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1. INTRODUCTION 

 

Linking number is one of the topological invariants which is the simplest topological relation between two closed curves 

(e.g. if these curves are unlinked then the linking number is zero), the linking numbers being known a Gauss linking 

number (in a double integral formula) [2]. It is used in study of knot and DNA topology (In molecular biology, the linking 

number becomes particularly important when studying circular DNA molecules, as it is related to the number of helical 

turns in the DNA, the number of supercoils, and how the DNA can be manipulated by enzymes like topoisomerases) [5]. 

In computer graphics and robotics is also used to understand the pathways of moving objects and in avoiding collisions 

[7], also the entanglement of polymer is important for understanding the molecular behaviour [3]. The concept appears 

in various physical systems as well, such as in fluid dynamics where links can represent vortex lines [4]. The linking 

number not only has rich mathematical significance but also plays a crucial role in practical applications across various 

fields [6]. 

The spaces themselves are extremely flexible and often difficult to study in detail. As an alternative, since algebraic 

topologists are only concerned in spaces up to homotopy equivalency, we can correlateispaces with 

moreirigid algebraic objects that represent important properties of a space. As an example of an algebraic object, we 

consider the fundamentaligroup of a space in this section. 

Considering the preceding instance, connectivity is unable to distinguish between ℝ2 and ℝ2 − {0}. But by contrasting 

their essential groupings, we can tell these two areas apart. Any loop in ℝ2 that is based at a certainipoint can easilyibe 

stretched, isqueezed, or otherwise changed to become any other loopibased at that sameipoint. A loopiin ℝ2 − {0} 

that surrounds {0}, but it "gets stuck" on theihole at {0} and cannot be molded into any other loop. Therefore, by 

examining their fundamental groups, we can differentiate between ℝ2 and ℝ2 − {0}. 

A knot that is, in a sense, indecomposable is referred to as a prime knot or prime link in knot theory. It cannot be expressed 

as the knot sum of two non-trivial knots since it is a non-trivial knot. Composite knots or composite links are knots that 

are not prime. Determiningiwhether a given knot is primeior not can be a challengingitask. 

 

Definition 1.1. A prime knot is a knot that cannot be decomposed, i.e. the knot cannot be constructed from the knot sum 

of two non-trivial knot  
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Notation 1.2. the 𝐾𝑡ℎ.knot having n crossing given in the symbol 𝑛𝑘. 

 

 

 
  

FIGURE 1. – Sample of Prime Knots. 

 

 

2. BACKGROUND 

 

Any quantityidefined on the set of all knots that has the same value for any twoiknots that are equivalent is called a 

knotiinvariant. For instance, a knotiinvariant is a knotigroup. 
 

A combinatorial quantity defined on knot diagrams is commonly referred to as a knot invariant. Therefore, two knot 

diagrams must represent separate knots if they differiwith  regard to some knotiinvariant . We cannot, however, 

conclude that two knot diagrams are the same even if they share valuesiwith regard to a [isingle] knotiinvariant, as is 

typically the caseiwith topologicaliinvariants. 

 

Other invariants 

1. The linking number is a numericaliinvariant that characterizes how two closed curves in three 

dimensionsispace can be linked. 

2. Finite typeiinvariant: This sort of invariant, also known as iVassiliev or iVassiliev– Goussarovi invariant, is 

used in Knotitheory. 

3. Stickinumber: The knot's comparable polygonalipath with the fewest edges 

Definition 2.1. A knot is an embedding of the unit circle into 𝑅3 . 

 

Definition 2.2A relation ∼ on a set X that possesses the following characteristics is called an equivalence relation on 

X: 

 

1. If 𝑎 ∼  𝑎 for each  𝑎 in X (ireflexivity). 

2. If 𝑎 ∼  𝑏, then 𝑏 ∼  𝑎 (isymmetry). 

3. If 𝑎 ∼  𝑏 and 𝑏 ∼  𝑐 , then 𝑎 ∼  𝑐 (itransitivity). 

 

Definitioni2.3. An equivalenceirelation on a seti X and an element 𝑎 of X determine an equivalence class, which is 

theisubset.  𝐸 =  {𝑏 | 𝑏 ∼  𝑎}  of  𝑋. 

 

Path 𝐡𝐨𝐦𝐨𝐭𝐨𝐩𝐲  is an equivalence relation in the space that must be taken into account when establishing the 

fundamental group of that space. 

 

Definitioni2.4. Assume that  𝑋 represent a space, and 𝑎 , 𝑏 be its points. A continuousimap f: [x, y]  →  X of a 

closediinterval into 𝑋 where  𝑓(𝑥)  =  𝑎 𝑎𝑛𝑑 𝑓(𝑦)  =  𝑏 is called a path in 𝑋 from 𝑎 to 𝑏. 

