

Strongly Nil-Clean Rings of Order Two Units Samira Beno Toma^{1,*} and Nazar H. Shuker²

^{1,2}Department of Mathematics, College of Computer Sciences and Mathematics, University of Mosul, Mosul, Iraq Emails: samira.23csp34@student.uomosul.edu.iq, nazarhamdoon7@gmail.com

Article information

Article history: Received :25/4/2024 Accepted:25/6/2024 Available online :15/12/2024 If every element of a ring \Re is the sum of idempotent and nilpotent that commute, then the ring is said to be a strongly nil-clean. Further features of a strongly nil-clean ring are given in this paper. Furthermore, we present and investigate a special class of strongly nil-clean rings with order two units. Additionally, we examine a ring with each element a in \Re , a^2 and a^4 is a strongly nil-clean with order two and order four units. Among other results, we prove that: If \Re is a strongly nil-clean ring of order two units, then for all a in \Re , existing b in \Re , such that $a.b = \Psi$, a - b - 1 = u and $u^2 = 1$, and the converse of this result is true if 2 is nilpotent.

Keywords:

strongly nil-clean, Idempotent element, Nilpotent element.

Abstract

Correspondence: Author: Samira Beno Toma Email: samira.23csp34@student.uomosul.edu.ig

I. Introduction

All of the rings are associative with an identity throughout. A ring \Re is defined as clean [1] if each member of \Re is the sum of an idempotent and a unit. Additionally, according to [2], if the idempotent and the unit commute \Re is considered to be a strongly clean ring.

The set of idempotents, units, nilpotents and the Jacobson radical of \Re , will be represented by the symbols $Id(\Re)$, $U(\Re)$, $Nil(\Re)$ and $J(\Re)$ respectively.

A nil-clean ring, according to Diesl in [3], is one in which every element is the sum of an idempotent and a nilpotent. If the idempotent and nilpotent commute. \Re is regarded as a

strongly nil clean (or strongly NC for short) Kosan and Zhou [4] in 2016. The structure of strongly NC rings and rated subjects were provided in [5] and [6].

Chen and Sheibani [7], described a strongly 2-nil clean (or strongly 2-NC for short) ring as a ring \Re , where each member is the sum of two idempotents and a nilpotent that commute with one another.

The invo-clean ring was defined by Danchev [8] in 2017, as a ring \Re where each member of \Re is the sum of an idempotent and a unit of order two.

This work introduces the idea of a strongly NC ring with an order two units, and rings with every a, a^2 and a^4 are strongly NC with an order of two or four units.

II. Background

In this part, we shall give some definitions and well-known results which may be needed in our work.

Definition 2.1: [1]

If a ring \Re has an element $a = \Psi + u$, where $\Psi \in Id(\Re)$ and $u \in U(\Re)$, then the ring \Re is considered clean, if each element of \Re is clean.

Example 2.2:

The ring Z_6 is clean ring, obviously $Id(Z_6) = \{0,1,3,4\}$ and $U(Z_6) = \{1,5\}$. Clearly, every element of Z_6 is the sum of element of $Id(\mathfrak{R})$ and element of $U(\mathfrak{R})$, so Z_6 is a clean ring.

Definition 2.3: [8]

A ring \Re is said to be invo-clean, if every $a \in \Re$, $a = v + \Psi$, where $\Psi \in Id(\Re)$ and $v^2 = 1$.

If $\psi \Psi = \Psi \psi$ is called strongly invo-clean.

Example 2.4:

The rings Z_5 and Z_7 are not invo-clean. Oppositely, the rings Z_2, Z_3, Z_4, Z_6 and Z_8 are all invo-clean rings.

Definition 2.5: [9]

An element n of a ring \Re is called a nilpotent, if there is a positive integer r, such that $n^{r} = 0$.

Example 2.6:

In the ring Z_8 the nilpotent elements are $\{0,2,4,6\}$.

Lemma 2.7: [10]

If *n* is a nilpotent and *u* is a unit and un = nu then; 1) $1 \pm n$ is a unit. 2) u + n is a unit.

Definition 2.8:

Let \Re be a ring and a in \Re , define $r(a) = \{b \in \Re: ab = 0\}$.

Definition 2.9: [11]

An element $t \in \Re$ is tripotent if $t = t^3$. If every element of a ring \Re is tripotent, then \Re is referred to be a tripotent ring. Clearly, Z_6 is a tripotent ring.

Theorem 2.10: [4]

An element $a \in \Re$ is strongly NC if and only if a is strongly clean in R and $a - a^2$ is nilpotent.

Definition 2.11: [7]

A ring \Re is considered to be a strongly 2-NC if every $a \in \Re$, $a = \Psi_1 + \Psi_2 + n$, where $\Psi_1, \Psi_2 \in Id(\Re)$, $n \in Nil(\Re)$ that commute.

