
       

*Corresponding author: hussein.hashem@uod.ac 
https://wjps.uowasit.edu.iq/index.php/wjps/index 

29 

Wasit Journal for Pure Science 

Journal Homepage: https://wjps.uowasit.edu.iq/index.php/wjps/index 
e-ISSN: 2790-5241    p-ISSN: 2790-5233 

 

Hussein A. Hashem  
 
Department of Mathematics, College of Science, University of Duhok, Kurdistan Region, IRAQ. 

 

DOI: https://doi.org/10.31185/wjps.607 

Received 20 November 2024; Accepted 02 December 2025; Available online 30 March 2025 

 

1. INTRODUCTION 

     In high-dimensional data analysis, variable selection is essential since it aids in determining the most significant 

aspects. Due to the substantial computing burden required, traditional variable selection techniques, such as best subset 

selection algorithms, present difficulties when used with high dimensional data [1]. 

Carefully choosing the predictors is crucial when dealing with an issue that has a lot of variables in the dataset. The use 

of sparse representation to address regression problems has been extensively studied in recent years. This study has its 

roots in Tibshirani's seminal work from 1996[2]. He presented the least absolute shrinkage and selection operator 

(LASSO) in his paper as a penalization technique that can carry out parameter estimation and variable selection at the 

same time. An L1-regularized least squares estimate of the model parameters is called LASSO estimation. 

However, because LASSO tends to use individual dummy variables rather than the complete predictor, it might not 

produce adequate results when working with categorical predictors in the regression model. Moreover, it frequently 

chooses one variable from a group while ignoring the rest because it does not do grouped selection. Numerous extensions 

and solutions have been proposed in the literature to get over these restrictions, like the Elastic Net that was first presented 

by (Zou and Hastie, 2005) [3]. In general, the Elastic Net performs better than LASSO regularization, especially when 

correlated predictors are included, and it penalizes the model using both the L1 and L2 norms. Furthermore, the Elastic 

Net encourages a grouping effect, which tends to include or exclude highly correlated predictors from the entire model. 

     Conventional statistical techniques like likelihood-based approaches or simple least squares may produce skewed 

estimates and sometimes misleading conclusions when there are outliers or contamination in a dataset. Although variable 

selection for resilient linear models has been the subject of some research, little is known about this topic. Fan and Li 

(2001) [4], for instance, noted that the least squares estimate is not robust and recommended that more robust estimators 

for 𝛽  be obtained by employing an outlier-resistant loss function, such as Huber's 𝜌(. ) function or L1 loss. Their 

simulated simulations showed that this method works well for robust regression. Furthermore, Li and Zhu (2008) [5] 

disclosed the solution route of the L1 penalized quantile regression, while Wu and Liu (2009) [6] illustrated the oracle 

qualities for the SCAD and adaptive LASSO penalized quantile regressions.  

     Roger Koenker developed the regression analysis technique known as Quantile Regression in 1978 [7]. By addressing 

the shortcomings of the conventional least squares approach in the presence of outliers and heteroscedasticity, it offers a 

more thorough and reliable representation of the data. Quantile Regression avoids biased or incorrect estimations, 

provides better logical interpretations, and captures the tails of the dependent variable's distribution. When used in 

conjunction with the least squares approach, it can improve statistical problem solving and offer insights on the 

applicability of least squares estimation.  
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Regularization in Quantile Regression has been investigated by scholars like, Yan and Song (2019) [8], Alhamzawi et al. 

(2012) [9] and Ajeel and Hashem (2020) [10] are other scholars that have investigated this subject from a Bayesian 

perspective.  

     We will provide a comprehensive overview of the different approaches and techniques used for variable selection in 

the context of linear regression below in this paper.  

 

2. METHODS 

     Consider the linear regression model 

𝑦 = 𝑿𝛽 + 𝜖                                                                                                                                                                       (1)       

The error terms 𝜖 have a mean of zero and finite variance 𝜎2, and they are distributed independently and identically.                                                                                                                                                                                                                                                                                                                              

A model fitting procedure produces the vector of estimated coefficients  

𝛽̂ = (𝛽̂1, .   .   . , 𝛽̂𝑝)
𝑇 . 

The ordinary LSE are obtained by minimizing the residual sum of squared errors 

𝛽̂𝐿𝑆𝐸 = 𝑚𝑖𝑛⏟
𝛽

= {(𝑌 − 𝑋𝛽)𝑇(𝑌 − 𝑋𝛽)}                                                                                                                              (2)                   

Although the least squares estimates are simple to compute, Tibshirani (1996) [2] identified two primary drawbacks. 

