
Al-Rafidain Journal of Computer Sciences and Mathematics (RJCM), Vol. 18, No. 2, 2024 (87-95)

87

Stability Metrics for Object-Oriented Design in Software Engineering: A
Literature Review

Anfal A. Fadhil1, *, Taghreed Riyadh Alreffaee2 and Asmaa, H. AL_Bayati3

1,2,3Department of software, College of Computer Sciences and Mathematics, University of Mosul, Mosul, Iraq
Emails: anfalaaf@uomosul.edu.iq, taghreed_reyad@uomosul.edu.iq, asmashade77@uomosul.edu.iq

 Article information Abstract

Article history:
Received:1/5/2024
Accepted:29/7/2024
Available online:15/12/2024

One of the best qualities for any software design is stability. Any initial adjustment to a design
will have a significant effect on it if it lacks stability. And for greater software quality, software
stability is crucial. Stable classes typically result in lower effort and expense for
software maintenance. Thus, in the case when developing software, achieving class stability is a
crucial quality aim. If designers could use certain predictors for predicting class stability before
it happens, they will be able to make better decisions for improving class stability. This
work presents the most significant metrics that scholars have utilized to quantify stability in
object-oriented (OO) design, together with the most well-known studies that have employed these
metrics.

Keywords:
Stability, Object-Oriented (OO) Design, Software Engineering.

Correspondence:
Author: Aanfal A. Fadhil
Email: anfalaaf@uomosul.edu.iq

I. Introduction
Any software system must have stability as a long-term

attribute throughout its entire life cycle, from
implementation and design to actual operation,
maintenance, management, and evolution. A system
might offer a solid foundation for facilitating technological
advancements as well as affordable evolution and
maintenance if it is designed and created with stability in
mind [1]. Software longevity is going to become a highly
sought-after attribute as dependence on software systems
and services grows. A system with a long lifespan can
withstand changes and still function mostly unchanged (e.g.
maintenance, evolution and runtime changes). Since
stability addresses the effects of changes, it is generally
acknowledged as a property for reflecting these concerns.
The quality problem is really two sides of the same coin,
and longevity and stability are interdependent. Given that
longevity heavily depends on the ability to maintain
stability, a stable basis serves as foundation for building of
high-quality, long-lasting systems [2]. Given that software

maintenance is an expensive procedure, maintainability is a
crucial component of software quality, and listed five sub-
characteristics for maintainability, stability being one of
them. Unstable software might result in significant
maintenance expenses and workloads. Stable classes
might help lower the costs and efforts of software
maintenance because they are the fundamental building
blocks regarding the software architecture in object-oriented
systems [3]. Generally, there are three main perspectives on
software stability. The first definition of stability is the
ability of a system to withstand change. This means that if
the software doesn't change between two versions, it will be
referred to as stable. According to the second definition,
software is considered stable if it does not experience any
ripple effects after an addition or alteration. Therefore, stable
entities are object-oriented entities (such as packages and
classes) that do not have unintended consequences when they
are modified. The software achieves its highest level of
stability, according to the third criterion, provided that the
content stays unchanged. In the case when the addition of

Al-Rafidain Journal of Computer Sciences and Mathematics (RJCM)

www.csmj.mosuljournals.com

mailto:anfalaaf@uomosul.edu.iq
mailto:taghreed_reyad@uomosul.edu.iq
mailto:asmashade77@uomosul.edu.iq
mailto:anfalaaf@uomosul.edu.iq

Al-Rafidain Journal of Computer Sciences and Mathematics (RJCM), Vol. 18, No. 2, 2024 (87-95)

88

new content has no effect on the content that already exists,
the software is still stable [4]. A variety of measures
were established by researchers to assess stability quality of
OO apps. Class-level stability metrics consider number of
methods, percentage of added and altered methods, lines of
code, and various class attributes in order to assess the
stability of individual classes between versions [5].
Contributions: in this study discuss the state-of-the-art in
OO design for software engineering with regard to stability
in this study. The specific contributions in this study are as
follows:
1- From the present software engineering literature, a
characterization taxonomy for the idea of stability in the OO
design for software engineering evolved as a software
characteristic.
2- Aanbieding and providing an example of object-oriented
design stability measures that are documented in the
literature
3- Show shed stability metrics in relation to other quality
factors for object-oriented design.
4- An overview and demonstration of the key findings for
the study of stability in object-oriented software engineering
design
This is how the rest of the paper is structured. The most
significant object-oriented design stability measures are
provided in Section 2. Section 3 outlines the study's
objective. Section 4 provides the literature review. The work
is concluded in Section 5, which suggests possible
directions for future research.

II. Stability Metrics of Object-Oriented Design
At several levels, software stability was analyzed. This
study focuses on stability at object-oriented design (class)
level; the subsequent subsections provide an explanation of
the suggested metrics to gauge class stability.

A. Class stability measurement with the use of

lines of code (loc)
Class implementation instability (CII) is a statistic that Li et
al. [6] devised to quantify the evolutionary change in a
class's implementation. It calculates the proportion that
modifications to design N + 1 have an impact on the class
loc in design N. It has the following definition:
 CII represents class loc change percentage.
 CII is calculated for class A as described below:
 In the design N, Q stands for loc of class A.
 In design N + 1, loc of class A is represented by R.

 𝐶𝐶𝐶𝐶𝐶𝐶 = �𝑅𝑅−𝑄𝑄
𝑄𝑄
� × 100 … (1)

According to Eq. (1), the calculation of CII involves dividing
loc of class A in design N by class A loc in design N + 1,
which is the difference between loc of class A in design N
and design N. Since CII measures class's instability, a lower
CII number is preferable. The main problem with CII is that
even when a class has undergone several changes, CII metric
still indicates that the class is stable if There are n lines added
and n lines subtracted.

