + 00
2.235968e + 00

2.030961e + 00
2.155961e + 00
2.280961e + 00
2.405961e + 00,
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The following tables and figures explain the approximant solution of FFC-KDe (15) with different parameters obtain in
the tables with some time decreasing or increasing also the reproducing kernel Hilbert space method is more efficiently
and more clearing and convergent to exact solution with suitable value of N.

Table 5.13: Solution of y,, in system (1,1)
forf =05andr = 0.25

t p=0.6 p=2038 p=1

0 1.692264e+00, 1.659690e+00, | 1.629613e+00,
0.1 | 1.582263e+00, 1.503754e+00, | 1.439001e+00,
0.2 | 1.484762e+00, 1.345392e+00, | 1.226662e+00,
0.3 | 1.388507e+00, 1.183446e+00, | 1.001755e+00
0.4 | 1.293755e+00, 1.020377e+00, | 7.695187e-01,
0.5 | 1.200849e+00, 8.579925e-01, | 5.338181e-01,
0.6 | 1.110148e+00, 6.978403e-01, | 2.980299e-01,
0.7 | 1.022049e+00, 5.414314e-01, 6.548341e-02,
0.8 | 9.370121e-01, 3.903677e-01, | -1.602718e-01,
0.9 | 8.555785e-01, 2.464242e-01 -3.752812¢-01,

Table 5.14: Solution of y,, in system (1,1)
forp = 0.5and r = 0.25

t |p=06 p=08 p=1

0 2.417520e-01, 2.370986e-01, 2.328019e-01,
0.1 | 2.324373e-01, 2.228578e-01, 2.141706e-01,
0.2 | 2.233540e-01, 2.085272e-01, 1.950420e-01,
0.3 | 2.142424e-01, 1.940189e-01, 1.754997e-01,
0.4 [ 2.050893e-01, 1.793352e-01, 1.555597e-01,
0.5 [ 1.958962e-01, 1.644896e-01, 1.352438e-01,
0.6 | 1.866780e-01, 1.495202e-01, 1.146141e-01,
0.7 | 1.774643e-01, 1.344984e-01, 9.379492e-02,
0.8 | 1.682998e-01, 1.195346e-01, 7.298883e-02,
0.9 | 1.592448e-01 1.047825e-01, 5.249079e-02,

Table 5.15: Solution of y,, in system (1,1)
for  =0.7andr = 0.25

t p=20.6 p=208 p=1

0 4.966709e-01, 4.863082e-01, 4.767811e-01,
0.1 | 4.926804e-01, 4.706163e-01, 4.510684¢e-01,
0.2 | 4.888155e-01, 4.546007e-01, 4.240208e-01,
0.3 | 4.849271e-01, 4.382187e-01, 3.959228e-01,
0.4 | 4.810189e-01, 4.215433e-01, 3.669297e-01,
0.5 | 4.770971e-01, 4.046343e-01, 3.371670e-01,
0.6 | 4.731698e-01, 3.875570e-01, 3.067789e-01,
0.7 | 4.692483e-01, 3.703951e-01, 2.759613e-01,
0.8 | 4.653476e-01, 3.532592¢e-01, 2.449886e-01,
0.9 | 4.614872e-01 3.362941e-01, 2.142356e-01,

24
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Table 5.16: Solution of y,, in system(1.1)
forf = 0.7 and r = 0.25

t p=06 p =08 p=1 Figure of table 5.16
0 1.490013e+00, | 1.458925e+00, | 1.430343e+00, 5 —
0.1 | 1.474072e+00, | 1.399848e+00, | 1.338243e+00, - 22
0.2 | 1.459308e+00, | 1.338058e+00, | 1.234457e+00, —
0.3 | 1.444436e+00, 1.273507e+00, 1.122242e+00, .
0.4 | 1.429534e+00, | 1.207158e+00, | 1.003728e+00, 2 1
0.5 | 1.414679e+00, 1.139744e+00, 8.806167e-01, >
0.6 | 1.399939e+00, | 1.071900e+00, 7.544741e-01,
0.7 | 1.385385e+00, | 1.004243e+00, | 6.268948e-01, 0.5 : ]
0.8 | 1.371089e+00, 9.374134e-01, 4.996172e-01, 0 0.5 1
0.9 | 1.357134e+00, 8.721176e-01 3.746131e-01 t
Table 5.17: Solution of system (1,1)
for =09 andr = 0.75 Figure of table 5.17
t p=0.6 p=2038 p=1
0 1.285553e+00, | 1.255917e+00, 1.228826e+00,
0.1 | 1.334672¢+00, | 1.263354e+00, | 1.203988e+00, g i auaill
0.2 | 1.381913e+00, | 1.271225e+00, 1.176353e+00, 8 el y. &
0.3 | 1.430014e+00, | 1.279517e+00, 1.146358e+00, % 0 8‘ —E _v =)
0.4 | 1.478719e+00, | 1.288137e+00, 1.114347e+00, >
0.5 | 1.527787e+00, | 1.297005e+00, 1.080629e+00, 0.6
0.6 | 1.577001e+00, | 1.306052e+00, 1.045517e+00, ' 0 0.2 0.4 0.6 0.8
0.7 | 1.626148e+00, | 1.315209e+00, 1.009355e+00,
0.8 | 1.675009e+00, | 1.324401e+00, 9.725403e-01,
0.9 | 1.723343e+00, | 1.333546e+00 9.355457e-01,
Table 5.18: Solution of system (1,1)
for = 0.9 and r = 0.75 Figure of table 5.18