First, even if only a subset of predictors may have the greatest impact on the response variable 𝑌, all least squares 

estimations are not zero. Second, least squares estimates frequently result in poor prediction accuracy due to their 

propensity for low bias and large variance. A considerable overall gain in prediction accuracy can be achieved by 

accepting a little increase in bias in order to lower the variance of the anticipated values. In addition to these drawbacks, 

when the number of linear predictors (𝑝) surpasses the sample size (𝑛), least squares estimates are totally ineffective. 

 

2.1 Ridge Regression 

     Originally introduced by Hoerl and Kennard in 1970 [11], ridge regression is well recognized as a practical alternative 

to ordinary least squares (OLS) regression. This method works particularly well when predictor variables have a high 

degree of correlation. To get more accurate estimates for the regression parameters, it applies an L2 penalty to the 

coefficients and minimizes the sum of squared residuals. The following formula is used to calculate the ridge estimate:  

 

𝛽̂𝑟𝑖𝑑𝑔𝑒 = min
𝛽
{∑ (𝑦𝑖 − ∑ 𝛽𝑗𝑥𝑖𝑗

𝑝
𝑗=1

𝑛
𝑖=1 )2 + 𝜆∑ 𝛽𝑗

2𝑝
𝑗=1 }                                                                                                        (3)                                                                                                 

The positive scalar 𝜆 ≥ 0 is a regularization parameter that determines the level of shrinkage, and the penalty function is 

defined by the L2-norm.  

Hoerl and Kennard (1970) [20] recommended the utilization of all accessible variables to acquire estimates. 

𝛽̂𝑟𝑖𝑑𝑔𝑒 = (𝑋
𝑇𝑋+𝜆𝐼𝑝)

−1𝑋𝑇𝑦    .    

where 𝐼 is the 𝑝 × 𝑝 identity matrix. By adding 𝜆𝐼𝑝 to 𝑋𝑇𝑋 , this results in a regular and invertible matrix. The intercept 

𝛽0 is usually not included in the penalty.  

     The ridge estimator adds bias to ordinary least squares (OLS) estimation. This approach, however, permits the 

inclusion of a moderate degree of bias in order to reduce variance and mean squared error, which may result in 

increased prediction accuracy. The ridge trace, a graphical tool for figuring out the ideal value of the regularization 

parameter lambda (𝜆), was created by Hoerl and Kennard in 1970 [11].  

     Ridge regression shrinks regression coefficients to produce more reliable estimates. Ridge regression does not 

decrease coefficients to exactly zero like some other techniques do, which makes the final model more difficult to 

understand.  

 

2.2 LASSO Regression 

     The LASSO penalty was introduced by Tibshirani (1996) [2] as a method of regularization for carrying out 

simultaneous estimation and variable selection in large datasets. The LASSO estimate 𝛽̂  is defined by:         

𝛽̂𝑙𝑎𝑠𝑠𝑜 = 𝑚𝑖𝑛
𝛽
{∑ (𝑦𝑖 −∑ 𝛽𝑗𝑥𝑖𝑗𝑗 )

2𝑛
𝑖=1 + λ∑ |𝛽𝑗|𝑗 } ,                                                                                                           (4)    

or 

𝛽̂𝑙𝑎𝑠𝑠𝑜 = 𝑚𝑖𝑛
𝛽
‖𝑦 − 𝑥𝛽‖2

2 + λ‖𝛽‖1                                                                            

     The parameter lambda determines the trade-off between minimizing the penalty term, which is the sum of the absolute 

values of the coefficients, and the residual sum of squares (RSS).  

     The LASSO method makes sure that the total of the coefficients' absolute values is less than a constant while 

minimizing the sum of squared residuals. Regression models with a lot of variables and not many observations frequently 

employ it. Choosing variables while fitting the regression line to the data is LASSO's main goal. This is accomplished 

by setting certain coefficients to zero and shrinking others. LASSO adds a penalty to the optimization goal in order to do 

L1 regularization.  
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2.3 Adaptive LASSO 

     A modified version of the LASSO technique was created by Zou (2006) [12] to estimate and choose variables at the 

same time. This sophisticated technique, known as the Adaptive LASSO, applies penalties to various coefficients inside 

the L1 penalty by integrating adaptive weights. The coefficient estimates (𝛽𝑗 s) provided by the Adaptive LASSO 

technique is modified according to the particular characteristics of the data. 

𝛽̂adaptive LASSO = 𝑚𝑖𝑛⏟
𝛽

(𝑌 − 𝑋𝛽)𝑇(𝑌 − 𝑋𝛽) + 𝜆∑ 𝑤𝑗
𝑝
𝑗=1 |𝛽𝑗|,                                                                                         (6)   

𝑤 = {𝑤1, 𝑤2, .    .     . , 𝑤𝑝}is a known weights vector used in the weighted LASSO method. If the weights are correctly 

chosen depending on the data, the weighted LASSO can display oracle features. This implies that it can function as well 

as though we were already aware of the actual underlying model. Moreover, the oracle technique is optimal since the 

adaptive LASSO solution is continuous by definition. Finally, the estimate generated by the Adaptive LASSO shrinkage 

is nearly minimax-optimal. 