B. Class stability measurement by the use of

percentage of changed and added approaches
A technique for determining if a class is stable when its
interface does not change between versions was proposed by
Grosser et al. [7]. For example: C is a class, and l(c_i) is the
version I interface (method signatures) for C. The stability
regarding class c could be computed through the comparison
of 𝑙𝑙(𝑐𝑐𝑖𝑖) to 𝑙𝑙(𝑐𝑐𝑖𝑖+1). It denotes percentage of 𝑙𝑙(𝑐𝑐𝑖𝑖) which is
included in 𝑙𝑙(𝑐𝑐𝑖𝑖+1)

NS(𝑐𝑐𝑖𝑖→𝑖𝑖+1)=# ∩ (𝑐𝑐𝑖𝑖 , 𝑐𝑐𝑖𝑖+1)
#𝑙𝑙(𝑐𝑐𝑖𝑖)�) … (2)

Where
∩ (𝑐𝑐𝑖𝑖 , 𝑐𝑐𝑖𝑖+1) = 𝑙𝑙(𝑐𝑐𝑖𝑖 ,) ∩ 𝑙𝑙(𝑐𝑐𝑖𝑖+1)
Equation (2) illustrates how NS is computed: it is the product
of the quantity of approaches in version i divided by the
quantity of approaches shared by versions i and i+ 1. The NS
value ranges from 1 (complete stability) to 0 (total
instability). In spite of how many modifications were made
to the methods' bodies, the NS metric just examines the
methods' signatures. Thus, the metric indicates that the class
is stable if the signatures of methods do not change even
when the methods' bodies do.

C. Class stability measurement with the use of

Number of Methods
A method for computing class stability depending
on number of methods was suggested by Ratiu et al. [8].
With regard to class stability, they established the Stabi
measurement, which takes into account that a class is altered
if at least one approach is removed or added. Ratiu etal.
therefore, concluded that if Number of Methods (NOM)
remained unaltered, a class was stable between versions I–1
and I. They employed Eq. (3) in one version to determine
class stability.

𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑖𝑖(𝐶𝐶,𝑀𝑀)=�1,𝑀𝑀𝑖𝑖(𝑐𝑐) −𝑀𝑀𝑖𝑖−1(𝑐𝑐) = 0
0,𝑀𝑀𝑖𝑖(𝑐𝑐) −𝑀𝑀𝑖𝑖−1(𝑐𝑐) ≠ 0 …(3)

M is a measurement (NOM). According to (3), Stab metric
can have a value of 0 or 1. When the value of a class is 1, it
indicates stability, meaning that the number of methods
hasn’t changed between the two versions. A value of 0
indicates that the class is unstable and that the number of

Al-Rafidain Journal of Computer Sciences and Mathematics (RJCM), Vol. 18, No. 2, 2024 (87-95)

89

methods had changed. One of the biggest drawbacks of Stab
metric is that it indicates class stability even when the
number of methods was updated, added, or removed.

D. Class Stability measurement with the use of

multiple factors
A Class Stability Metric (CSM) has been introduced by Al-
shayeb etal. [9] to quantify class stability for OO. 8 class
attributes that impact class stability are taken into account
by CSM. These characteristics are:
Inherited class name, Class interface name, Class variable
access-level, Class access-level, Class variable, Method
access-level, Method signature and Method body (code).
The purpose of CSM is measuring the version's stability in
relation to the base version. Other class modifications
among the other version and the base version were
disregarded in favor of stable or unchanged class attributes
for calculating CSM. If a property hasn't changed between
version n and the base version, it's deemed unchanged.
Every attribute is computed as follows:

𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆Property = UnchangedProperty
𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁Property

 … (4)

 In which 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆Property represent stability in any class of
property, UnchangedProperty represent the quantity of the
property's unaltered items and 𝑁𝑁𝑁𝑁𝑁𝑁𝑆𝑆𝑁𝑁𝑁𝑁Property represent
the number of items regarding the property. For the purpose
of calculating the stability regarding an OO class with the
use of CSM, it is expected that each class properties have
the same weight. and all of the properties is separately
handled as can be seen in Eq. (4). Each property's stability
is determined, and the total of the calculations yields the OO
class stability, as Eq. (5) illustrates. A number of 1 indicates
full stability for the class, whereas a value of 0 indicates
full instability. (see Eq. (5))

𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑙𝑙𝑆𝑆𝑆𝑆𝑆𝑆𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐

= �
𝑠𝑠𝑆𝑆𝑆𝑆𝑆𝑆𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 + 𝑠𝑠𝑆𝑆𝑆𝑆𝑆𝑆𝑖𝑖𝑁𝑁𝑖𝑖𝑁𝑁𝑁𝑁𝑖𝑖𝑐𝑐𝑐𝑐𝑁𝑁 + 𝑠𝑠𝑆𝑆𝑆𝑆𝑆𝑆𝑖𝑖𝑁𝑁ℎ𝑁𝑁 + 𝑠𝑠𝑆𝑆𝑆𝑆𝑆𝑆𝑀𝑀𝑖𝑖ℎ𝑑𝑑

+𝑠𝑠𝑆𝑆𝑆𝑆𝑆𝑆𝑣𝑣𝑐𝑐𝑁𝑁 + 𝑠𝑠𝑆𝑆𝑆𝑆𝑆𝑆𝑣𝑣𝑐𝑐𝑁𝑁𝑐𝑐𝑐𝑐 + 𝑠𝑠𝑆𝑆𝑆𝑆𝑆𝑆𝑀𝑀𝑖𝑖ℎ𝑑𝑑𝑐𝑐𝑐𝑐 + 𝑠𝑠𝑆𝑆𝑆𝑆𝑆𝑆𝐵𝐵𝐵𝐵𝑑𝑑𝐵𝐵
�

/ properties𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 . . . (5)