Example 2.12:

In the ring Z_{12} , then: $Id(Z_{12}) = \{0,1,4,9\}$ $Nil(Z_{12}) = \{0,6\}$ $U(Z_{12}) = \{1,5,7,11\}$. It turns out that the ring Z_{12} is strongly 2-NC.

Lemma 2.13: [7]

The following are equivalent for a ring \Re : 1- \Re is strongly 2-NC. 2- For any $a \in \Re$, $a^3 - a \in Nil(\Re)$. 3-For all $a \in \Re$, $a^2 \in \Re$ is strongly NC.

Definition 2.14: [12]

A ring \Re is a Zhou nil-clean, if every element in \Re is the sum of two tripotents and a nilpotent that commute with one another.

Example 2.15: Consider the ring Z_{25} . Then $Id(Z_{25}) = \{0,1\}$. And the tripotent elements are $\{0,1,24\}$ $Nil(Z_{25}) = \{0,5,10,15,20\}$ $U(Z_{25}) = \{1,2,3,4,6,7,8,9,11,12,13,14,16,17,18,19,21, 22,23,24\}$ Observe the ring is Zhou nil-clean.

Lemma 2.16: [13]

Assume that there are two commuting idempotents, Ψ_1 and Ψ_2 , then :

1- $(\Psi_1 - \Psi_2)^2$ is an idempotent.

2- $(\Psi_1 + \Psi_2)^3$ is a tripotent.

3- $(\Psi_1 - \Psi_2)^2 + (\Psi_1 - \Psi_2) - 1$ is a unit of order two.

4- $2(\bar{\Psi_1} - \bar{\Psi_2})^2 - 1$ is a unit of order two.

3. A strongly NC ring of order two units

This section defines strongly NC ring of order two units, outlines some of its fundamental characteristics, and offers some examples.

Definition 3.1: [4]

A ring \Re is said to be a nil-clean ring, if for every $a \in \Re$ such that $a = \Psi + n$, where Ψ is idempotent element, and nis a nilpotent element in \Re , if $\Psi n = n\Psi$, a ring \Re is called strongly NC if every element of \Re is strongly NC.

Example 3.2:

In the ring $Z_2 \times Z_4$, note that $Id(Z_2 \times Z_4) = \{(0,0), (0,1), (1,0), (1,1)\}$ $Nil(Z_2 \times Z_4) = \{(0,0), (0,2)\}$ By direct calculation, \Re is strongly NC ring. The next result gives further properties a strongly NC rings.

Theorem 3.3 :

Nil(\Re), hence $a^{r+1} = \Psi + n_1$.

If \Re is strongly NC ring, then for every $a \in \Re$, $a = \Psi + n$ 1) a^m is strongly NC. 2) 1 - a is strongly NC. 3) $r(a) \cap \Psi \Re = 0$ **Proof: (1)** Let $a = \Psi + n$, where $\Psi \in Id(\Re)$ and $n \in Nil(\Re)$ that commute, then $a^2 = (\Psi + n)^2 = \Psi + 2\Psi n + n^2$, observe that $2\Psi n + n^2 \in Nil(\Re)$, say $n', n' = 2\Psi n + n^2$, hence $a^2 = \Psi + n'$. Assume that $a^r = \Psi + n''$, is true. Now, $a^{r+1} = a^r \cdot a = (\Psi + n'')(\Psi + n) = \Psi + \Psi n + n''\Psi + n''n$, say $n_1 \in Nil(\Re)$, $n_1 = \Psi n + n''\Psi + n''n \in$

(2): Let $a \in \Re$, then $a = \Psi + n$, where $\Psi \in Id(\Re)$, $n \in Nil(\Re)$ and $\Psi n = \Psi n$, then $1 - a = 1 - \Psi - n$, so $1 - a = (1 - \Psi) + (-n)$, since $(1 - \Psi)$ is idempotent and -n is a nilpotent. Therefore 1 - a is strongly NC.

(3): Let $x \in r(a) \cap \Psi \Re$, then ax = 0, and $x = \Psi r$, for some $r \in \Re$. Hence $a(\Psi r) = 0$, so $(\Psi + n)\Psi r = \Psi^2 r + n\Psi r = 0$, implies $\Psi r + n\Psi r = 0$, since $\Psi^2 = \Psi$ is idempotent element. So $(1 + n)\Psi r = 0$, since $(1 + n) \in U(\Re)$, then $\Psi r = x = 0$. Therefore $r(a) \cap \Psi \Re = 0 \cdot \blacksquare$

Next, will look at a strongly NC ring of order two units .

Proposition 3.4 :

If \Re is Strongly NC ring of order two units and $n^2 + 2n = 0$, for every nilpotent *n*. Then \Re is strongly invo – clean ring.

Proof: Let $a \in \Re$, then $a - 1 = \Psi + n$, where Ψ is an idempotent element in \Re and n is a nilpotent element in \Re with $\Psi n = n\Psi$. Then $a = \Psi + n + 1$, but n + 1 is a unit (Lemma 2.7, part 1) we get $a = \Psi + u$, where u = n + 1. Now $u^2 = (n + 1)^2 = n^2 + 2n + 1 = 0 + 1 = 1$.