 

2.4 Elastic Net 

     The elastic net approach, a kind of regularization technique used in statistical modeling and machine learning, was 

proposed by Zou and Hastie (2005) [3]. By minimizing a particular objective function that incorporates the 𝐿1and 

𝐿2 penalties, the elastic net estimator is produced, encouraging both group selection and sparsity. When dealing with 

multicollinearity and locating significant predictors in high-dimensional data, this approach is quite helpful. The 

definition of the elastic net criterion is 

𝛽̂𝑒𝑙𝑎𝑠𝑡𝑖𝑐 𝑛𝑒𝑡 = min
𝛽
{∑ (𝑦𝑖 − ∑ 𝛽𝑗

𝑝
𝑗=1

𝑛
𝑖=1 𝑥𝑖𝑗)

2 + 𝜆1 ∑ |𝛽𝑗|
𝑝
𝑗=1 + 𝜆2∑ 𝛽𝑗

2𝑝
𝑗=1  } ,                     (7)                                                                                          

Which depends on two regularized parameters  𝜆1, 𝜆2 > 0 . 

     A convex combination of LASSO and Ridge regression is known as the Elastic Net. The Elastic Net reduces to the 

LASSO when 𝛼 =  0. Two steps must be taken when α is between 0 and 1. Prior to using the LASSO, the ridge regression 

coefficients are determined for every fixed 𝜆2. 

    Using predictor variables, the ordinary least squares (OLS) regression calculates the average response. Nevertheless, 

the median function is estimated using a different technique called least absolute deviation (LAD) regression. Due to its 

enhanced robustness, LAD regression is especially helpful when response outliers and heavy-tailed errors are present.  

 

2.5 Quantile Regression 

 

     Quantile Regression (QR) was created by Koenker and Bassett (1978) [7] as an expansion of LAD regression. By 

estimating the response's conditional quantile function, QR provides a thorough understanding of the response variable's 

conditional distribution. QR provides a more informative model overall while retaining the advantageous features of 

LAD regression. 

     By adjusting the quantile parameter 𝜃, Quantile Regression provides a versatile and thorough method for simulating 

the relationship between response variables and predictors. Notably, quantile regression, which is renowned for its 

resistance to outliers, is equal to least absolute deviation regression or median regression when 𝜃 is 0.5. This method is 

favored in these circumstances since it is well known for its resilience to outliers and for estimating the conditional 

quantiles of a response variable. Since both median and least absolute deviation (LAD) regression aim to reduce the 

absolute differences between the data's actual values and its predicted values, they are practically interchangeable. 

Whereas median regression seeks to identify the line (or hyperplane in higher dimensions) that minimizes the absolute 

deviations of the data points from a central point, the median, LAD regression seeks to minimize the sum of the absolute 

values of the residuals (differences between predicted and actual values). 

     When the assumptions of least squares regression are not met or when a more thorough comprehension of the 

relationship between variables across several regions of the conditional distribution is required, quantile regression's 

potent utility is a significant benefit. However, its interpretation and computational elements need careful thought. In 

reality, a minimization problem may be solved to reliably estimate the coefficients, yielding accurate parameter estimates 

across different quantiles of interest. 

min
𝛽
∑ 𝜌𝜃(𝑦𝑖 − 𝑥𝑖

𝑇𝛽)𝑛
𝑖=1                                                                                                       

     Where 𝜌(. ) the objective function refers to an outlier−resistant loss function used in various optimization problems. 

It is particularly robust in the presence of outliers, making it a valuable tool for tasks such as regression and machine 

learning. 

𝜌𝜃(𝑡) = {
𝜃𝑡                        𝑖𝑓       𝑡 ≥ 0

−(1 − 𝜃)𝑡        𝑖𝑓        𝑡 < 0 
,  where 0 <  𝜃 < 1.                                                                                             (8)    

     Under Koenker's direction, regularization was applied to Quantile Regression for the first time in 2004 [13]. In order 

to manage random effects in a mixed-effect Quantile Regression framework, the LASSO penalty was introduced in this 

groundbreaking study. The objective was to use the LASSO method's regularization properties to lessen the random 

effects in the direction of zero. This novel approach offered a fresh approach to managing model complexity and 
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improving estimation accuracy in mixed-effect Quantile Regression models, marking a substantial advancement in the 

field. 

2.6 Gamma-Divergence 

     In their paper, Fujisawa and Eguchi (2008) [14] first proposed the idea of gamma divergence for regression. The 

variance difference between two conditional probability density functions is assessed using this metric. In their alternative 

version of gamma divergence for regression, Kawashima and Fujisawa (2017) [15] made changes to the way the base 

measure on the explanatory variable is handled. A detailed review of gamma divergences for regression and an 

investigation of the associated parameter estimation as outlined by Fujisawa and Eguchi (2008) [14] will be covered in 

the next section. 

