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1. INTRODUCTION 

 
         To understand the dynamics of interaction between prey species and predator species, thousands of preys -predator 

model has been considered by mathematician author [1,2]. 

Food web models are important conceptual tool for illustrating the feeding relationships among species within a 

community, revealing species interactions and community structure, and understanding the dynamics of energy transfer 

in an ecosystem, therefore two-species model has been extended to the three-species model by many authors [3-7]. 

Functional response is defined as the number of consumed preys per predator per unit time [2], therefor it is the important 

element to represent the dynamics relationship between predator population and prey population, C.S. Holling identified 

three types of functional response Type I, Type II and Type- III. The most useful functional response is the Holling type 

II functional response, which is characterized by decelerating intake rate [8]. Those types of functional response for are 

used by many mathematicians to modeling the dynamics of interactions between predator and prey [9,10,17]. Jha and 

Ghorai [9] proposed a prey-predator model with selective harvesting between the species using a Holling-type functional 

response. Khan et al. [11] investigated bifurcation analysis of a three-species in discrete time. The authors [12, 13] have 

investigated the dynamic behavior of a three species system with a scavenger. Diana et al. [13] investigated the three 

species model’s dynamic behavior with logistic growth in which disease was included. The behavior of a three-species 

model with time delay and noise was analyzed stochastically by Danane and Torres [15]. It has been explored the fear 

effect and stability analysis of the food chain model [16].  
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 In nature, some of predator species consume more than type of prey For example, lions usually predate a number of large 

land-based animals, such as antelopes, buffaloes, crocodiles, giraffes, pigs, zebra, wild dogs and wildebeest. In 2022, the 

Holling type II functional response is extended to more than one prey species [2].  

In this paper, a three species food-web incorporating the extended Holling type II functional response is considered. In 

the model consideration is to study the effect of We also consider the existence of an additional source of food for the 

intermediate predator. The amount of extra food assumes a linear increase in intake rate with food density and depends 

on the biomass of prey species [1].  

This paper consists of six sections. In the next section, the model derivations and some of its solution property are given. 

In the third section, all feasible and possible steady stat points of model explored and their local stability are investigated. 

In the section four, the Hopf- bifurcation near to each steady state point is studied. In the section five, some numerical 

simulation is done, to observe the impact of parameters and confirm the analytical results in this work. Finally in section 

six. A brief conclusion on the total work is given.   

        

2. THE MODEL DERIVATION 

          In the derivation of the proposed food web system, we assumed that 𝑋(𝑡), 𝑌(𝑡) , 𝑍(𝑡)  represent the individual 

numbers of the prey, intermediate predators and apex predators, respectively and the following assumptions are taken to 

consideration  

. 

1. The prey specie grows logistically with Intrinsic growth rate > 0 and carrying capacity  𝐾 > 0. 

2. The top predators predate both prey and intermediate predators according to extended Holling type II 

functional response
𝛼1𝑋𝑍

1+𝛼1𝑇1𝑋+𝛼2𝑇2𝑌
 and

𝛼2𝑌𝑍

1+𝛼1𝑇1𝑋+𝛼2𝑇2𝑌
 , respectively. Where 𝛼1 and 𝛼2 are predator’s search 

efficiency of prey, intermediate predators, respectively.𝑇1 and 𝑇2 are predator’s average handling times of 

prey, intermediate predators, respectively. The extended Holling type II functional response functional 

response is presented in [2]. 

3. The prey population predated by intermediate predators according to Holling type II functional response 
𝛽𝑋𝑌

1+𝛽𝑇𝑋
 

, where 𝛽 is by intermediate predators' predation rate and 𝑇 the predator’s average handling time of 

intermediate predators. 

4. An extra food quantity 𝑎𝑌 (1 −
𝑋

𝐾
) supplied to intermediate predators. 

5. The top predator and intermediate predators numbers decreased by natural death with 𝑑𝑦 and 𝑑𝑧, respectively.  

6. The biomass of prey convers ate to biomass of with rate 0 < 𝑐 < 1. while the biomass of prey and 

intermediate predator convers ate to biomass of top predator with rate  𝑐1 < 1  and0 < 𝑐2 < 1, respectively. 