 

Definition 2.5. Consider the continuous mappings f and f ` from X to Y. If there is a continuousimap F: iX × i[0, 1]  →
iY where the map f is homotopic to f ‘ 
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𝐹(𝑥, 0)  =  𝑓(𝑥) 𝑎𝑛𝑑 𝐹(𝑥, 1)  =  𝑓 ` (𝑥). 
 

 

F is called a 𝐡𝐨𝐦𝐨𝐭𝐨𝐩𝐲 between f and f `  

Definition 1.5. Given the usual subspace topology, assume that if and f ` be continuousimaps from theiinterval 

 𝐼 = i[0, 1] to X. Should these two paths share the same starting point (𝑥0) and ending point (𝑥1), and if there exists a 

continuous map F: I × I → X such that 

 

𝐹(𝑠, 0)  =  𝑓(𝑠) 𝑎𝑛𝑑 𝐹(𝑠, 1)  =  𝑓 ` (𝑠) 

𝐹(0, 𝑡)  =  𝑋0 𝑎𝑛𝑑 𝐹(1, 𝑡)  =  𝑋1. 
 

F is termed a 𝐩𝐚𝐭𝐡 𝐡𝐨𝐦𝐨𝐭𝐨𝐩𝐲 among f and f ` 

 

An operation on path homotopy equivalence classes will now be defined. 

 

Definition2.6. Assume that g and f be paths in X that go from 𝑥0to 𝑥1and 𝑥1 to 𝑥2, respectively. From 𝑥0 to 𝑥2, the path 

in X is defined as the product g ∗ f of g and f.  

ℎ(𝑠) = {
𝑔(2𝑠),     𝑓𝑜𝑟 𝑠 ∈ [0,

1

2
]

𝑓(2𝑠 − 1)     𝑓𝑜𝑟  𝑠 ∈ [
1

2  
,   l]

 

 

An operation is induced on the equivalency classes of pathways described by the equation by this production 

paths 
[𝑔]  ∗  [𝑓]  =  [𝑔 ∗  𝑓]. 

 

Since the operation ∗ is limited to two pathways where the beginning point of the second path is the endpoint of the 

first, the set of all path homotopy equivalence classes of paths in a space is not a group under the aforementioned 

operation. However, we will only discuss the operation ∗ if we consider pathways that begin and end at the same place. 

 

Definition 2.7. Let X represent a space. Aipath in X that starts and finishes at the same location, 𝑋0, is termed a loop in 

X based at 𝑋0.  

 
Definition 2.8. The set of paths homotopyiclasses of loopsibased at 𝑋ois the fundamentaligroup of a space X with 

respect to the baseipoint 𝑋o, represented by 𝜋l(X, 𝑋o), 

 

 

We want to demonstrate that the fundamental group is, in fact, a topological invariant since we introduced it as a tool for 

differentiating across spaces. As an example of how to demonstrate this.  

 

The point 𝑋0 in X is mapped to 𝑦0  in Y by the map h: (X, 𝑋o) → (Y, 𝑦o). Then, h ◦ f is a loop in Y based at 𝑦0 for any 

loop f in X based at 𝑋0. We may defineia homomorphism among the basicigroups of X and Y produced by the 

continuousimap h thanks to this link among loops in X and loopsiin Y. 

 

Definition 2.9. Let ℎ: (𝑋, 𝑋0 )  →  (𝑌, 𝑦0) beian ongoing map. Weican then obtain aimap. 

                  ℎ ∗ : 𝜋1(X, 𝑋0) → 𝜋1(Y,  𝑦0 ), 
referred to as the homomorphism h induces with respect to the base point 𝑋0 , which is definediby  

                   ℎ ∗ i([𝑓])i = i[ℎ o 𝑓]. 
 

Definition2.10. If there is a path in X that connects each pair of points in X, then X is path connected. 

 

Definition 2.11. If a space X is path-connected and  𝜋1(X, 𝑋0)   is the trivial group for all 𝑋0 ∈ X, then the space is 

simply connected. 

 

Example 2.12. 𝑅𝑛  is only linked. Since weican obtain a straightiline homotopy F∶ I × I → 𝑅𝑛  among any twoiloops 

f and g in 𝑅𝑛  located at aipoint 𝑋o  specified by, we may conclude that 𝑅𝑛  is clearly path-connected and that its basic 

group is simple. 
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𝐹(𝑥, 𝑡)  =  (1 −  𝑡)𝑓(𝑥)  +  𝑡𝑔(𝑥) 

 

3. LINKING NUMBER USING FUNDAMENTALIGROUP 

 

Theorem 3.1. Assume that k, w: (X, 𝑋0) → 𝜋1(Y,  𝑦0 ). If f and g are homotopic and the image of 𝑋0 of X is fixed at 𝑦0 

during the homotopy, then the induced homomorphisms 𝑘∗ and 𝑤∗ are equal.  
 