In which 𝑠𝑠𝑆𝑆𝑆𝑆𝑆𝑆𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 represent the percentage of the stability of
the class access-level property, 𝑠𝑠𝑆𝑆𝑆𝑆𝑆𝑆𝑖𝑖𝑁𝑁𝑖𝑖𝑁𝑁𝑁𝑁𝑖𝑖𝑐𝑐𝑐𝑐𝑁𝑁 represent stability
percentage of the class interface property, 𝑠𝑠𝑆𝑆𝑆𝑆𝑆𝑆𝑖𝑖𝑁𝑁ℎ𝑁𝑁 represent
stability percentage of the inheritance class name property,
𝑠𝑠𝑆𝑆𝑆𝑆𝑆𝑆𝑀𝑀𝑖𝑖ℎ𝑑𝑑 represent stability percentage of the class method
signature property, 𝑠𝑠𝑆𝑆𝑆𝑆𝑆𝑆𝑣𝑣𝑐𝑐𝑁𝑁 represent stability percentage of the
regarding property of class variable, 𝑠𝑠𝑆𝑆𝑆𝑆𝑆𝑆𝑣𝑣𝑐𝑐𝑁𝑁𝑐𝑐𝑐𝑐 represent stability
percentage of the regarding access-level property of class
variable, 𝑠𝑠𝑆𝑆𝑆𝑆𝑆𝑆𝑀𝑀𝑖𝑖ℎ𝑑𝑑𝑐𝑐𝑐𝑐 represent stability percentage of access-
level property for the class method, 𝑠𝑠𝑆𝑆𝑆𝑆𝑆𝑆𝐵𝐵𝐵𝐵𝑑𝑑𝐵𝐵 represent stability
percentage of the class method body property and
 properties𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 represent number of the class properties.

E. Measuring Class Diagram Stability
in this method address every one of the classifier properties
independently and determining change in relation to base
version in order to quantify class diagram stability. By taking
the subsequent actions, the class diagram stability may be
measured [9]:
1- Create a metric for property changes in the classifier
which quantifies the variations in each property. Eq. (6) and
Eq. (7), which denote changes in classifier type and classifier
relationship, respectively, are used for computing property
changes.
2. As indicated by Eq. (8), Divided the total number of
property change metrics by the sum of unique classifier
properties. One plus number of unique classifier associations
(where one represents classifier type) equals unique
attributes. The value of classifier change can be normalized
to be between 0 and 1 by dividing by total number of the
unique classifier properties. A value of 1 is an indication
means that from version I to version I + 1, every classifier
property was altered.
3. Divide the total number of the class diagram base version
classifiers by sum of classifier change metrics. This will
result in normalizing result value to be between 0 and 1, in
which one indicates that every class diagram classifier had
been changed from versions i to i + 1. The result is divided
by number of the base version classifiers.
4. Equation (9) is used to calculate overall class diagram
stability metric. Furthermore, the final result has been
normalized. Zero indicates that from versions I to I + 1, all
of the classifiers have changed. Version I + 1 is hence
unstable. One, on the other hand, indicates that version I + 1
is entirely stable since nothing has changed. In this method
need to first ascertain if the classifier is existing in version i
+ 1 in order to count the potential modifications to the
classifier attributes. The chosen identifier is used to
accomplish this. The classifier change value will be
maximal, or one, if the identification is removed. If not, will
use Eq. (6) and Eq. (7) to calculate each classifier property
change. Classifier type modifications are seen in Equation 6.
Zero denotes that the type of the classifier had changed,
either from class to interface or the other way around,
while one indicates that the classifier type stays unchanged.

𝐶𝐶ℎ(𝐶𝐶𝐶𝐶) = � 0, 𝑐𝑐𝑙𝑙𝑆𝑆𝑠𝑠𝑠𝑠 𝑆𝑆𝑆𝑆𝑡𝑡𝑁𝑁 𝑐𝑐ℎ𝑆𝑆𝑁𝑁𝑎𝑎𝑁𝑁𝑎𝑎
1, 𝑐𝑐𝑙𝑙𝑆𝑆𝑠𝑠𝑠𝑠 𝑆𝑆𝑆𝑆𝑡𝑡𝑁𝑁 𝑢𝑢𝑁𝑁𝑐𝑐ℎ𝑆𝑆𝑁𝑁𝑎𝑎𝑁𝑁𝑎𝑎 … (6)

Changes in classifier relationships are reflected in Equation
7. If the relation is changed to a different type or deleted, the
change counts as zero in both scenarios. In the case when the
relation stays unchanged, the change will be one.

Al-Rafidain Journal of Computer Sciences and Mathematics (RJCM), Vol. 18, No. 2, 2024 (87-95)

90

𝐶𝐶ℎ(𝐶𝐶𝐶𝐶) = �
0,𝐶𝐶𝑁𝑁𝑙𝑙𝑆𝑆𝑆𝑆𝑆𝑆𝑅𝑅𝑁𝑁𝑠𝑠ℎ𝑆𝑆𝑡𝑡 𝑎𝑎𝑁𝑁𝑙𝑙𝑁𝑁𝑆𝑆𝑁𝑁𝑎𝑎
0,𝐶𝐶𝑁𝑁𝑙𝑙𝑆𝑆𝑆𝑆𝑆𝑆𝑅𝑅𝑁𝑁𝑠𝑠ℎ𝑆𝑆𝑡𝑡 𝑐𝑐ℎ𝑆𝑆𝑁𝑁𝑎𝑎𝑁𝑁

1,𝐶𝐶𝑁𝑁𝑙𝑙𝑆𝑆𝑆𝑆𝑆𝑆𝑅𝑅𝑁𝑁𝑠𝑠ℎ𝑆𝑆𝑡𝑡 𝑢𝑢𝑁𝑁𝑐𝑐ℎ𝑆𝑆𝑁𝑁𝑎𝑎𝑁𝑁
 … (7)