The dynamics of such above interaction dynamics can be modeled as follows: 
𝑑𝑋

𝑑𝑡
= 𝑟𝑋 (1 −

𝑋

𝐾
) −

𝛽𝑋𝑌

1 + 𝛽𝑇𝑋
−

𝛼1𝑋𝑍

1 + 𝛼1𝑇1𝑋 + 𝛼2𝑇2𝑌
                                               

𝑑𝑌

𝑑𝑡
=

𝑐𝛽𝑋𝑌

1 + 𝛽𝑇𝑋
+ 𝑎𝑌 (1 −

𝑋

𝐾
) −  

𝛼2𝑌𝑍

1 + 𝛼1𝑇1𝑋 + 𝛼2𝑇2𝑌
− 𝑑𝑦𝑌                                  

𝑑𝑍

𝑑𝑡
=
(𝑐1𝛼1𝑋 + 𝑐2𝛼2𝑌)𝑍

1 + 𝛼1𝑇1𝑋 + 𝛼2𝑇2𝑌
      − 𝑑𝑧𝑍                                                                             

          (1) 

 

with initial conditions 𝑋(0) ≥ 0, 𝑌(0) ≥ 0 and 𝑍(0) ≥ 0                                                          

System (1) satisfies the Lipschitzian condition, because the right side of it is continuous and has partial derivatives on 

the space𝑅3. Therefore, it has unique solution. Further, the time derivative of 𝑋, 𝑌 and Z are zero in 𝑌𝑍 − 𝑃𝑙𝑎𝑛𝑒, 𝑋𝑍 −
𝑃𝑙𝑎𝑛𝑒 and   𝑋𝑌 − 𝑝𝑙𝑎𝑛𝑒, respectively. And this guarantees that the component 𝑋, 𝑌and 𝑍 of the solution points of 

system (1), cannot cross any coordinates of the solution points. Hence components 𝑋, 𝑌and 𝑍 of solution points are 

always non negative. 

 

Theorem 1: System (1) is uniformly bounded, lf the following inequality holds. 

                                              𝑎 ≤  𝑑𝑦                                                                                           (2)                      

                                               

 

Proof.  The first equation in system 1 gives that 

                                                            
𝑑𝑋

𝑑𝑡
𝑟𝑋 (1 −

𝑋

𝐾
),  
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                             So,                       lim
𝑡→∞

𝑆𝑢𝑝(𝑋(𝑡)) ≤  𝐾 

Let 𝑀 = 𝑀𝑖𝑛{𝑑𝑦 − 𝑎, 𝑑𝑧  }  and apply above inequality at system 1, it gets  

                                                          
𝑑(𝑋+𝑌+𝑍)

𝑑𝑡
≤ 𝑟𝑋 − (𝑑𝑦 − 𝑎)𝑌 − 𝑑𝑧𝑍 

                                                                         ≤ 𝑟𝐾 +𝑀𝐾 −𝑀(𝑋 + 𝑌 + 𝑍). 

                           So,  lim
𝑡→∞

𝑆𝑢𝑝𝑋 + 𝑌 + 𝑍 ≤  
𝑟𝐾+𝑀𝐾

𝑀
 and this completes the proof. 

 

3. STABLITY ANALYSIS 

This section including two subsections. In the first subsection, all feasible and possible steady stat points of system (1) 

are determined and their local asymptotically stability LAS are investigated in the second 

.  

3.1   Existence of steady states 

System (1) has at most the following six steady states: 

i. The trivial steady state 𝑆0(0,0,0). 

ii.  The only prey existence steady state 𝑆1(𝐾, 0,0). 