Proof. Weihave a homotopy K: X × I → Y from k to w where K(𝑋0, s) = 𝑦0 for each s. Then, if p is a loop in X based 

at 𝑋0, there is a homotopy P : I × I → Y clear by P = K ◦ (p × id) from k ◦ p to w ◦ p. P is a path homotopy because p is 

a loop based at 𝑋0 and K maps 𝑋0 × I to 𝑦0. So, by theidefinition of the inducedihomomorphism, 𝑘∗ = 𝑤∗. 

 

A valuable idea known as a deformation retraction arises from the homotopyiinvariance of the fundamentaligroup. It 

allows us to "deform" an unfamiliar space to make it resemble a more familiar one. 

 

Definition 3.2. Let A be one of X's subspaces. If the identityimap of X is homotopicito a map that conveys each of X 

into A so that every pointiof A stays constant during theihomotopy, then A is a deformationiretract of X. A 

deformationiretraction of X onto A is theihomotopy K: X × I → X, such that K(x, 0) = x and K(x, 1) ∈ A, for a each 

x ∈ X, and K(a, t) = a, for each a ∈ A. 

 

It is advantageous that deformation retracts have the same fundamental groups as the spaces into which they could be 

"deformed" due to the homotopyiinvariance of fundamentaligroups. 
 

Corollary 3.3. Assume that B be a deformationiretract of X, and 𝑋o ∈ B. Then the inclusionimap L: (B, 𝑋o) → (X, 

𝑋o) induces aniisomorphism of fundamental groups 𝜋l(B, 𝑋o) → 𝜋l(X,  𝑋o ), 
 

3.1. CW COMPLEX 

 

A CW Complex is a topologicalispace constructed by joining thein − dimensional disc border ontoih − dimensional 
spheres with h < n. The following is an inductive definition of the structures: 

 

Definition3.4. A CW complex X is constructediinductively startingifrom 𝑋o which is a collectioniof points. 𝑋𝑛+l is 

constructediby a collection of attachingimaps of the form 𝑗𝛼  : 𝑆𝑛   → 𝑋𝑛  and producingithe quotientispace of the 

disjoint union 𝑋𝑛 ⊔𝛼  𝐷𝛼
𝑛+l such that x ∈ ∂𝐷𝛼

𝑛 is identifiediwith 𝑗𝛼 (x).  

 

Definition 3.5. An openidisc 𝐷𝑛 \ ∂𝐷𝑛 that has beeniattached to 𝑋𝑛−l is termed anin − cell. 𝑋𝑛 ⊂ X is termed anin-

skeleton. 

 

Weican begin by creating basic CW complexes from scratch in order to improve our mental understanding of CW 

complexes. 

 

Example 3.6. (𝑆2  as a CWicomplex). Althoughithere are many ways toiexpress 𝑆2  as a CWicomplex, theisimplest 

construction beginsiwith a single point 𝑋o = {a}. We do not neediany l-cells, so instead, we goistraight to buildingiour 

2-cells. Note thatisince we have no 1-cells,  𝑋o = 𝑋l . Now, we useia map k : ∂𝐷2 → 𝑋l where for all d ∈ ∂𝐷2 , k : d → 

a. This completes our iconstruction of 𝑆2  .  In fact, extrapolating from this instance, we can isee that 𝑆𝑛  can be 

representedias a single-pointed, single-n-cell CW complex. The process of building a torus is another comparatively easy 

illustration. 

 

Example3.7. (Torus as a CWicomplex). We can begin with just one vertex (x) to construct a torus once more. Next, 

two 𝐷1  (which is simply a line segment) are attached to the point x using the maps 𝑗1, 𝑗2 : ∂𝐷1 → 𝑋0. This has the 

appearance of two rings sharing a point. The rings will be referred to as𝑆1 and𝑆2. The loop corresponding to the 

attaching map is 𝑆1 · 𝑆2 · 𝑆1
−1 · 𝑆2

−1. We then apply one final attaching map, 𝑗3 : ∂𝐷2  → 𝑋1. This brings our torus 

construction to a close. 