2.7  Smoothly Clipped Absolute Deviation (SCAD) 

     The best way to comprehend the SCAD penalty, as presented by Fan and Li (2001) [4], is to look at its first derivative. 

𝑝𝜆
′ (𝛽) = 𝜆 {𝐼{𝛽 ≤ 𝜆} +

(𝑎𝜆−𝛽)+

(𝑎−1)𝜆
𝐼{𝛽 > 𝜆}}  for some 𝑎 and 𝛽 > 0,                                                                                 (9)                           

The letter I stands for the indicator function in the SCAD technique, β for a vector of unknown parameters, and λ for the 

regularization parameter.  

     The approach described in this response involves setting all less significant variables to zero in order to produce 

simpler, easier-to-manage models. Fan and Li (2001) [4] demonstrated that the SCAD penalty may produce estimates 

with the required oracle quality. This suggests that non-zero coefficient estimate is as accurate as it would be if the correct 

model had been known beforehand. Moreover, a true parameter is roughly equal to zero, and its probability is much 

guaranteed when it is zero.  

     Numerous search criteria, such as the Bayesian Information Criterion (BIC), generalized cross-validation, and cross-

validation, can be used to locate the two tuni0ng parameters (λ,a).  

According to Fan and Li (2001) [4], a = 3.7 should be selected as a suitable value for one of the tuning parameters. 

      According to Fan and Li (2001) [4], a good penalty function should yield an estimator with three crucial 

characteristics. The first feature is unbiasedness, which ensures that there is no unnecessary modeling bias by avoiding 

an excessive penalty of big parameters in the final estimator. Additionally, the estimator should indicate sparsity by 

automatically setting unimportant parameters to 0. Last but not least, continuity is essential because if the final estimate 

can demonstrate continuity in the data, model prediction instability may be prevented. 

2.8 Minimax Concave Penalty (MCP) Method 

     Regression analysis uses the Minimax Concave Penalty (MCP), a statistical method, to solve the problem of bias in 

sparse models. Zhang (2010) [16] established the MCP technique, which uses the MCP penalty function to choose 

variables in linear regression models. Since it lessens the issue of inconsistent variable selection that LASSO frequently 

has, it is thought to be an improvement over LASSO. The following formula can be used to produce the MCP estimator. 

𝛽̂𝑗
𝑀𝐶𝑃 = 𝑎𝑟𝑔𝑚𝑖𝑛⏟    

𝑝

[‖𝑌 − 𝑋𝛽‖2 + ∑ 𝑃𝜆,𝛾
𝑀𝐶𝑃𝑝

𝑗=1 ]                                                                                                                 (10)                    

Where: ∑ 𝑃𝜆,𝛾
𝑀𝐶𝑃𝑝

𝑗=1   the MCP penalty function.  

The MCP function has the following format: 

𝑝𝜆(⌈𝛽⌉) = {
𝜆 (|𝛽| −

|𝛽|2

2𝜆𝛾
),            ⌈𝛽⌉ < 𝜆𝛾

𝜆2𝛾

2
,                                 ⌈𝛽⌉ ≥ 𝜆𝛾

                                                                                                                  (11) 

Where: 𝛾 > 1                                                                           

     Numerous penalty functions are used in statistical regression models, and these functions are usually concave. 

Typically, they rely on a tuning parameter (𝜆) and furthermore incorporate another tuning parameter (𝛾) that regulates 

the penalty's level of concavity. The penalty's rate of decline depends critically on this parameter (𝛾).   

The adaptive LASSO (least absolute shrinkage and selection operator) and MCP approaches enable the estimated 

coefficients to develop faster than with the classic LASSO approach, especially for nonzero coefficients. While the goal 

of most of these methods is to shrink coefficients towards zero, the adaptive LASSO and MCP methods reduce the 

amount of shrinkage that is applied to nonzero coefficients, suggesting reduced bias in the estimate process. Numerous 

penalty functions are used in statistical regression models, and these functions are usually concave.  

     Typically, they rely on a tuning parameter (𝜆) and furthermore incorporate another tuning parameter (𝛾) that regulates 

the penalty's level of concavity. The penalty's rate of decrease is largely dependent on this parameter (𝛾).  