iii. The prey-free steady state 𝑆2(0, 𝑌2, 𝑍2)  where, 

                                            𝑌2 =
𝑑𝑧

𝛼2(𝑐2−𝑑𝑧𝑇2)
 and 𝑍2 =

1

𝛼2
(𝑎 − 𝑑𝑦)(1 + 𝛼2𝑇2𝑌2)                                              

iv. The intermediate predators-free steady state𝑆3(𝑋3, 0, 𝑍3) where, 

                                              𝑋3 =
𝑑𝑧

𝛼1(𝑐1−𝑑𝑧𝑇1)
 and 𝑍3 =

𝑟

𝛼1
(1 −

𝑋3

𝐾
) (1 + 𝛼1𝑇1𝑋3) 

v. The top predator-free steady state 𝑆4(𝑋4, 𝑌4, 0) where,  

              𝑌4 =
𝑟

𝛽
(1 −

𝑋4

𝐾
) (1 + 𝛽𝑌𝑋4) and 𝑋4 is a positive root for the following system 

𝑎𝛽𝑇𝑋2 + (𝑎 − 𝑐𝛽𝐾 + (𝑑𝑦 − 𝑎)𝛽𝑇𝐾)𝑋 + (𝑑𝑦 − 𝑎)𝐾 = 0 

vi. coexistence steady state   𝑆5(𝑋5, 𝑌5, 𝑍5), where 𝑋5, 𝑌5 and 𝑍5 are positive roots for the following system 

                                      

𝑟(𝐾 − 𝑋) −
𝛽𝐾𝑌

1+𝛽𝑇𝑋
−

𝛼1𝐾𝑍

1+𝛼1𝑇1𝑋+𝛼2𝑇2𝑌
= 0

𝑐𝛽𝐾𝑋

1+𝛽𝑇𝑋
+ 𝑎(𝐾 − 𝑋) −  

𝛼2𝐾𝑍

1+𝛼1𝑇1𝑋+𝛼2𝑇2𝑌
− 𝑑𝑦𝐾 = 0

𝑐1𝛼1𝑋 + 𝑐2𝛼2𝑌 − 𝑑𝑧(1 + 𝛼1𝑇1𝑋 + 𝛼2𝑇2𝑌) = 0

 

               

 

3.2 Local stability 

      Here, LAS for all the steady states of system (1) is studied. firstly, we   

Linearize system (1) near a point (𝑋, 𝑌, 𝑍).  using the perturbed variables 𝑈(𝑡) = 𝑋(𝑡) − 𝑋  and𝑉(𝑡) = 𝑌(𝑡) − 𝑌   and   

𝑊(𝑡) = 𝑍(𝑡) − 𝑍. system (1) can be linearized as follows: 

 

        

(

 
 

𝑑𝑈(𝑡)

𝑑𝑡
𝑑𝑉(𝑡)

𝑑𝑡
𝑑𝑊(𝑡)

𝑑𝑡 )

 
 
= 𝐴(𝑋, 𝑌, 𝑍) (

𝑈(𝑡)

𝑉(𝑡)
𝑊(𝑡)

)    Where,    𝐴(𝑋, 𝑌, 𝑃) = (

𝐴11 𝐴12 𝐴13
𝐴21 𝐴22 𝐴23
𝐴31 𝐴33 𝐴33

)    