 

The picture of the loop to which the disc is being attached does not always change by one rotation around the boundary 

of the attaching disk. It is important to remember this while considering CWicomplexes. For instance, we can connect 

𝐷2  onto 𝑆1 to create a CWicomplex X, where one revolution around ∂𝐷2 equals two revolutions around 𝑆1. Our 

topological space is very different from just placing 𝐷2 onto 𝑆1  (which we'll term Y) since a loop around the edge of Y 

belongs to the same homotopy class as the constant loop in Y, whereas a similar loop in X does not share the same 
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equivalence class as the constant loop. In reality, adding a disc to loop l in some dimension k creates a continuous space 

for mapping loop l to the constant loop, combining [l] and [c] in 𝜋𝐾  (X). in the process of building a CWicomplex. 

R𝑃2, or the real projective plane, is another name for X. 

 

3.2. Pure Cubical Complex 

 

The subspaces of the tessellated space ℝ𝑐
𝑛 that are covered in this article have structures that are inherited from the 

lattice produced by n orthonormal basis vectors. Combinatorially, a facet of ℝ𝑐
𝑛 is equivalent to an n-cube. The next 

section develops the theory for cubical complexes, abstract cubical complexes, and cubical complexes based on these 

tessellations. 

Because pure cubical i complexes only deal with i cubes of the same dimension, the associated techniques and 

representation are made simpler. Cubical complexes are required because homology computations and other related tasks 

require the distinction between edges, vertices, and other cubes. However, dealing with cubes of several dimensions 

complicates representation and methods compared to pure cubical complexes. Abstract cubical complexes may work 

better in higher-dimensional or sparser data sets. 

Note that any v ∈ 𝐿𝑐
𝑛 generates a Dirichlet-Voronoi cell 

𝐷(𝑣)  =  {𝑥 ∈  ℝ𝑛 ∶  ||𝑣 −  𝑥||  ≤  ||𝑤 −  𝑥|| for any 𝑤 ∈  𝐿𝑐
𝑛}, and that the n-dimensional cubical lattice 𝐿𝑐

𝑛 is an 

additive subgroup created by n orthonormal vectors in ℝ𝑛. 

 

The Euclidean space from which A tessellated space with cells 𝐷(𝑣) as its facets is inherited by ℝ𝑛. The symbol for 

this tessellated space is ℝ𝑐
𝑛.  

Definition 3.9. A pure cubical space X is a tessellated subspace of ℝ𝑐
𝑛 . Theidimensions of X is a list of lengths, [𝑑1, 𝑑2 

, . . . , 𝑑𝑛 ], where 𝑑𝑖  is the maximal difference among the 𝑖𝑡ℎ  coordinates ofiany two points in X. By applying a 

translationiif necessary we can let X is a union ofitranslations of facets 𝐷(𝑣) where any v has only positive integer 

coordinates withirespect to the given basis. 

 

Definition 3.10. A pureiB-complex 𝐻 =  (𝐴, 𝐵, 𝑇) consistsiof 

 

• a binary array A = (𝑎𝜆) of dimension d, 

       • a basis 𝑇 =  {𝑡1, 𝑡2, . . . , 𝑡𝑑} for ℝ𝑑 ,  

• a finite set B ⊆ 𝕫𝑑 . We call B the ball. 

 

Definition 3.11. Recall ouriDefinition 3.2 of a pureiB − complex. An n-dimensionalipure cubical complex K is a 

pureiB − complex with orthonormalibasis vectors, (𝑡1, 𝑡2, . . . , 𝑡𝑛). 

Let Γ be the set of all 𝑘 =  (𝑘1, 𝑘2, . . . , 𝑘𝑛) where 𝑘𝑖 ∈ {−1, 0, 1}. The neighbourhood 𝑁𝑘 (𝐾𝜆) of an entry 𝐾𝜆 in an n-

dimensionalipure cubical complexiK consists of all entries 𝐾𝜆+𝐾  for κ ∈ Γ. Theineighbourhood 𝑁𝑋 (𝑋𝜆)  of a facet 𝑋𝜆 

in an n- dimensionalipure  cubical spaceiconsists  of the union of aech  facets 𝑋𝜆+𝐾  in ℝ𝑐
𝑛  . Previously described 

algorithms for tessellatedispaces can be applied to pure cubicalicomplexes. 

 

 
FIGURE 2. – Pure cubical complex the prime knots. 

 

Definition 3.12. A cubicalicomplex K of dimension d is a binaryiarray with index λ rangingiover the set 

𝛬 =  {1, 2, . . . , 2𝑛1  +  1}  ×  {1, 2, . . . , 2𝑛2   +  1}  × . . .×  {1, 2, . . . , 2𝑛𝑑   +  1}  ⊂  𝑁𝑑 



Hussein et al., Wasit Journal for Pure Science Vol. 4 No. 1 (2025) p. 1-11 

 

 

 6 

That arisesifrom aiCW-subspace of a pure cubicalicomplex 

The dimensionsiof K are the integer vector (2𝑛1 + 1, 2𝑛2  + 1, . . . , 2𝑛𝑑   + 1). There is oneiaxiom: if some entry 𝐾𝜆 = 1 

then the entry 𝐾𝜆` = 1, such that 𝐾𝜆` ∈ Λ is obtained byiadding ±1 to an even entry in theiindex λ. 