     The MCP (minimally concave penalty) function has an intriguing property in that it covers a range of values where 

all estimations stay constant. Interestingly, the estimates are exactly the same inside this range as when derived with the 

least squares regression technique. 
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3. SIMULATION STUDY 

      In the upcoming section, we will conduct a comprehensive comparison of various Quantile Regression methods in 

different scenarios. To start with, we will delve into small-dimensional scenarios featuring both sparse and non-sparse 

parameters. Subsequently, we will explore large-dimensional settings with parameters. In this setting, the relationship is 

represented by the equation 𝑦 =  𝛽0 +  𝑥𝛽 +  𝜀 , where 𝑦  is the dependent variable, 𝑥  represents the independent 

variables, 𝛽0 is the intercept, 𝛽 denotes the parameters, and 𝜀 is the error term. To simulate independent variables 𝑥, we 

will draw them from a multivariate normal distribution, 𝑁(0, Σ𝑥). Furthermore, the pairwise covariance between 𝑥𝑖 and 

𝑥𝑗  will be set to (Σ𝑥)𝑖𝑗 = 𝑟
|𝑖−𝑗|.To evaluate the resilience of the techniques against deviations from normality, we will 

utilize different error distributions, such as the standard normal distribution N(0, 1) and a mixed normal distribution with 

significant outliers. Laplace distribution, t3, G(3,1) and chi-square distribution . 

     The Quantile Regression methods to be compared include quantile LASSO, gamma-divergence, quantile elastic net, 

quantile adaptive LASSO, quantile SCAD, and quantile MCP. The R package gamreg will be utilized for the gamma-

divergence method, while for the rest of the methods, the R package rqPen will be used. 

In addition, we will conduct experiments with different correlations (r = 0.5 and r = 0.95) and consider three cases for 

the β values: 

If  p = 50:  

Case 1.     𝛽1=3,     𝛽2=1.5,     𝛽3 = 0,    𝛽4 = 0,    𝛽5 = 2,     𝛽6 = 0,     𝛽7 = 0, . . . ,   𝛽50 = 0 

 

Case 2.   𝛽1 =1,     𝛽2 =0,     𝛽3 = 0 ,     𝛽4 = 0 ,     𝛽5 = 5 ,      𝛽6 = 0 ,      𝛽7 = 1,     𝛽8 = 0,     𝛽9 = 0,     𝛽10 = 5,     𝛽11 =
0,     𝛽12 = 1,     𝛽13 = 0,     𝛽14 = 0, . . . ,     𝛽50 = 0 

 

Case 3.      𝛽1=0.1,     𝛽2=0.1,     𝛽3 = 0.1,    𝛽4 = 0.1,    𝛽5 = 0.1,     𝛽6 = 0.1,     𝛽7 = 0.1, . . . ,     𝛽50 = 0.1 

 

 

3.1 Example 1: Small-dimensional scenario with very sparse parameters (Case 1) 

 
     We are analyzing low-dimensional data with very few parameters, where there are 50 predictors (p) and 100 

observations (n). The results of the trial can be found in Table 1A, Table 1B, and Figure 1. We are exploring both low 

correlation (r = 0.5) and high correlation (r = 0.95) among the predictors. The top sections show the median model error 

computed over 500 iterations. The model error is calculated as (𝛽̂ − 𝛽)
𝑇
𝑆𝑥(𝛽̂ − 𝛽), where 𝛽̂  represents the estimated 

parameters and 𝑆𝑥 is the sample covariance. The bottom sections illustrate the number of true positives, which indicate 

the accurately identified non-zero coefficients. A value of three corresponds to all non-zero coefficients being correctly 

detected. 

     Our results suggest that the Quantile LASSO (qLASSO) and quantile elastic net (qENet) techniques exhibit poor 

performance when handling highly correlated predictors. In contrast, the quantile SCAD (qSCAD) and quantile MCP 

(qMCP) methods demonstrate superior performance compared to all other methods across most error distributions. 

 

Table1A: Average Median Model Error across 500 iterations for the scenario where p = 50, n = 100, r = 0.5, and β 

values are the same as in example 1. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 qLASSO 
Gamma 

Divergence 
qENet   qaLASSO qSCAD qMCP 

N(0,1) 0.190 0.113 0.392 0.064 0.049 0.048 

Laplace 0.155 0.155 0.424 0.054 0.041 0.041 

t3 0.207 0.177 0.458 0.083 0.062 0.063 

G(3,1) 0.430 0.321 0.913 0.201 0.135 0.133 

 Normal.M 0.336 0.224 0.688 0.135 0.084 0.091 

Chi(3) 0.727 0.541 1.332 0.372 0.240 0.252 
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Table1B: Average Median Model Error across 500 iterations for the scenario where p = 50, n = 100, r = 0.95, and β 

values are the same as in example 1. 

 

 

 

 

 

 

 

 

 

 

 

 
Figure1: Quantile Regression results for different error distributions with small and large correlated predictors. The top 

panels show the median model error over 500 iterations for example 1, while the bottom panels depict the average true 

positives with 50 predictors (p = 50) and 100 samples (n = 100). 