With 

                                            𝐴11 = 𝑟 −
2𝑟𝑋

𝐾
−

𝛽𝑌

(1+𝛽𝑇𝑋)2
−

(1+𝛼2𝑇2𝑌)𝛼1𝑍

(1+𝛼1𝑇1𝑋+𝛼2𝑇2𝑌)
2 ,   

                                           𝐴12 = −
𝛽𝑋

1+𝛽𝑇𝑋
+

𝛼1𝛼2𝑇2𝑋𝑍

(1+𝛼1𝑇1𝑋+𝛼2𝑇2𝑌)
2 ,  𝐴13 = −

𝛼1𝑋

1+𝛼1𝑇1𝑋+𝛼2𝑇2𝑌
, 

                                            𝐴21 =
𝑐𝛽𝑌

(1+𝛽𝑇𝑋)2
+

𝛼1𝛼2𝑇1𝑌𝑍

(1+𝛼1𝑇1𝑋+𝛼2𝑇2𝑌)
2 −

𝑎𝑌

𝐾
, 

                                            𝐴22 =
𝑐𝛽𝑋

1+𝛽𝑇𝑋
+ 𝑎 (1 −

𝑋

𝐾
) −

(1+𝛼1𝑇1𝑋)𝛼2𝑍

(1+𝛼1𝑇1𝑋+𝛼2𝑇2𝑌)
2 − 𝑑𝑦 , 

                                            𝐴23 =
−𝛼2𝑌

1+𝛼1𝑇1𝑋+𝛼2𝑇2𝑌
, 𝐴31 =

(𝑐1+𝛼2(𝑐1𝑇2−𝑐2𝑇1)𝑌)𝛼1𝑍

(1+𝛼1𝑇1𝑋+𝛼2𝑇2𝑌)
2 , 

                                            𝐴32 =
(𝑐2+𝛼1(𝑐2𝑇1−𝑐1𝑇2)𝑋)𝛼2𝑍

(1+𝛼1𝑇1𝑋+𝛼2𝑇2𝑌)
2    and  𝐴33 =

𝑐1𝛼1𝑋+𝑐2𝛼2𝑌

1+𝛼1𝑇1𝑋+𝛼2𝑇2𝑌
− 𝑑𝑧 

  

Theorem 2. In system (1), 𝑆0(0,0,0)  and 𝑆2(0, 𝑌2, 𝑍2) are always unstable. 
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Proof.  The eigenvalues of 𝐴(0,0,0), are  𝜆0𝑋 = 𝑟 > 0,  𝜆0𝑌 = 𝑎 − 𝑑𝑦 and   𝜆0𝑍 = −𝑑𝑧.     

Therefore, 𝑆0(0,0,0)  is unstable.  

The eigenvalues of 𝐴(0, 𝑌2, 𝑍2), are  𝜆2𝑋 = 𝑟 − 𝛽𝑌2 −
𝛼1𝑍2

1+𝛼2𝑇2𝑌2
   and   𝜆2𝑌  and  𝜆2𝑍 are roots of the equation 

    𝜆2 + (
(𝑑𝑦−𝑎)𝛼2𝑇2𝑍2

1+𝛼2𝑇2𝑌2
) 𝜆 +

𝛼1
2𝑌2(𝑎−𝑑𝑦)

𝛼2(1+𝛼2𝑇2𝑌2)
2 = 0. 

The existence condition of 𝑆2(0, 𝑌2, 𝑍2) is 𝑎 > 𝑑𝑦. So 𝜆2𝑌 > 0 or  𝜆2𝑍 > 0 

             Therefore,  𝑆2(0, 𝑌2, 𝑍2)  is  unstable. 

 

 

 

 

 

Theorem 3. In  system (1), 

1. 𝑆1(𝐾, 0,0) is  LAS if and only if,   

                                     

𝛽𝐾

1+𝛽𝑇𝐾
<
𝑑𝑦

𝑐

𝛼1𝐾

1+𝛼1𝑇1𝐾
<
𝑑𝑧

𝑐1

                                                                                       (3)                                                                                                                                              

2. If  𝑆3(𝑋3, 0, 𝑍3) exists, then it is  LAS if and only if, 

                      
𝑎 <

𝑟𝛼2

𝛼1
+

𝑑𝑦

(𝐾−𝑋3)
−

𝑐𝛽𝐾𝑋3

(𝐾−𝑋3)(1+𝛽𝑇𝑋3)

1 + 2𝛼1𝑇1𝑋3 > 𝐾𝛼1𝑇1                            
                                                         (4)                               

3.  If  𝑆4(𝑋4, 𝑌4, 0) exists, then it is  LAS if and only if                     

                     
𝑐1𝛼1𝑋4 + 𝑐2𝛼2𝑌4 < 𝑑𝑧 (1 + 𝛼1𝑇1𝑋4 + 𝛼2𝑇2𝑌4) 

1 + 2𝛽𝑇𝑋4 > 𝛽𝑇𝐾 >
𝑎𝑇

𝑐
(1 + 𝛽𝑇𝑋4)

2         
                                        (5) 

4. If  𝑆5(𝑋5, 𝑌5, 𝑍5) exists, then it is  LAS if and only if, all the following criteria hold: 

             

                                         
𝐴 > 0
𝐶 > 0
𝐴𝐵 > 𝐶

                                                                                           (6)      

 

                          𝐴, 𝐵and 𝐶 to be determined in the proof.                                        

 

Proof 1. The eigenvalues of  𝐴(𝐾, 0,0) are      𝜆1𝑋 = −𝑟,  𝜆1𝑌 =
𝑐𝛽𝐾

1+𝛽𝑇𝐾
− 𝑑𝑦 and   𝜆1𝑍 =

𝑐1𝛼1𝐾

1+𝛼1𝑇1𝐾
− 𝑑𝑧 .  