𝑈𝑈𝐶𝐶𝐶𝐶 =
𝐶𝐶ℎ(𝐶𝐶𝐶𝐶(𝑆𝑆, 𝑆𝑆 + 1) + ∑ 𝐶𝐶ℎ(𝐶𝐶𝐶𝐶(𝑆𝑆, 𝑆𝑆 + 1)𝑁𝑁𝑁𝑁𝑁𝑁𝑅𝑅

𝑁𝑁𝑅𝑅=1)
𝑁𝑁𝑈𝑈𝑁𝑁

 … (8)

In which the classifier's UCC was unchanged. Each
classifier's unchanged attributes are calculated using this
metric. In class diagram classifier, NUCR stands for
Number of Unique Classifier Relationships. The Classifier
Relationship is denoted by the CR, Classifier Type is
denoted by the CT, the Number of Unique Properties =
(NUCR + 1) is denoted by NUP, where the type of classifier
in the class diagram version is represented by 1.

𝑆𝑆𝑆𝑆𝑀𝑀(𝑆𝑆 + 1) = ∑ 𝑁𝑁𝑁𝑁𝑁𝑁(𝑁𝑁)𝑁𝑁𝑁𝑁
𝑁𝑁=1

𝑁𝑁𝑁𝑁
 … (9)

The Structural Stability Metric is SSM. The class diagram's
stability is calculated by this metric. Classifier C. UCC refer
Unchanged Classifier. NC refer Number of Classifiers in
first version.
The methods mentioned in section (2.1-2.5) are considered
the most important equations for calculating Stability for
Object-Oriented Design, as these equations contain factors
that are considered basic keys to calculating Stability for
Object-Oriented Design. As the mentioned equations (in
section (2.1-2.4) calculate stability at the code level, it one
final equation without integrating it with the rest of the
equations according to published research.
The method mentioned in Section (2.5) is the currently
widespread method for calculating Stability for Object-
Oriented Design in diagrams level.

III. Goal of Study

With regard to object-oriented design, stability was
measured in a number of studies and researches in literature.
The goal of this study is to provide a Literature Review
which includes the most important and recent research in
stability for object-oriented design based on metrics. The
strategy of this work includes research published in the
period (2000-2022). the articles featured in this literature
review in the field of object-oriented design, it have been
published in conferences, journals, book chapters.
 The following research topics have been addressed through
a state-of-the-art literature review in order to be accessible
to researchers who will study in this field in the future:
1- Which measures are most commonly used to assess the
stability of object-oriented design?
2- Does object-oriented design stability refer to code or
class diagram (UML) stability?
3- Which set of measurements are used for properties?

The need of the present work is to provide an overview of
developments in the stability metrics of object-oriented
design.

IV. Literature Review

This section contains stability measurements for object-
oriented systems at the code and class diagram levels. Aside
from the methods outlined in section 2, the following studies
have been conducted:
In 2000, W.Li et al [6], the evolution of the object-oriented
(OO) software was measured by the authors using 3 metrics,
which are: System Design Instability (SDI), Class
Implementation Instability (CII), and System Implementation
Instability (SII). In addition to doing research of design
instability, which looks at how a class's implementation may
impact its design, such metrics have been utilized in order to
follow the development of OO system in empirical
investigation.
In 2002, David Grosser et al [10], the authors suggested using
a case-based reasoning approach for predicting the stability of
software items from relevant metric data. The technique
presented here considers each item as a point in a multi-
dimensional space, one dimension per metric, in which a
distance function is defined. The stability of each new item is
computed with respect to the nearest known case in the case
base. The resulting predictive model fits well realistic situations
in which the available data is neither of sufficient size nor
representative enough to develop universally valid models.
Indeed, the similarity-based prediction avoids the pitfalls of
over-generalization of logical classification models. In this
respect, our preliminary results show that a very straightforward
CBR classifier (1-nearest neighbor, equal metric weights, no
domain theory) can perform significantly better than a decision
tree drawn from the same dataset.
In 2003, David Grosser etal [7], have suggested the use of stress
test results and relevant metric data for the prediction of the
stability of software item using case-based reasoning method.
The method looks at structural similarities across classes and
uses software metrics to estimate the likelihood that each may
become unstable. The stability model links the stress factor—a
measure of how much the degree of class responsibility
increases across versions—to the effects of changing
requirements.
In 2003, Mahmoud O. Elish et al [11], the authors aim of this
study was to find out whether The Chidamber and Kemerer
metrics indicate positive outcomes logical stability of class
indicators. The findings of the experiment indicated that
CBO,WMC, RFC,DIT, and LCOM metrics are inversely
connected to the classes' logical stability.Furthermore, it has
been discovered that the CBO and RFC Measures are reliable
predictors of logicality Layer stability.But no association was
discovered. between the logical stability of classes and the NOC
measure.The initial phase of developing a collection of logical
stability metrics for object-oriented systems is represented by
this work.
In 2004, Haohai Ma et al [12], this paper presents a quantitative

Al-Rafidain Journal of Computer Sciences and Mathematics (RJCM), Vol. 18, No. 2, 2024 (87-95)