 

3.2 Example 2:  Large-dimensional scenario with very sparse parameters (Case 1) 

     In a manner reminiscent of example 1, our current study involves exploring a comparable scenario, but with a varied 

sample size and multiple predictors. Specifically, we are examining a large-dimensional example featuring extremely 

sparse coefficients, with p = 100 (representing the number of predictors) and n = 50 (representing the sample size). The 

results of our study are showcased in Table 2A, Table 2B, and Figure 2, which present the median model error from 

iterations. The model error is computed similarly to the method used in Figure 1. 
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 qLASSO 
Gamma 

Divergence 
qENet   qaLASSO qSCAD qMCP 

N(0,1) 0.132 0.080 0.231 0.089 0.073 0.081 

Laplace 0.108 0.118 0.238 0.068 0.047 0.047 

t3 0.147 0.126 0.293 0.120 0.091 0.084 

G(3,1) 0.310 0.202 0.478 0.237 0.207 0.194 

 Normal.M 0.214 0.138 0.382 0.162 0.136 0.134 

Chi(3) 0.503 0.335 0.703 0.431 0.336 0.338 
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Table 2A: Average Median Model Error across 500 iterations for the scenario where: p = 100, n = 50 ,r=0.5, and β 

values are the same as example 2. 

 

 

 

 

 

 

 

 

 

 

Table2B: Average Median Model Error across 500 iterations for the scenario where: p=100, n=50, r=0.95, and β values 

are the same as example 2. 

 

 

 
Figure 2: Quantile Regression results for different error distributions with small and large correlated predictors. The top 

panels show the median model error over 500 iterations for example 2, while the bottom panels depict the average true 

positives with 100 predictors (p = 100) and 50 samples (n = 50). 
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 qLASSO 
Gamma 

Divergence 
qENet   qaLASSO qSCAD qMCP 

N(0,1) 0.404 0.293 0.820 0.180 0.118 0.114 

Laplace 0.456 0.399 1.198 0.163 0.101 0.110 

t3 0.607 0.533 1.334 0.262 0.180 0.157 

G(3,1) 0.995 0.682 1.999 0.436 0.367 0.366 

 Normal.M 0.753 0.508 1.440 0.318 0.259 0.225 

Chi(3) 1.727 1.719 2.970 1.080 1.017 1.081 

 qLASSO 
Gamma 

Divergence 
qENet   qaLASSO qSCAD qMCP 

N(0,1) 0.272 0.185 0.447 0.216 0.183 0.169 

Laplace 0.316 0.303 0.584 0.288 0.211 0.209 

t3 0.351 0.285 0.541 0.270 0.242 0.241 

G(3,1) 0.613 0.473 0.904 0.556 0.483 0.462 

 Normal.M 0.494 0.336 0.762 0.398 0.369 0.377 

Chi(3) 1.099 0.807 1.465 1.020 0.865 0.914 



Hussein, Wasit Journal for Pure Science Vol. 4 No. 1 (2025) p. 29-41 

 

 

 36 

     The research findings suggest that the effectiveness of the statistical methods is impacted by the degree of correlation 

among the predictors. Specifically, it was observed that the qENet method displayed subpar performance in scenarios 

where the predictors exhibited large levels of correlation. Conversely, the qMCP method showcased notably superior 

performance in comparison to other methods, especially in cases where deviations from normality were more prominent. 

3.3 Example 3: Small- dimensional scenario with sparse parameters (Case 2) 

     In order to assess the effectiveness of different variable selection techniques, we established a new simulation scenario 

in which we encountered sparse situations, represented by 𝛽𝑗 in case 2. Our findings, detailed in Table 3A, Table 3B, and 

Figure 3, present the median model error observed in 500 iterations for scenarios with p =  50 and 𝑛 =  100. 

 

Table3.A: Average Median Model Error across 500 iterations for the scenario where p = 50, n = 100 , r = 0.5, and β 

values are the same as example 3.  

 

 

 

 

 

 

 

 

 

 

Table3B: Average Median Model Error across 500 iterations for the scenario where p = 50, n = 100, r = 0.95, and β 

values are the same as example 3. 

 

 qLASSO 
Gamma 

Divergence 
qENet   qaLASSO qSCAD qMCP 

N(0,1) 0.247 0.148 0.562 0.140 0.099 0.100 

Laplace 0.280 0.305 0.770 0.141 0.085 0.087 

t3 0.324 0.327 0.803 0.206 0.116 0.116 

G(3,1) 0.651 0.481 1.427 0.448 0.297 0.304 

 Normal.M 0.486 0.346 0.981 0.292 0.222 0.237 

Chi(3) 1.066 0.834 2.214 1.083 0.915 0.919 

 qLASSO 
Gamma 

Divergence 
qENet   qaLASSO qSCAD qMCP 

N(0,1) 0.194 0.124 0.442 0.184 0.164 0.169 

Laplace 0.189 0.182 0.577 0.193 0.169 0.174 

t3 0.228 0.189 0.558 0.198 0.204 0.199 

G(3,1) 0.440 0.276 0.871 0.423 0.428 0.435 

 Normal.M 0.309 0.196 0.674 0.295 0.300 0.293 

Chi(3) 0.676 0.463 1.234 0.630 0.696 0.689 
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Figure 3: Quantile Regression results for different error distributions with small and large correlated predictors. The top 

panels show the median model error over 500 iterations for example 3, while the bottom panels depict the average true 

positives with 50 predictors (p = 50) and 100 samples (n = 100). 