t p =0.6 p=0.38 p=1
0 | 7.713315e-0L, 7.535500e-01, | 7.372956e-0L, il s =
0.1 | 7.975472e-01, 7.576474e-01, 7.232723e-01, ) —©— Column'3
0.2 | 8.230996e-01, 7.619032e-01, 7.082340e-01, g 14] o © - .
0.3 | 8.489923e-01, 7.663174e-01, 6.923204e-01, g 1 2‘—{ g—a= -
0.4 | 8.751491e-01, 7.708600e-01, 6.756327e-01, ‘
0.5 | 9.014929e-01, 7.755065e-01, 6.582618e-01, 1
0.6 [ 9.279478e-01, 7.802336e-01, 6.403063e-01, 0 0.2 0.4 0.6 0.8
0.7 | 9.544320e-01, 7.850158e-01, 6.218868e-01, t
0.8 | 9.808503e-01, 7.898231e-01, 6.031597e-01,
0.9 | 1.007090e+00, 7.946188e-01, 5.843287e-01
Table 5.19: Solution of system (2,1) for

for § = 0.5 and r = 0.25 Figure of table 5.19
t p=0.6 p=2038 p=1
0 | 2.417520e-01, | 2.370986e-01, | 2.328019e-01, _
0.1 | 2.260375e-01, | 2.148220e-01, | 2.055715e-01, 02 &
0.2 | 2.121088e-01, | 1.921988e-01, | 1.752375e-01, @ ] 3
0.3 | 1.983581e-01, | 1.690637e-01, | 1.431079e-01, 30.1
0.4 | 1.848221e-01, | 1.457682e-01, | 1.099312e-01, g
0.5 | 1.715499e-01, | 1.225704e-01, | 7.625973e-02, 8 =
0.6 | 1.585925e-01, | 9.969147e-02, | 4.257570e-02, ; Column 3
0.7 | 1.460069e-01, | 7.734735e-02, | 9.354772e-03, 0 0.2 0.4 0.6 0.8 1
0.8 | 1.338589e-01, | 5.576682e-02, | -2.289597e-02, t
0.9 | 1.222255e-01 | 3.520346e-02 | -5.361160e-02,
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Table 5.20: Solution of system (2,1)
for B =0.5andr =0.25

t p =0.6 p=0.38 p=1

0 1.692264e+00, 1.659690e+00, 1.629613e+00,
0.1 | 1.627061e+00, 1.560005e+00, 1.499194e+00,
0.2 | 1.563478e+00, 1.459690e+00, 1.365294e+00,
0.3 | 1.499697e+00, 1.358132e+00, 1.228498e+00,
0.4 | 1.435625e+00, 1.255347e+00, 1.088918e+00,
0.5 | 1.371273e+00, 1.151427e+00, 9.467064e-01,
0.6 | 1.306746e+00, 1.046642e+00, 8.022990e-01,
0.7 | 1.242250e+00, 9.414889¢e-01, 6.565644e-01,
0.8 | 1.178098e+00, 8.367423e-01, 5.109218e-01,
0.9 | 1.114713e+00 7.334777e-01 3.674355e-01,

Table5.21: Solution of system (2,1)
forf =0.7andr = 0.5

t p=0.6 p=2038 p=1

0 4.966709e-01, 4.863082e-01, 4.767811e-01,
0.1 | 4.913575e-01, 4.666161e-01, 4.460810e-01,
0.2 | 4.864360e-01, 4.460192¢-01, 4.114856e-01,
0.3 | 4.814787e-01, 4.245025e-01, 3.740808e-01,
0.4 | 4.765114e-01, 4.023860e-01, 3.345760e-01,
0.5 | 4.715595e-01, 3.799145e-01, 2.935389e-01,
0.6 | 4.666464e-01, 3.573001e-01, 2.514914e-01,
0.7 | 4.617949e-01, 3.347475e-01, 2.089649e-01,
0.8 | 4.570297e-01, 3.124711e-01, 1.665391e-01,
0.9 | 4.523781e-01 2.907059e-01 1.248710e-01

Table 5.22: Solution of system (2,1)

for B=0.7andr = 0.5

Figure of table 5.20
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The spaces of continuous functions of solutions depended on order of derivatives and drive it by some method.
The tables showed the efficiently of method since the values in columns are decreasing or increasing converge

The method gives a permutation to use it on another fractional order type of fractional differential equations.
The parameters of Caputo- Katugmpola made a complexity for computed the approximate solution of integral

t p=20.6 p=2038 p=1
0 1.490013e+00, 1.458925e+00, 1.430343e+00,
0.1 | 1.478041e+00, 1.411849e+00, 1.353205e+00,
0.2 | 1.466447e+00, 1.363802e+00, 1.272062e+00,
0.3 | 1.454781e+00, 1.314656e+00, 1.187768e+00,
0.4 | 1.443057e+00, 1.264630e+00, 1.100789e+00,
0.5 | 1.431291e+00, 1.213903e+00, 1.011501e+00,
0.6 | 1.419509e+00, 1.162671e+00, 9.203367e-01,
0.7 | 1.407745e+00, 1.111185e+00, 8.278840e-01,
0.8 | 1.396043e+00, 1.059778e+00, 7.349657e-01,
0.9 | 1.384461e+00, 1.008882e+00, 6.427067e-01,

CONCLUSION

1. The reproducing function depended on order of derivatives and drive it by some method.

2.

3.

to exact solutions.
4.
5.
equation
6.

The reproducing kernel Hilbert space method cannot use it for fractional differential equation directly such

ordinary differential equations but we can use it with fractional integral equation.
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