91

approach to evaluate UML meta-models' stability and design
quality. The technique uses modified object-oriented metrics
to perform objective evaluations of UML meta models. Most
OO measurement solutions use a class as the primary
measuring target, hence all metrics use meta-classes in the
UML meta-models as their foundation. Two different types of
extent-of-changes across versions are computed using metric
values. In UML evolution, the degree of change is thought to
be a reliable predictor of stability.
In 2005, M. Al-shayeb, W. Li [13], have conducted a research
to determine whether SDI metric could be utilized to analyze
system design evolution in Agile software process and
for estimating and re-planning software projects in agile
approach similar to XP. They offer an empirical analysis of the
SDI measure and class growth in two OO systems that were
created via an agile methodology comparable to Extreme
Programming (XP).
In 2005, Nikolaos Tsantalis et al. [14], the study suggested
using a probabilistic technique to estimate how much an
object-oriented design will change. This approach involved the
calculation of possibility that every system class will be
affected by the changes or additions to the existing
functionality. There is a possibility for tracking support
maintenance and stability evolution with the help of extracted
change probabilities.
In 2006, Hector M., etal, [5], have studied a new SDI form that
is referred to as the SDIe, which provides a more precise
software stability measure due to the fact that it is based upon
highest entropy in the system. They have deployed
maintenance data from commercial software project that has
been produced under agile process for the purpose of testing
new metric. The results that have been obtained after the case
study suggest that the new SDIe metric is one of the useful
tools for the gauging of system design stability.
 In 2007, P. Greenwood etal,[15], have presented quantitative
case study that had developed an actual application for the
evaluation of several design stability aspects of the
implementations that are object- and aspect-oriented. They
concentrated on many system modifications that are usually
carried out as part of software maintenance procedures.
In 2010, Azar et al [16], Three distinct heuristics—genetic
algorithms (GA), tabu search (TS) and simulated annealing
(SA), —were provided by the authors as part of their heuristic
methodology, to improve models for estimating software
quality. Experiments addressing stability of classes in OO
system were carried out, which rely on adaptation and re-
combination of previously constructed predictive models to
new, unseen program. The method is evaluated on stability of
classes in an OO software system, additionally, every
predictive model is build using rules. and verified method
utilizing stability of the software quality characteristic.
In 2010, M. Alshayeb et al [9], for measuring stability of the
OO classes, the authors have suggested a class stability metric.
Comparing the proposed metric to the current class stability
metrics, more aspects are taken into account. Eight criteria
related to class properties were shown to have an impact on
class stability. The stability of those attributes impacts stability

of the entire class because they are the fundamental components
of the class structure. Utilizing these characteristics, a metric
was proposed to assess the general stability of the class. They
verified the newly suggested metric hypothetically.
Additionally, two Java systems were used to empirically
validate CSM, and results showed a strong negative correlation
between CSM and maintenance effort.

In 2011, Dith Nimol et al, [17], the authors suggested a method
for utilizing artificial neural networks (ANNs) to measure a
class's logical stability. Through selecting a multilayer
Perceptron method, an ANN is a technique utilized for
estimating the value of class logical stability from the historical
data in repository. There are numerous steps in this process:
first, class logical stability was measured, and after
that multiple regression was used to estimate class logical
stability. Following such procedures, they developed a novel
method to estimate class logical stability with the use of ANN.
They after that compared the estimated CLS using ANN and
Multiple Regression to the actual class logical stability. The
outcome of the experiment had demonstrated the effectiveness
of the ANNs for estimate.
In 2011, Mohammad Alshayeb [18], the authors evaluated the
effect of the refactoring on architecture and class stability and
suggested classification for the refactoring approaches based
upon this impact. Refactoring methods affecting "class-level"
stability were shown to have the most effect. It was discovered
that refactoring techniques that primarily influence the
"method-level" had the least effect on class stability, whereas
techniques that primarily change fields and are used within the
methods had the least effect.
In 2011, D. Azar et al [19], the authors devised an adaptive
method that modifies pre-existing predictive models to fit
new data. During the adaption process, they employed an ant
colony optimization method. Stability of the classes in OO
software systems is used to validate the strategy.
In 2012, Alshayeb [20], the authors offer a methodology for
examining the connection between class stability and
refactoring effort. Software designers can use this technique to
determine whether or not refactoring efforts are beneficial while
maintaining the stability of their software design.
In 2013, Alshayeb [3], to assess the connection between class
stability and maintainability, the authors have carried out an
empirical investigation. The number of the hours that have been
spent on maintenance tasks and number of lines of code
changed are two ways that the author measures maintainability
effort, and they are correlated with class stability. The findings
indicate that classes with greater class stability metric (CSM)
stability values also have lower perfective maintenance effort
values in terms of hours worked. In addition, when calculated
for system classes that are cumulatively concatenated
throughout all iterations rather than individually, CSM
corresponded with all maintenance forms (i.e., corrective,
adaptive, and perfective). Additionally, the author discovered
that when maintainability is measured by the quantity of lines
of code changed, none of the stability metrics exhibit any
correlation with it.

Al-Rafidain Journal of Computer Sciences and Mathematics (RJCM), Vol. 18, No. 2, 2024 (87-95)

92

In 2014, S. Bouktif et al [21], the authors suggested a novel
method for creating stability prediction models that maintain
prediction interpretability by combining classifiers. To
produce a more precise composite classifier that maintains
interpretability, they suggested a specific method for merging
Bayesian classifiers. This method is applied in OSS large-scale
system context, specifically standard Java API, and is
developed with the use of a GA.
In 2014, Alshayeb et al [22], the authors suggested a stability
prediction methodology employing an ANN and SVM to
construct various prediction models after examining the
relationship between a few known design measures and class
stability across versions. In this method contrasted these
prediction models' accuracy, and the studies show that object-
oriented class stability can be accurately predicted using ANN
and SVM prediction models.
In 2015, Ahmed and Ebad [23], a new set of ASMs that
measure inter-package calls was introduced by the authors.
Generally speaking, structural relationships between packages
are taken into account by the available ASMs, yet message
passing is not. In actuality, a good design is one in which the
structural and message carrying linkages between packages are
kept to a minimum, allowing evolution's effects to be localized.
Maintainability might suffer if changes were applied to
numerous packages. ASM was theoretically validated by the
authors using a number of well-known mathematical
properties. JHotDraw and the abstract window toolkit are two
open-source projects that the authors used to empirically
evaluate the metric. It was demonstrated that the ASM
measurements matched the lines of code changes between the
2 projects' versions.
In 2015, Chhabra and Chawla [24], the four quality
attributes—Changeability, Analyzability, Testability, and
Stability—can be quantified using the authors' new quality
model (SQMMA) that provides ready-to-use mathematical
formulas as a weighted summation of a collection of software
code metrics. Those qualities also serve as criteria for
assessing the software's "maintainability" feature. After that,
four different Apache Tomcat versions are used in order to
implement the intended model, and the outcomes are shown.
Ultimately, the results were verified by trend analysis and
extra comparison with bug/change data.Chhabra and Chawla
used five metrics for calculating stability (Coupling,
Subclasses, EntExt, Hierarchies and Communication) where:
Subclasses: the number of sub-classes.
Coupling: the coupling among objects.
Hierarchies: The depth in inheritance tree.
EntExt: number entry and exit points.
Communication: directly invoked components.
 In 2016, Baqais et al [25], the correlation between stability and
maintainability was quantified by the authors. A stability
metric and a maintainability metric were selected as potential
candidates, utilized CSM in stability because of its broad
coverage and great precision. MI was selected for
maintainability because it is purely based on source code, is
easy to understand, and is straightforward. The
experimentation demonstrates that there is variability in the