 

     The results of our simulation study, as shown in Table 3A, Table 3B, and Figure 3, indicate that the gamma-divergence 

method outperforms all other methods as the departure from normality increases. This trend is particularly noticeable 

when dealing with highly correlated predictors. 

 

3.4 Example 4:  Large-dimensional scenario with sparse parameters (Case 2) 

     To analyze how different variable selection methods perform, we designed a new simulation to simulate a sparse 

situation similar to case 2, where we have 𝛽𝑗  . The results are reported in Table 4A, Table 4B, and Figure 4, showing the 

median model error over 500 iterations for cases where p =  100 and n =  50. 
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Table 4A: Average Median Model Error across 500 iterations for the scenario where: p = 100, n = 50 , r = 0.5, and β 

values are the same as example 4. 

 

 

 

 

 

 

 

 

 

 

Table 4B: Average Median Model Error across 500 iterations for the scenario wherep = 100, n = 50 , r = 0.95, and β 

values are the same as example 4. 

 

 
Figure 4: Quantile Regression results for different error distributions with small and large correlated predictors. The top 

panels show the median model error over 500 iterations for example 4, while the bottom panels depict the average true 

positives with 100 predictors (p = 100) and 50 samples (n = 50). 
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 qLASSO 
Gamma 

Divergence 
qENet   qaLASSO qSCAD qMCP 

N(0,1) 0.608 0.379 1.051 0.660 0.278 0.276 

Laplace 0.833 0.825 1.831 0.716 0.532 0.537 

t3 1.025 0.887 1.999 0.847 0.855 0.945 

G(3,1) 1.702 1.290 2.718 1.695 1.784 1.837 

 Normal.M 1.123 0.872 1.949 0.687 0.792 0.803 

𝐶ℎ𝑖(3) 2.205 1.916 4.160 1.867 2.101 2.122 

 qLASSO 
Gamma 

Divergence 
qENet   qaLASSO qSCAD qMCP 

N(0,1) 0.361 0.232 0.733 0.324 0.365 0.359 

Laplace 0.424 0.377 0.970 0.391 0.418 0.404 

t3 0.494 0.396 1.146 0.431 0.517 0.487 

G(3,1) 0.831 0.610 1.575 0.779 0.802 0.807 

 Normal.M 0.616 0.405 1.346 0.530 0.579 0.556 

Chi(3) 1.466 1.100 2.228 1.168 1.045 1.049 



Hussein, Wasit Journal for Pure Science Vol. 4 No. 1 (2025) p. 29-41 

 

 

 39 

 

     In our simulation study, we found that when comparing the results in Table 4A and Table 4B, as well as Figure 4, the 

performance of the gamma-divergence method outperformed all other methods for most error distributions. Additionally, 

the results indicated that the performance of qENet was the worst, particularly in scenarios where there was a departure 

from normality, especially when the predictors were largely correlated. 

 

3.5 Example 5: Small-dimensional scenario with non-sparse parameters (Case 3) 

     To evaluate the effectiveness of different variable selection methods, we established a new simulation in which 𝛽𝑗  is 

situated as in case 3, representing a non-sparse scenario. The results are presented in Table 5A, Table 5B, and Figure 5, 

show casing the median model error across 500 iterations for scenarios where p =  50 and n =  100. 

 

Table5.A: Average Median Model Error across 500 iterations for the scenario where p = 50, n = 100 , r = 0.5, and β 

values are the same as example 5. 

 

 

 

 

 

 

 

 

 

 

Table5B: Average Median Model Error across 500 iterations for the scenario where p = 50, n = 100, r = 0.95, and β 

values are the same as example 5. 

 

 
Figure 5: Quantile Regression results for different error distributions with small and large correlated predictors. The 

median model error over 500 iterations for example 5 with 50 predictors (p = 50) and 100 samples (n = 100). 