Therefore, eigenvalues are negative, if and only if condition (3) holds. This completes the proof. 

 

Proof 2. The eigenvalues of  𝐴(𝑋3, 0, 𝑍3) are   𝜆3𝑌 =
𝑐𝛽𝑋3

1+𝛽𝑇𝑋3
+ 𝑎 (1 −

𝑋3

𝐾
) −

𝛼2𝑍3

1+𝛼1𝑇1𝑋3
− 𝑑𝑦 and  𝜆3𝑋  and  𝜆3𝑍 

are roots of the equation 

                                            𝜆2 +
𝑟𝑋3(1+2𝛼1𝑇1𝑋3−𝐾𝛼1𝑇1)

𝐾(1+𝛼1𝑇1𝑋3)
𝜆 +

𝑐1𝛼1
2𝑋3𝑍3

(1+𝛼1𝑇1𝑋3)
2 = 0 

   Therefore, all the eigenvalues are negative, if and only if condition (4) holds. This completes the proof. 

 

Proof 3. The eigenvalues of  𝐴(𝑋4, 𝑌4, 0) are   𝜆4𝑧 =
𝑐1𝛼1𝑋4+𝑐2𝛼2𝑌4

1+𝛼1𝑇1𝑋4+𝛼2𝑇2𝑌4
− 𝑑𝑧  and  𝜆4𝑋  and  𝜆4𝑦 are roots of the 

equation 

                                           𝜆2 +
𝑟𝑋4(1+2𝛽𝑇𝑋4−𝛽𝑇𝐾)

𝑘(1+𝛽𝑇𝑋4)
𝜆 +

𝛽𝑋4𝑦4

1+𝛽𝑇𝑋4
[

𝑐𝛽

(1+𝛽𝑇𝑋4)
2 −

𝑎

𝐾
] = 0 

Therefore, all the eigenvalues are negative, if and only if condition (5) holds. This completes the proof. 

 

Proof 4. The eigenvalues of  𝐴(𝑋4, 𝑌4, 0) are𝜆5𝑋,  𝜆5𝑌 and   𝜆5𝑍 are roots of the equation     

                                                                    𝜆3 + 𝐴𝜆2 + 𝐵𝜆 + 𝐶 = 0,     

                  Where,   𝐴 = −(𝑅1 + 𝑅5),  
                                  𝐵 = 𝑅1𝑅5 − 𝑅2𝑅4 − 𝑟3(𝑅1 + 𝑅3 + 𝑅5),  
                       and    𝐶 = 𝑅1𝑅5 − 𝑅2𝑅4 −𝑅3𝑅4 + 𝑅3𝑅5           
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                        With            𝑅1 = 𝑟 −
2𝑟𝑋5