We term ξ(λ) to be the number of evenientries in λ. 

 

Definition 3.13. A cubicalispace X ⊂ ℝ𝑐
𝑛   is a iCW-subspace. Theicell 𝑋𝜆  of X is a ξ(λ)-cube of theid-cubes 𝑋𝜆+𝑘 

present in X in ℝ𝑐
𝑛 such that k ∈ [−1, O, 1] 𝑛such that ξ(k + λ) = d. By [−1, O, 1] 𝑛 we mean all possible lists of length n 

with entriesichosen from [−1, O, 1]. 

 

Lemma 3.14.  [11] Let Γ be a pure (d - 1)-dimensional simplicial complex. ("Pure" means that all maximal faces have 𝑑 

elements.) Then  

∑(−1)𝑑−#𝐹

𝐹∈Γ

 ℎ(1kΓ𝐹, 𝑥) = −(𝑥 − 1)𝑑𝒳̃ (Γ) 

where 𝒳 (Γ) = −1 + 𝑓0 + 𝑓1 + ⋯, the reduced Euler characteristic of Γ. 

 

 

Theorem 3.15. [11] Leti∆ be a pure (d - l )-dimensional simplicialicomplex, and let ∆′ be a simplicial subdivision of ∆. 

Then 

ℎ(∆′, 𝑥) = ∑(∆′
𝐹 , 𝑥)

𝐹∈∆

 ℎ(1k∆𝐹, 𝑥) 

 

Theorem 3.16. Assume that 𝐾  be a pure cubicalicomplex . For all cubical i subdivision 𝐾′  of 𝐾  weihave  (4.1) 

ℎ(𝑠𝑐)(𝐾′, 𝑥) = ∑ ℓ𝐹

𝐹∈ℱ(𝐾)

(𝐾𝐹
′ , 𝑥)ℎ(1k𝑘(𝐹), 𝑥) 

Proof. Denotingiby 𝑅(𝐾′, 𝑥) theiright-hand said of (4.1) and setting i𝑃 = ℱ(𝐾), weicompute that  

                   

𝑅(𝐾′, 𝑥) = ∑ ℓ𝐺

𝐺∈𝑃

(𝐾𝐺
′ , 𝑥)ℎ(1k𝑘(𝐺), 𝑥) 

     

= ∑ [ ∑ (−1)dim(𝐺)−dim(𝐹)

𝐹≤𝑝𝐺

 ℎ(𝑠𝑐)(𝐾𝐹
′ , 𝑥)]

𝐺∈𝑃

ℎ(1k𝑘(𝐺), 𝑥) 

     

= ∑ ℎ(𝑠𝑐)(𝐾𝐹
′ , 𝑥)

𝐹∈𝑃

[ ∑ (−1)dim(𝐺)−dim(𝐹)

𝐹≤𝑝𝐺

ℎ(1k𝑘(𝐺), 𝑥)] 

      

= − ∑[ ∑ (2𝑥)dim(𝐸) 

𝐸∈𝐾𝐹
′ \{∅}𝐹∈𝑃

(1 − 𝑥)dim(𝐾)−dim(𝐸) ] 𝒳̃ (1k𝑘(𝐹)) 

       

= − ∑ (2𝑥)dim(𝐸) 

𝐸∈𝐾′\{∅}

(1 − 𝑥)dim(𝐾)−dim(𝐸)  ∑ 𝒳 (1k𝑘(𝐹))

𝜎(𝐸)≤𝑝𝐹

. 

The defining equation yields the fourth of the preceding equalities. 

                

ℎ(𝑠𝑐)(𝐾𝐹
′ , 𝑥) = ∑ (2𝑥)dim(𝐸) 

𝐸∈𝐾𝐹
′ \{∅}

(1 − 𝑥)dim(𝐹)−dim(𝐸) 

 

and the equality 

          

∑ (−1)dim(𝐺)−dim(𝐹)

𝐹≤𝑝𝐺

ℎ(1k𝑘(𝐺), 𝑥) = −(1 − 𝑥)dim(𝐾)−dim(𝐹)𝒳̃ (1k𝑘(𝐹)), 

For the given F ∈ P. The latter is comparable to 

∑ (−1)dim(𝐾)−dim(𝐺)

𝐹≤𝑝𝐺

ℎ(1k𝑘(𝐺), 𝑥) = −(1 − 𝑥)dim(𝐾)−dim(𝐹)𝒳 (1k𝑘(𝐹)), 
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Then, using [17, Lemma3.1] to 1k𝑘(𝐹), a pure simplicial complex of dimension dim(𝐾) − dim(𝐹) − 1, follows suit. 