correlation behavior between these two measurements, making
the conclusion of a direct causal relationship impossible.
Nevertheless, a thorough examination and a step-by-step
tracking of such experiments show encouraging outcomes.
Those findings could help researchers determine the proper
way to measure the association between CSM and MI.
In 2018, Goyal et al [26], as an effort to demonstrate a
meaningful relationship between stability and design attributes,
the authors concentrated on the necessity and significance of
assessing stability during the design phase. Multiple linear
regressions were established with regard to evaluate the
stability of object-oriented design and development.
Ultimately, an experimental test was used for validating the
developed model.
 In 2019, Baig et al [4], depending on ideas of change between
intra-package connections, package contents, and inter-package
relationships, the authors presented PSM: a new package
stability metrics. and provide empirical as well as package
contents, support for PSM. An analysis of metrics'
mathematical characteristics forms bases of theoretical
validations, 5 open-source software applications had been
utilized for empirical validations, and a comparison to similar
packages for current stability metrics has been provided as well.
The researcher had utilized prediction analyses, principal
component analyses, and correlation analyses for empirical
validations. Based on correlation study, the proposed metrics
have negative correlation with the effort of maintenance and
provide more precise package stability indication in comparison
with current stability measurements. Based on the PCA, the
proposed measures served to improve maintenance prediction
accuracy through the capturing of additional package stability
aspects. It found that existing metrics for the stability of the
package, based upon class name changes and lines of code, had
shown positive correlation with maintenance efforts and
negative correlation with the proposed metric.
In 2019, Alshayeb [27], to determine the connection between
stability and code similarity class-level, the authors conducted
an empirical investigation. PCA was used to identify the class
stability measurements that have strongest correlation with
class similarity, and clustering was used to categorize metrics
of stability and similarity into various related groups.
Furthermore, he developed a prediction model utilizing class
stability indicators to forecast class similarity. The CSM has the
highest association with the similarity of code, according to
data, which indicate as well a substantial relationship between
the four metrics of stability under investigation and similarity.
Additionally, High stability classes are also probably to have a
high degree of similarity, according to the clustering data.
Furthermore, it was found that 74.023% of class similarity
could be revealed by both CSM and the CII metric. The
researchers came to the conclusion that stability measures are a
useful gauge of how similar a class is.
In 2022, Skladannyi [28], the authors expanded the quantifiable
qualities of the source code utilized in the Delta Maintainability
Model (DMM). Comparative analysis of source code changes
is a crucial step in proving stability and efficacy of OO software
change measurement, as it allows one to measure the

Al-Rafidain Journal of Computer Sciences and Mathematics (RJCM), Vol. 18, No. 2, 2024 (87-95)

93

maintainability in processes with a continuous delivery and
uninterrupted integration methodological methods.
additionally, made modifications to the maintainability. The
new characteristic "modification" took the place of the sub
characteristics "variability" and "stability." All of the literature

reviews listed above are represented in Table 1.

Table 1. Summary of Literature Review.

No Article Artifact Metric’s Name Metric’s Description

1 W. Li, et al [6]
 Code Loc,SDI, CII and SII Metrics These metrics give indications of project progress.

2 David Grosser et al[10] Code CBR Approach
considered every one of the items as location where the distance
function is defined in a multidimensional space with one
dimension per metric

3 David Grosser et al [7] Code CBR Approach
This method had explored structural similarities between the
classes, which have been represented as software metrics, to
estimate the probability that they may become unstable.

4 Mahmoud O. Elish et al [11] Code
Chidamber and Kemerer
Metrics

OO design metrics that have been
presented by Chidamber and Kemerer were chosen as potential
markers of OO designs' logical stability.

5 Haohai Ma et al [12] Code Object _Oriented Metrics

adapt object-oriented design metrics and criterions as an approach
for assessment of the UML meta-models. It carries out the of
stability assessment and quality of design to the UML meta-
models

6 Alshayeb, Mohammad, and Wei
Li. [13] Code System Design Instability (SDI)

Metric

used SDI metrics for the estimation of and re-planning of the
software projects in conventional process and in XP-like agile
process as well

7 Nikolaos Tsantalis et al. [14] Code
UML Probabilistic approach Assessment of probability that every one of the classes will be

changed in a future generation.