𝐾
−

𝛽𝑌5

(1+𝛽𝑇𝑋5)
2 −

(1+𝛼2𝑇2𝑌5)𝛼1𝑍5

(1+𝛼1𝑇1𝑋5+𝛼2𝑇2𝑌5)
2 ,  

                                             𝑅2 = −
𝛽𝑋5

1+𝛽𝑇𝑋5
+

𝛼1𝛼2𝑇2𝑋5𝑍5

(1+𝛼1𝑇1𝑋5+𝛼2𝑇2𝑌5)
2 ,  𝑅3 = −

𝛼1𝑋5

1+𝛼1𝑇1𝑋5+𝛼2𝑇2𝑌5
, 

                                            𝑅4 =
𝑐𝛽𝑌5

(1+𝛽𝑇𝑋5)
2 +

𝛼1𝛼2𝑇1𝑌5𝑍5

(1+𝛼1𝑇1𝑋5+𝛼2𝑇2𝑌5)
2 −

𝑎𝑌5

𝐾
, 

                                            𝑅5 =
𝛼2
2𝑇2𝑌5𝑍5

(1+𝛼1𝑇1𝑋5+𝛼2𝑇2𝑌5)
2, 𝑅6 = −

𝛼2𝑌5

1+𝛼1𝑇1𝑋5+𝛼2𝑇2𝑌5
, 

                                            𝑅7 =
(𝑐1𝛼1+𝛼1𝛼2(𝑐1𝑇2−𝑐2𝑇1)𝑌5)𝑍5

(1+𝛼1𝑇1𝑋5+𝛼2𝑇2𝑌5)
2    and 𝑅8 =

(𝑐2𝛼2+𝛼1𝛼2(𝑐2𝑇1−𝑐1𝑇2)𝑋5)𝑍5

(1+𝛼1𝑇1𝑋5+𝛼2𝑇2𝑌5)
2  

                                             

Condition (6) is the Routh-Hurwize criteria; therefore, all the eigenvalues are negative. This completes the proof. 

 

 

4. HOPF-BIFURCATION  

Here, the occurrence of Hopf- bifurcation in system1 near all steady states, are discussed as follows: 

From Theorem (2) it is observed that 𝑆0(0,0,0)  and 𝑆2(0, 𝑌2, 𝑍2) is always unstable. Therefor there is no possibility to 

have a Hopf bifurcation near 𝑆0 and 𝑆2 . From Theorem 3(1), it is observed that the eigenvalues of  𝐴(𝐾, 0,0) are      𝜆1𝑋 =

−𝑟,  𝜆1𝑌 =
𝑐𝛽𝐾

1+𝛽𝑇𝐾
− 𝑑𝑦  and   𝜆1𝑍 =

𝑐1𝛼1𝐾

1+𝛼1𝑇1𝐾
− 𝑑𝑧 .  this guarantee that the eigenvalues cannot be imaginary complex 

number and hence there is no possibility to have a Hopf bifurcation near𝑆1(𝐾, 0,0). 

The conditions that guarantee the occurring of Hopf- bifurcation near, 𝑆3(𝑋3, 0, 𝑍3) and If  𝑆4(𝑋4, 𝑌4, 0) 𝑆4 = (𝑋
∗, 𝑌∗, 𝑍∗) 

are established in Theorem 4 and Theorem (5), respectively. Regarding to𝑆5(𝑋5, 𝑌5, 𝑍5) Form theorem 3(4) we can note 

that it is difficult to determine where the eigenvalue become imaginary complex, so it is complex analytically study Hopf-

bifurcation near𝑆5(𝑋5, 𝑌5, 𝑍5). However, we observed the occurring of Hopf bifurcation near𝑆5(𝑋5, 𝑌5, 𝑍5) numerically 

in the next section. 

Theorem 4.  System (1) has a Hopf bifurcation near 𝑆3(𝑋3, 0, 𝑍3) as the parameter value 𝐾 passes through the 

value   𝐾1 =
1

𝛼1𝑇1
+ 2𝑋3, if the following condition holds. 

𝑐𝛽𝐾𝑋3
1 + 𝛽𝑇𝑋3

+ 𝑎(𝐾 − 𝑋3) >
𝑟𝛼2
𝛼1
(𝐾 − 𝑋3)                                                                  (7) 

Proof.  According to 𝐴(𝑋3, 0, 𝑍3),  𝜆3𝑌 =
𝑐𝛽𝑋3

1+𝛽𝑇𝑋3
+ 𝑎 (1 −

𝑋3

𝐾
) −

𝛼2𝑍3

1+𝛼1𝑇1𝑋3
   and  

 𝜆3𝑋,  𝜆3𝑍 =
1

2
[−𝐴1 ± √𝐴1

2 − 4𝐵1] 

Where 𝐴1 =
𝑟𝑋3(2𝛼1𝑇1𝑋3−𝐾𝛼1𝑇1+1)