 

     Our simulation study shows that, according to the findings shown in Figure 5, Table 5A, and Table 5B, the gamma-

divergence and qENet approaches are superior to all other methods as the deviation from normality becomes more 

significant. This advantage is particularly evident when the predictors demonstrate high correlation. 
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 qLASSO 
Gamma 

Divergence 
qENet   qaLASSO qSCAD qMCP 

N(0,1) 0.422 0.339 0.398 0.530 0.529 0.525 

Laplace 0.500 0.460 0.454 0.647 0.670 0.652 

t3 0.520 0.484 0.478 0.672 0.686 0.673 

G(3,1) 0.790 0.656 0.704 0.988 1.054 1.031 

 Normal.M 0.606 0.486 0.559 0.757 0.799 0.779 

Chi(3) 1.023 0.862 0.917 1.266 1.409 1.387 

 qLASSO 
Gamma 

Divergence 
qENet   qaLASSO qSCAD qMCP 

N(0,1) 0.230 0.161 0.186 0.262 0.257 0.250 

Laplace 0.234 0.225 0.174 0.290 0.266 0.262 

t3 0.267 0.229 0.209 0.318 0.310 0.299 

G(3,1) 0.432 0.307 0.348 0.506 0.487 0.481 

 Normal.M 0.347 0.245 0.286 0.395 0.390 0.385 

Chi(3) 0.611 0.485 0.506 0.743 0.731 0.709 
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3.6 Example 6:  Large-dimensional scenario with non-sparse parameters (Case 3) 

     In order to evaluate the efficacy of methods for selecting variables, we developed a new simulation where we treat 

𝛽𝑗  as described in situation 3, representing a non-sparse situation. The outcomes, displayed in Table 6A, Table 6B, and 

Figure 6, demonstrate the median model error over 500 iterations for cases where p =  100 and n =  50. 

 

 

Table 6.A: Average Median Model Error across 500 iterations for the scenario where p = 100, n = 50 , r = 0.5, and β 

values are the same as example 6. 

 

 

 

 

 

 

 

 

 

 

Table 6.B: Average Median Model Error across 500 iterations for the scenario where p = 100, n = 50 , r = 0.95, and 

β values are the same as example 6. 

 

 
Figure 6: Quantile Regression results for different error distributions with low and high correlated predictors. The 

median model error over 500 iterations for simulation 6 with 100 predictors (p =  100) and 50 samples (n =  50). 

 

     After conducting our simulation study, the results from Table 6A, Table 6B, and Figure 6 support the superiority of 

the qENet method over all other methods as the departures from normality become more pronounced. Furthermore, our 

findings suggest that the performance of the qSCAD LASSO method is subpar when dealing with departures from 

normality, especially in cases where the predictors are highly correlated. 

 

4. CONCLUSION 
 

     In the field of statistics, numerous methods rely on the assumption of normality. However, these approaches may not 

be appropriate for datasets that exhibit significant deviations from the normal distribution, often observed in the presence 

N(0,1) Laplace t_3 G(3,1) Normal.M Chi(3)

Median Error, r: 0.5

0
.0

0
.5

1
.0

1
.5

2
.0

2
.5

3
.0

qLASSO

Gamma-Divergence

qENet

qaLASSO

qSCAD

qMCP

N(0,1) Laplace t_3 G(3,1) Normal.M Chi(3)

Median Error, r: 0.95

0
.0

0
.5

1
.0

1
.5

2
.0

2
.5

3
.0

qLASSO

Gamma-Divergence

qENet

qaLASSO

qSCAD

qMCP

 qLASSO 
Gamma 

Divergence 
qENet   qaLASSO qSCAD qMCP 

N(0,1) 0.945 1.574 0.893 1.234 1.023 1.022 

Laplace 1.331 1.614 1.222 1.627 1.573 1.586 

t3 1.370 1.705 1.269 1.803 1.720 1.688 

G(3,1) 2.044 2.217 1.875 2.433 2.498 2.444 

 Normal.M 1.428 1.919 1.316 1.624 1.686 1.625 

Chi(3) 2.421 2.487 2.218 3.196 3.294 3.153 

 qLASSO 
Gamma 

Divergence 
qENet   qaLASSO qSCAD qMCP 

N(0,1) 0.597 0.523 0.497 0.734 0.671 0.669 

Laplace 0.806 0.777 0.636 0.933 0.931 0.914 

t3 0.874 0.807 0.676 1.016 1.014 0.988 

G(3,1) 1.188 1.062 0.982 1.335 1.390 1.370 

 Normal.M 0.943 0.796 0.778 1.026 1.093 1.100 

Chi(3) 1.744 1.584 1.411 1.926 2.146 2.050 
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of outliers or other forms of contamination. In our research, we have explored several recently developed variable 

selection techniques, including the quantile LASSO, gamma-divergence, quantile elastic net, quantile adaptive LASSO, 

quantile SCAD, and quantile MCP. We specifically focused on scenarios where the number of variables is equal to or 

exceeds the number of observations (𝑝 ≥  𝑛). 

     Through a comprehensive simulation study, we have demonstrated the efficacy of the gamma-divergence and quantile 

elastic net (qENet) methods, indicating their superiority over alternative approaches, particularly in cases where there is 

a substantial departure from normality within the dataset.                               
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