8 Hector M., et al [5]
 Code SDIe Metrics

developed improved original SDI metric measure. It’s class-
based, OO metric of evolution utilizing the Shannon entropy
yielding one score for the stability of the system design

9 Phil Greenwood, et al [15] Code -

reports a quantitative case
study evolving real-life application for the assessment of a variety
of the facets of design stability of object-oriented and AO
implementations

10 Azar et al[16] Code

*Lines percentage of
*comments in the source code
*Calls (number of statements
that include method calls)

heuristic approach to optimize software quality and conducted
experiments on stability of classes in OO

11 M. Alshayeb et al[9] Code

* Class access-level
* Class interface name
* Inherited class name
* Method signature
* Method access-level
*Method body
* Class variable
* Class variable access-level

Used these metrics to measure overall
class stability

12 Dith Nimol et al [17] Code
UML

Multiple Regression,Artificial
Neural Netwok

estimate value of
class logical stability from the historical data through selection of
multilayer Perceptron approach

13 Mohammad Alshayeb [18] Code - proposed classification for the refactoring approaches based upon
refactoring impacts on the class stability

14 D. Azar et al [19] Code An Ant Colony Algorithm
Have suggested ant-colony based predictive method for the
prediction of syntactic class stability in the OO software systems
at early stages of development.

15 Alshayeb [20] Code - The correlation between the effort of refactoring and the stability
of classes

16 Alshayeb [3]
 Code CSM Stability of evaluation with the use of 8 metrics and evaluate

correlation between the stability and maintainability of the classes

17 Bouktif et al [21] Code -
Building Prediction model for the open-source software systems
utilizing Bayesian classifier combination, which had allowed
class stability interpretations

18 Alshayeb et al [22] Code CSM proposed a stability prediction model
using an ANN and SVM

19 Ebad and Ahmed [23] Code ASM measure the inter-package communication stability

20 Chawla and Chhabra [24] UML *Subclasses
*Coupling,

Using these metrics to calculate stability

Al-Rafidain Journal of Computer Sciences and Mathematics (RJCM), Vol. 18, No. 2, 2024 (87-95)

94

*Herarchies, *EntExt,
*Communication.

21 Baqais et al[25] Code CSM measured the correlation between stability
and maintainability

22 Goyal et al [26] code - development stability evaluation by establishing multiple linear
regressions

23 Baig et al [4] Code PSM
Metric of stability
for 3 dimensions: content, internal and external package
connections

24 Alshayeb[27] Code CSM
CII

the correlation between the similarity and the stability of the code
at class level

25 Skladannyi [28] Code -
introduced changes to maintainability
The sub characteristics “variability” and “stability” have been
replaced by new characteristic “modification

A. Analysis of the Literature Review
From the previous studies that were presented in Table

(1), it was shown that Stability Metrics for Object-Oriented
Design in Software Engineering is calculated at two levels,
the code level and the diagrams level, and that the
researches published on the code level is much more than
the research published on the diagrams level, and there are
few researches that have combined the two levels. Also, the
research published at the planning level is the most recent.

The oldest metric used to calculate stability is LOC
Which is considered a basic and subsidiary metrics of
modern standards, Also, the most widely used metrics to
compute Stability for Object-Oriented Design in this study
is the metric CSM, the rest of the metrics are shown in
Figure 1 in terms of the number of uses in the research
presented in this study

V. Conclusion
In this study aims to provide a set of measures for assessing
the software's object-oriented design stability. Stable
software typically requires less work and costs for
maintenance. Stakeholders and organizations are becoming
more and more concerned with software lifespan. One of the
main criteria for reaching it might be stability. With a
particular emphasis on OO Design in Software Engineering,
the paper has discussed reviewed research on stability as a
software property in this publication. And The results reached
by this study are as follows:
class stability metrics (structural stability metrics (SSM),
architectural stability metrics (ASMs), and package stability
are the most significant metrics used to measure stability. The
SDI and SII metrics can give indications of project progress
(how complete the design and implementation is). This
information can in turn be used to adjust a project plan in real
time, if the absolute value of the SDI metric stays relatively
high and has not shown a downward trend, all the activities
that depend on a stable design should be postponed in the
project schedule. If the absolute values of the CII and SII
metrics remain relatively high, it is better to postpone the
formal and systematic testing of the classes and the system.
As the preliminary results show that a very straightforward

CBR classifier can perform significantly well when the stress
estimation is properly fed. And that WMC, DIT, CBO, RFC,
and LCOM metrics are negatively correlated with the logical
stability of classes. In addition, CBO and RFC metric were
found to be good indicators of the logical stability of classes.
However, no correlation was found between NOC metric and
the logical stability of classes. The SDIe gives a more accurate
indication of software stability and maturity since it suffers
less from data spikes. CSM was a better indicator of the
maintainability measures and showed significant correlation
at system level. In Stab and NS, this may mainly be because
of the limitations in the way stability, and classes with higher
values of stability measured by CSM are associated with lower
values of perfective maintenance effort measured by hours.
CSM was also found to be correlated with all types of
maintenance if measured by hours for the overall cumulative
class data rather than for each iteration and the most widely
used in literature review. As for the PSM measure, it found a
positive relationship between the current package stability
metrics, which depend on changes in lines of code and class
names, while shows that Artificial Neural Network is effective
in the estimation. With this result, the estimation of class
logical stability is accepted because the prediction value at
level 0.25 is more than 0.75. At the same time, code was the
primary focus of most metrics utilized to determine stability
instead of UML diagrams. The researchers suggest

Fig 1. represent how much research used for each metrics.

Al-Rafidain Journal of Computer Sciences and Mathematics (RJCM), Vol. 18, No. 2, 2024 (87-95)

95

investigating new metrics in subsequent work for predicting
the stability of other software engineering phases, such as
object-oriented design.

Acknowledgement
 The research would first like to express our gratitude to
Allah, the Creator, for giving me the willpower and
perseverance to complete this task. Second, the facilities
supplied by the University of Mosul/College of Computer
Sciences and Mathematics are greatly appreciated by the
authors as they enhanced the caliber of this study.

References
[1] R. Capilla, E. Yumi Nakagawa, U. Zdun and C. Carrillo, “Toward

architecture knowledge sustainability: Extending system longevity,”
IEEE Software 34.2 (2017): 108-111.