Similar to the demonstration of Theorem 3.2 in [17, p. 813], we discover that 

 

∑ 𝒳 (1k𝑘(𝐹)) = −1

𝜎(𝐸)≤𝑝𝐹

 

and so 

𝑅(𝐾′, 𝑥) = ∑ (2𝑥)dim(𝐸) 

𝐸∈𝐾𝐹
′ \{∅}

(1 − 𝑥)dim(𝐹)−dim(𝐸) = ℎ(𝑠𝑐)(𝐾′, 𝑥) 

as stated in the theorem's wording.  

 

 

Proposition 3.17. For all cubicalisubdivision Γ of aicube C ofidimension d ≥ 1 we have 

 

𝑥 ℓ𝐶(𝛤, 𝑥)  =  (𝑥 +  1) 𝐿𝐶(𝛤, 𝑥). 
Consequently, we have 

𝐿o  =  𝐿𝑑+l  =  O and 𝐿𝑖+l = ℓ𝑖 − ℓ𝑖−l + · · · + (−1)𝑖 ℓ0 for O ≤  𝑖 ≤  𝑑 −  1, where 𝐿𝐶  (Γ) = (𝐿o, 𝐿l, . . . , 𝐿𝑑+l) and ℓ𝐶  

(Γ) = (ℓo, ℓl, . . . , ℓ𝑑). 

 

Proof. Since 𝑥̃(Γ𝐹   ) = 0 for 𝐹 ∈  𝑓(𝐶), using 

 

 ((𝑥 +  l)ℎ(𝑐) (K, x) =  2𝑑 +  𝑥ℎ(𝑠𝑐) (K, x)  +  (−2)𝑑  𝑥̃(𝐾)𝑥𝑑+2 , to Γ𝐹  we obtain 

 

(𝑥 +  l) ℎ(𝑐) (Γ𝐹 , x) =  2𝑑𝑖𝑚(𝐹)  +  𝑥ℎ(𝑠𝑐) (Γ𝐹 , x). 
 

The outcome is obtained by adding (L𝐶(𝛤, 𝑥)  =  ∑ (−l)𝑑−𝑑𝑖𝑚(𝐹) 
𝐹 ∈𝐹(𝐶)   ℎ(𝑐) (Γ𝐹 , x))  

by x + 1 and by the previousiequality. 

 

Theorem 3.18. Assume that K be a pureicubical complex. For all cubicalisubdivision K′ of K we possess 

 

ℎ(𝑐) (K′, x) =  ℎ(𝑐) (K, x) + ∑ 𝐿𝐹(𝐾`𝐹

F ∈K:dim(F)≥1

, x)   h(l𝑘𝑘(F), x). 

Proof.  We utilize Proposition (6.3), equation, and multiply (4.1) by x. 

 

𝑥ℎ(𝑠𝑐) (K, x)  =  ∑ ℎ(𝑙𝐾𝐾(𝑣), 𝑥)

𝑣∈𝑣𝑒𝑟𝑡(𝐾)

 , 

 

and theifact that ℓ𝐹(𝐾`𝐹  , x )= 1 for all face with zero-dimensional F ∈ K to so 

 

𝑥 ℎ(𝑠𝑐)  (𝐾′ , 𝑥)  =  (𝑥 +  1) ∑ 𝐿𝐹(𝐾`𝐹

F ∈K:dim(F)≥1

, x)   h(l𝑘𝑘(F), x). + ∑ ℎ(𝑙𝐾𝐾(𝑣), 𝑥)

𝑣∈𝑣𝑒𝑟𝑡(𝐾)

 , 

 

                                  =  (𝑥 +  1) ∑ 𝐿𝐹(𝐾`𝐹

F ∈K:dim(F)≥1

, x)   h(l𝑘𝑘(F), x ) + 𝑥 ℎ(𝑠𝑐)  (𝐾 , 𝑥)                     

 

Applying ((𝑥 +  1)ℎ(𝑐) (K, x) =  2𝑑 +  𝑥ℎ(𝑠𝑐) (K, x)  + (−2)𝑑 𝑥̃(𝐾)𝑥𝑑+2 , to K and K′ and noting that 𝑥̃(𝐾)= 𝑥̃(K′) we 

obtain 

 

(𝑥 +  1) ℎ(𝑐) (𝐾′ , 𝑥)  −  𝑥ℎ(𝑠𝑐) (𝐾′ , 𝑥)  =  (𝑥 +  1) ℎ(𝑐) (𝐾, 𝑥)  −  𝑥ℎ(𝑠𝑐) (𝐾, 𝑥). 
 