𝐾(1+𝛼1𝑇1𝑋3)
  and 𝐵1 =

𝑐1𝛼1
2𝑋3𝑍3

(1+𝛼1𝑇1𝑋3)
3 

Clearly, as shown above,  𝜆3𝑌  is negative if and only if condition (7) holds. However, 

   𝜆3𝑋,  𝜆3𝑍 = ±𝑖√𝐵1  at 𝐾 = 𝐾1, so there is neighborhood around 𝐾 = 𝐾1 such that  

 

           𝜆4𝑌,  𝜆4𝑧 = 𝜔(𝐾) ± 𝑖𝜛(𝐾), where 𝜔(𝐾) = −
𝐴1

2
, and  

 

 

[
𝑑𝜔(𝐾)

𝑑𝐾
]
𝐾=𝐾1

= −
𝑟𝑋3(1 + 2𝛼1𝑇1𝑋3)

(1 + 𝛼1𝑇1𝑋3) (
1
𝛼1𝑇1

+ 2𝑋3 )
2  ≠ 0 

Therefore, system (1) has a Hopf- bifurcation near 𝑆3(𝑋3, 0, 𝑍3)at 𝐾 = 𝐾1 , and hence the proof is 
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Theorem 5 System (1) has a Hopf bifurcation near 𝑆4(𝑋4, 𝑌4, 0) as the parameter value 𝐾 passes through the value    

𝐾2 =
1

𝛽𝑇
+ 2𝑋4, if   

𝑐1𝛼1𝑋4 + 𝑐2𝛼2𝑌4 < 𝑑𝑧 (1 + 𝛼1𝑇1𝑋4 + 𝛼2𝑇2𝑌4)                                                      (8) 

Proof According to 𝐴(𝑋4, 𝑌4, 0),  𝜆4𝑌 =
𝑐1𝛼1𝑋4+𝑐2𝛼2𝑌4

1+𝛼1𝑇1𝑋4+𝛼2𝑇2𝑌4
− 𝑑𝑧   and  

 𝜆4𝑋,  𝜆4𝑍 =
1

2
[−𝐴2 ± √𝐴2

2 − 4𝐵2] 

Where 𝐴2 =
𝑟

𝑐𝛽𝐾2
 (𝑑𝑧𝐾 − 𝑎(𝐾 − 𝑋4))(1 + 2𝛽𝑇𝑋4 − 𝛽𝑇𝐾) and 𝐵2 =

𝛽𝑋4𝑦4

1+𝛽𝑇𝑋4
[

𝑐𝛽

(1+𝛽𝑇𝑋4)
2 −

𝑎

𝐾
] 

Clearly, as shown above,  𝜆4𝑌  is negative if and only if condition (8) holds. However, 

   𝜆3𝑋,  𝜆3𝑍 = ±𝑖√𝐵1  at 𝐾 = 𝐾2, so there is neighborhood around 𝐾 = 𝐾2 sch that  

 𝜆4𝑌,  𝜆4𝑧 = 𝜔(𝐾) ± 𝑖𝜛(𝐾) 

        where𝜔(𝐾) = −
𝐴1

2
, and  

[
𝑑𝜔(𝐾)

𝑑𝐾
]
𝐾=𝐾2

=
𝑑𝑧𝐾

(𝐾2 − 𝑋4)
2
[
𝑑𝑋4
𝑑𝑎
]
𝐾=𝐾2

 ≠ 0 

Therefore, system (1) has a Hopf- bifurcation near 𝑆4(𝑋4, 𝑌4, 0)at 𝐾 = 𝐾2 , and hence the proof is 

 

5. NUMERICAL SIMULATION 

             In order to support the analytical finding in this paper, some numerical simulations are performed; all the 

simulations are carried out through Runga -Kutta method of order six method, using MATLAB. First, let choose the set 

of parameter values as given in (9). 
𝑟 = 1.1;  𝐾 = 40;  𝛽 = 0.01; 𝑇 = 𝑇1 = 𝑇2 = 5; 𝑎 = 0.008;
𝛼1 = 𝛼2 = 0.001; 𝑐 = 𝑐1 = 𝑐2 = 0.5; 𝑑𝑦 = 𝑑𝑧 = 0.03.