[2] S. Maria, R. Bahsoon and P. Lago, "Stability in software engineering:
Survey of the state-of-the-art and research directions," IEEE
Transactions on Software Engineering, 47.7 (2019): 1468-1510.

[3] M. Alshayeb, "On the relationship of class stability and
maintainability," IET software 7.6 (2013): 339-347.

[4] J. Javed Akbar Baig, S. Mahmood, M. Alshayeb and Mahmood Niazi ,”
Package-Level stability evaluation of object-oriented
systems," Information and Software Technology, 116 (2019): 106172.

[5] H. Olague, L. H. Etzkorn, W. Li and G. Cox, “"Assessing design
instability in iterative (agile) object‐oriented projects," Journal of
Software Maintenance and Evolution: Research and Practice 18.4
(2006): 237-266.

[6] W. Li , L. Etzkorn , C. Davis and J. Talburt,” An empirical study of
object-oriented system evolution," Information and Software
Technology 42.6 (2000): 373-381.

[7] G. David, H. A. Sahraoui, and P. Valtchev, "An analogy-based approach
for predicting design stability of Java classes," Proceedings. 5th
International Workshop on Enterprise Networking and Computing in
Healthcare Industry (IEEE Cat. No. 03EX717). IEEE, 2004.

[8] D. Rapu, S. Ducasse, T. Girba and R. Marinescu "Using history
information to improve design flaws detection," Eighth European
Conference on Software Maintenance and Reengineering, 2004. CSMR
2004. Proceedings.. IEEE, 2004.

[9] M. Alshayeb ,M. Naji ,M. Elish andJ. Al-Ghamdi ,” Towards
measuring object-oriented class stability," IET software 5.4 (2011): 415-
424.

[10] G., David, Houari A. Sahraoui, and Petko Valtchev, "Predicting
software stability using case-based reasoning," Proceedings 17th IEEE
International Conference on Automated Software Engineering,. IEEE,
2002.

[11] E. Mahmoud and D. Rine, "Investigation of metrics for object-oriented
design logical stability," Seventh European Conference onSoftware
Maintenance and Reengineering, 2003. Proceedings.. IEEE, 2003.

[12] Ma, H., Shao, W., Zhang, L., Ma, Z., Jiang, Y , "Applying OO metrics
to assess UML meta-models," «UML» 2004—The Unified Modeling
Language. Modeling Languages and Applications: 7th International
Conference, Lisbon, Portugal, October 11-15, 2004. Proceedings 7.
Springer Berlin Heidelberg, 2004.

[13] M. Alshayeb and W. Li. ," An empirical study of system design
instability metric and design evolution in an agile software
process," Journal of Systems and Software 74.3 (2005): 269-274.

[14] T. Nikolaos, A. Chatzigeorgiou, and G. Stephanides ,” "Predicting the
probability of change in object-oriented systems," IEEE Transactions on
Software Engineering 31.7 (2005): 601-614

[15] G. Phil, et al., "On the impact of aspectual decompositions on design
stability: An empirical study," ECOOP 2007–Object-Oriented
Programming: 21st European Conference, Berlin, Germany,July 30-
August 3, 2007. Proceedings 21. Springer Berlin Heidelberg, 2007.

[16] A. Danielle, H. Harmanani, and R. Korkmaz, "Predicting stability of
classes in an object-oriented system," Journal of Computational Methods
in Sciences and Engineering 10.s1 (2010): S39-S49.

[17] N. Dith, S. Prakancharoen and P. Muenchaisri, "Estimating Software
Logical Stability using ANN from Class diagram," Information
Technology Journal 7.1 (2011): 58-63.

[18] M. Alshayeb, "The impact of refactoring on class and architecture
stability," Journal of Research and Practice in Information
Technology 43.4 (2011): 269-284.

[19] A. Danielle, and J. Vybihal, "An ant colony optimization algorithm to
improve software quality prediction models: Case of class
stability," Information and Software Technology 53.4 (2011): 388-393

[20] M. Alshayeb ,"Investigating the relationship between refactoring
activities and class stability," 21st International Conference on Software
Engineering and Data Engineering, SEDE 2012.

[21] B. Salah, H. Sahraoui and F.Ahmed , "Predicting stability of open-source
software systems using combination of Bayesian classifiers," ACM
Transactions on Management Information Systems (TMIS) 5.1 (2014): 1-
26.

[22] M. Alshayeb, E. Yagoub, and A. Moataz , "Object-oriented class stability
prediction: a comparison between artificial neural network and support
vector machine," Arabian Journal for Science and Engineering 39 (2014):
7865-7876.

[23] E. Shouki, and M. Ahmed, "Measuring stability of object‐oriented
software architectures," IET Software 9.3 (2015): 76-82.

[24] M. Chawla, and I. Chhabra,"Sqmma: Software quality model for
maintainability analysis," Proceedings of the 8th Annual ACM India
Conference. 2015.

[25] B. Abdulrahman, M. Amro, and M. Alshayeb, "Analysis of the correlation
between class stability and maintainability," 2016 7th International
Conference on Computer Science and Information Technology (CSIT).
IEEE, 2016.

[26] G. Nidhi, and R. Srivastava, "Stability evaluation model for object
oriented software," International Journal of Advanced Research in
Computer Science 9.2 (2018).

[27] M. Alshayeb, "An Empirical Study on Using Class Stability as an
Indicator of Class Similarity," Arabian Journal for Science and
Engineering 44.11 (2019): 9413-9426.

[28] P. Skladannyi , O. Nehodenko , S. Shevchenko , O. Zolotukhina and V.
Nehodenko, "Modified Delta Maintainability Model of Object-Oriented
Software," Cybersecurity Providing in Information and
Telecommunication Systems 2022 3288.1 (2022): 117-124.

الاستقرار للتصمیم الموجھ للكائنات قابلیة مقاییس
ا في ھندسة البرمجیات: مراجعة

	Article information Abstract
	Acknowledgement
	References