After summing the two equalities from before and dividing by x + 1, the outcome is obtained. 

 

 

3.3. Seifert van-Kampen Theorem 

 

Theorem 3.19. Assume that 𝑋 be a topologicalispace and let 𝑈, 𝑉 ⊂ 𝑋 be openisubsets where 𝑈 ∩ 𝑉 is nonempty and 

path-connected. Assume that 𝑥 ∈ 𝑈 ∩ 𝑉 be aibasepoint. Then 
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𝜋l(𝑋, 𝑥) = 𝜋l(𝑈, 𝑥) ∗ 𝜋l(𝑉, 𝑥) 

Here, 𝐴 ∗ 𝑐 𝐵 denotes the amalgamated product. Let you have groups 𝐴, 𝐵, 𝐶 and homomorphisms 𝑓: 𝐶 → 𝐴 and 𝑔: 𝐶 →
𝐴. In our case, 𝐴 = 𝜋1(𝑈, 𝑥),  𝐵 = 𝜋1(𝑉, 𝑥) 𝑎𝑛𝑑 

 𝐶 = 𝜋1(𝑈 ∩ 𝑉, 𝑥) , the map f is the pushforward map 𝑖∗  where 𝑖: 𝑈 ∩ 𝑉 → 𝑈 is the inclusion, and gg is the 

pushforward 𝑗∗  where 𝑗: 𝑈 ∩ 𝑉 → 𝑉 is the insertion. 

 

Given 𝐴, 𝐵, 𝐶, 𝑓, 𝑔 , you can define the amalgamated product 𝐴 ∗𝑐 𝐵   = ⟨generators of A, generators of B | relations 

of A, relations of B, amalgamated relations⟩. 
The amalgamated relations come from elements 𝑐 ∈ 𝐶: each 𝑐 ∈ 𝐶 gives a relation 𝑓(𝑐) = 𝑔(𝑐). 

 

Example 3.20. Consider the sphere 𝑆2. Let 𝑆2 =  𝐴 ∪  𝐵 where A and B are the two hemispheres (north and south) with 

non-empty overlapping as shown in the following figure. 

 

 

  
 

𝑆2 𝐴 𝐵 𝐴 ∩  𝐵 

 

 

  The overlapping region 𝐴 ∩  𝐵 is annular space as showing in figure above (on the right). It is obvious 𝜋1(𝐴) =
𝜋1(𝐵) = 1 and the fundamental group of 𝐴 ∩  𝐵 which is equivalence to a circle then 𝜋1(𝐴 ∩  𝐵) = 𝑍. Now the 

amalgamated product has the generators of both 𝜋1(𝐴) and 𝜋1(𝐵) which are trivial. So, there is no effect on the relators 

and this gives that 𝜋1(𝑆2) = {1}. 
  

3.2.1 Pure Cubical Complex of Links 

 
Any link can be presented as a pure cubical complex as an array of dimension 5×A, where the binary matrix A of 

dimension 𝑛 × 𝑛. Each entry represents a cube or empty in the space depends on the value. 

 

 

 

 

 

 

Example 3.21. The prime knot of type the 5th prime with 2 crossing is presented in the following Figure: 

 
FIGURE 3. – Pure cubical complex of the 5th prime knot with crossing 5. 

 

This knot has crossing number equal to 2. 

The following is the GAP session used to calculate the linking number using the GAP program which is an open access 

program can be used to do calculation in Algebra and GAP is the abbreviation of Group Algorithm Programming. 

 
gap> K:=PureCubicalKnot(5,2); 



Hussein et al., Wasit Journal for Pure Science Vol. 4 No. 1 (2025) p. 1-11 

 

 

 9 

prime knot 2 with 5 crossings 

gap> P:=PurePermutahedralComplex(K!.binaryArray); 

Pure permutahedral complex of dimension 3. 
gap> C:=ZigZagContractedPureComplex(P); 

Pure permutahedral complex of dimension 3. 
gap> Y:=PermutahedralComplexToRegularCWComplex(C);; 

gap> i:=BoundaryPairOfPureRegularCWComplex(Y); 

Map of regular CW-complexes 
gap> CriticalCellsOfRegularCWComplex(Source(i)); 

[ [ 2, 1 ], [ 1, 58 ], [ 1, 154 ], [ 0, 180 ] ] 
gap> phi:=FundamentalGroup(i,180); 

[ f1, f2 ] -> [ f1, <identity ...> ] 

gap> RelatorsOfFpGroup(Source(phi)); 

[ f2*f1^-1*f2^-1*f1 ] 

 
First, we must create a CW-complex for the Knot and then calculate the fundamental group of the complement with 

a base point equal to 180 as shown in the step 6 which is the 0-cell with number equal to 180. 