                                                        (9) 

 

The parameter values in (9), satisfy the condition for LAS of the coexistence steady state. The numerical solution with 

parameter values in (1) illustrated in Fig.1.  

     

 
Figure 1: With parameter values as given in (9), system (1) approaches coexistence steady state. 
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In Fig.2, the value of 𝒂 increased to  𝟎. 𝟎𝟏𝟏 and other parameter values are fixed as given in (9). It is observed that and 

system trajectories   show periodic oscillations around coexistence, and this indicates the emergence of Hopf bifurcations 

as parameter 𝒂 increases. 

 

 
Figure 2: The time series shows periodic oscillations around coexistence steady state where, 𝒂=  𝟎. 𝟎𝟏𝟏 and other 

parameter values are fixed as given in (9).   

                  

 

In Fig.3, values 𝐾, 𝑎, 𝛼1, 𝑐, 𝑐1, 𝑐2, 𝑑1 and 𝑑2 changed to 83, 0.025, 0.005, 0.9, 0.7, 0.7, 0.07 and 0.05, respectively and 

fixed others as given in (9). Those parameter values satisfy the conditions for LAS of the intermediate predator free 

Steady state  

 
Figure 3: The time series shows that system (1) approaches intermediate predator steady state. 

 

 

Note that  𝑲𝟏 ≈ 𝟖𝟒 for the parameters used Fig.3. Therefore, if we increased the value 𝑲 = 𝟖𝟔  in Fig.4 and fixed others 

as used in Fig.3. Then it is observed that and system trajectories   show periodic oscillations around intermediate predator 

free Steady state and this indicates the emergence of Hopf bifurcations as parameter 𝑲 increases. 
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Figure 4: The time series shows periodic oscillations around intermediate predator steady state. 

 

In Fig.5, values 𝐾, 𝑎, 𝑐, 𝑑1 and 𝑑2 changed to 50, 0.025, 0.7, 0.9, 0.08 and 0.08, respectively and fixed others as given 

in (9). Those parameter values satisfy the conditions for LAS of the top predator free Steady state.  

 

 

 
Figure 5: The time series shows that system (1) approaches top predator steady state. 

 

Note that  𝑲𝟐 ≈ 𝟓𝟐  for the parameters used Fig.5, therefore if we increased the value 𝑲 = 𝟓𝟑  in Fig.6 and fixed others 

as used in Fig.5. Then it is observed that and system trajectories   show periodic oscillations around top predator free 

Steady state and this indicates the emergence of Hopf- bifurcations as parameter 𝑲 increases. 
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Figure 6: The time shows periodic oscillations around top predator steady state. 

In general, above figures confirm the analytical results regarding to stability and Hopf- bifurcation, further it is observed 

that when the value of  𝑎 and 𝐾 (the amount of extra food) the dynamics of the system (1) induced a transition from a 

stability situation to the state where the prey species and apex predators oscillate periodically. 

     

6. CONCLUSION  

      In this article, a food-web is that includes three species of prey, intermediate predators and top predators, an amount 

of additional food supplies to intermediate predators. the intermediate predators predating the prey according to the 

Holling type-II functional response, while the apex predators predating both prey and intermediate predators according 

to extended Holling type II functional response for two prey species. it is proved that under condition (2), Six biologically 

possible steady states are explored and it is discovered that both trivial and prey-free steady states are unstable, however, 

in theorem2 it is proved that, only prey existence, intermediate predators-free, top predator-free and coexistence steady 

states are LAS under on the sample parameter conditions (3). (4), (5), and (6), respectively.  And also, it is proved that 

critical values 𝐾1and𝐾2, make the occurrence of Hopf-bifurcation of the model near intermediate predators-free and top 

predator-free steady states, respectively. Based on choosing suitable values as given in (9), the model solved numerically. 

In the numerical solutions, analytical results regarding to the stability and Hopf- bifurcation are confirmed. It is illustrated 

in Fig. (1-6), if we increase the values of 𝑎 and 𝐾, that is the amount of extra food, the dynamics of the system (1) induced 

a transition from the stability situation to the state where the prey species and apex predators oscillate periodically.  
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