From the result in the last two steps, we can see that the fundamental group is generated by two generators 𝑓1 and 𝑓2 

with relator 𝑓2 ∗ 𝑓1
−1 ∗ 𝑓2

−1 ∗ 𝑓1 which mean that the given knot has linking number equal to 2. Consequently, we can 

calculate the linking number of any link with two components by calculating the fundamental group of its complement 

using the Seifertivan − Kampenitheorem  which state that the fundament group of any space with more than one 

component is equal to  

𝜋1(𝐴 ∪ 𝐵) = 𝜋1(𝐴) ∗𝜋1(𝐴∩𝐵) 𝜋1(𝐵) 

 

Example 3.22. Consider the link of two string that given in the following figure with two colors (𝐾1  in red and 𝐾2 in 

blue). 

𝐾1(𝑡) = (2 + cos 𝑡) cos 𝑡  𝑖̂ + (2 + sin 𝑡) cos 𝑡  𝑗̂ + sin 5𝑡  𝑘̂ 

𝐾2(𝑡) = (2 + cos(5𝑡)) cos(2𝑡 + 𝜋) 𝑖̂ + (2 + sin(5𝑡)) cos(2𝑡 + 𝜋) 𝑗̂ − sin 2𝑡  𝑘̂ 

 
FIGURE 4. – Link of two strings 𝐊𝟏 and 𝐊𝟐. 

 

LinkingNumberOfLinkOf2ndOrder:=function(K1,K2) 

local K,P,C,Y,i,CC,a0,phi,rels,ab; 

K:=PureCubicalKnot(K1); 

K:=PureComplexComplement(K2); 

P:=PurePermutahedralComplex(K!.binaryArray); 

C:=ZigZagContractedPureComplex(P); 

Y:=PermutahedralComplexToRegularCWComplex(C);  

i:=BoundaryPairOfPureRegularCWComplex(Y); 

CC:=CriticalCellsOfRegularCWComplex(Source(i)); 

a0:=CC[Length(CC)][2]; 

phi:=FundamentalGroup(i,a0); 

ab:=NqEpimorphismNilpotentQuotient(Target(phi),1);; 

return Size(Image(ab)/Image(ab,Image(phi))); 

end; 

 
Applying the above code to get the linking number of the link in Figure 4 to get the linking number: 
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> LinkingNumberOfLinkOf2ndOrder:=function(K1,K2) 
5 

 

We can also use Seifert van-Kampen theorem to find the linking number as follows: 

First, we divide the data into two parts 𝐴  and 𝐵  with intersection non-empty 𝐴 ∩  𝐵 , then apply the van-Kampen 

Theorem in order to calculate the fundamental groups for each part and the common area, i.e. 

𝜋1 (𝐴), 𝜋1 (𝐵), 𝜋1(𝐴 ∩  𝐵) 

Second, we do the product in the following manner  

𝜋1(𝐴 ∪ 𝐵) = 𝜋1(𝐴) ∗𝜋1(𝐴∩𝐵) 𝜋1(𝐵) 

 

Example 3.23: Consider the link given in the Example 3.22, we will apply the GAP function SeieferVanKampen(A,B)  the 

inputs are the three data sets which represent the two pieces of the whole space. 

 

>  SeieferVanKampen(A,B)   

5 

 

 

    
𝑋 = 𝐾1 ∪ 𝐾2 𝐴 𝐵 𝐴 ∩ 𝐵  

 
 

Example 3.23: Consider the link given in the following figure, we will apply the GAP function SeieferVanKampen(A,B)  
the inputs are the three data sets which represent the two pieces of the whole space and their intersection 𝐶. 

 

 

> SeiferVanKampen(A,B) 
5 

 

 
Figure 5 :  Link of two strings 𝐾1 and 𝐾2. 

 

 

    
𝑋 = 𝐾1 ∪ 𝐾2 𝐴 𝐵 𝐴 ∩ 𝐵  

 
 

 

4. CONCLUSIONS  

 

The Sefiert van-Kampen theorem is applicable and can be implemented for calculation the fundamental group and can 

be used in order to find the linking number of any link by converting the link into pure cubical space and then calculate 
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the fundamental group of its complement, the results show that linking number of two component link have the same 

result in both the traditional method or the Sefiert van-Kampen theorem.  
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