Proposition 3.5:

Let \mathfrak{R} be a strongly invo-clean ring with $2 \in Nil(\mathfrak{R})$. Then \mathfrak{R} is a strongly NC ring. **Proof:** Let a in \mathfrak{R} , then $a - 1 = \Psi + u$, where $\Psi \in Id(\mathfrak{R})$

and $u^2 = 1$, implies $a = \Psi + u + 1$, where $u^2 = 1$, we get $(u + 1)^2 = u^2 + 2u + 1 = 1 + 2u + 1 = 2 + 2u = 2(1 + u)$, since $2 \in Nil(\Re)$, then $(1 + u) \in Nil(\Re)$, say n, n = 1 + u. Hence $a = \Psi + n$.

Theorem 3.6 :

If \Re is strongly NC ring of order two units, then for all $a \in \Re$, existing $b \in \Re$ such that $a.b = \Psi$ and a - b - 1 = u, $u^2 = 1$.

Proof: Let $a \in \Re$, then $a = \Psi + n$, $\Psi n = n\Psi$, where $\Psi \in Id(\Re)$ and $n \in Nil(\Re)$. If $n^r = 0$, if we set $\mathfrak{b} = \Psi - \Psi$ $\Psi n + \Psi n^2 - \Psi n^3 + \dots \dots + (-1)^{r-1} n^{r-1}$, where $r \in z^+$. Hence $a.b = (\Psi + n)(\Psi - \Psi n + \Psi n^2 - \Psi n^3 + \dots \dots + \Psi n^2)$ $(-1)^{r-1}n^{r-1} = \Psi^2 - \Psi^2 n + \Psi^2 n^2 - \Psi^2 n^3 + \cdots + +$ $(-1)^{r-1}\Psi n^{r-1} + \Psi n - \Psi n^2 + \Psi n^3 - \Psi n^4 + \cdots + +$ $(-1)^{r-1}n^r = \Psi - \Psi n + \Psi n^2 - \Psi n^3 + \dots + (-1)^{r-1}$ $\Psi n^{r-1} + \Psi n - \Psi n^2 + \Psi n^3 + \dots \dots + (-1)^{r-1} n^r = \Psi.$ $a - b - 1 = (\Psi + n) - (\Psi - \Psi n + \Psi n^2 -$ Consider $\Psi n^{3} + \dots + (-1)^{r-1} n^{r-1}) - 1 = \Psi + n - \Psi + \Psi n -$ $\Psi n^2 + \Psi n^3 - \dots \dots - (-1)^{r-1} n^{r-1} - 1 = n + \Psi n -$ $\Psi n^2 + \dots \dots - (-1)^{r-1} n^{r-1} - 1 = n(1 + \Psi - \Psi n +$ $\cdots \dots \dots - (-1)^{r-1}n^{r-2}) - 1$. Let $n' \in Nil(\Re), n' = 1 +$ $\Psi - \Psi n + \dots - (-1)^{r-1} n^{r-2}$, hence a - b - 1 =nn' - 1. Since $n \in Nil(\Re)$, then $nn'Nil(\Re)$ and nn' =n'n. Hence a - b - 1 = n'' - 1 = u, where n'' = nn'.

The converse this theorem is not true. As shown in the following example :

Example 3.7:

In the ring Z_{24} $Id(Z_{24}) = \{0,1,9,16\}$ $Nil(Z_{24}) = \{0,6,12,18\}$ $U(Z_{24}) = \{1,5,7,11,13,17,19,23\}$ And all the unit elements of Z_{24} are of order two. By using (Theorem 3.6) the ring Z_{-} is not strongly NC since 2.5 and

Theorem 3.6) the ring Z_{24} is not strongly NC, since 2,5 and 8 does not satisfy (Theorem 2.10), but $a.b = \Psi$ and a - b - 1 = u.

Theorem 3.8 :

If $a.b = \Psi$ and a - b - 1 = u, $u^2 = 1$, with ub = buand $2 \in Nil(\Re)$. Then \Re is strongly NC ring. **Proof:** If a - b - 1 = u, where $u^2 = 1$, then a - b = u + 1, note that $(u + 1)^2 = u^2 + 2u + 1 = 2u + 2 = 2(u + 1)$, since $2 \in Nil(\Re)$, then $(u + 1) \in Nil(\Re)$, say n, n = u + 1. Hence a - b = n. Since ub = bu, then (u + 1)b = b(u + 1), implies that to nb = bn. Now let $a \in \Re$, $n \in Nil(\Re)$, then $an \in Nil(\Re)$. Since a - b = n, implies a = b + n multiply by n we get $an = bn + n^2 = nb + n^2 = na$, so an = na. Now since $a.b = \Psi$ and a - b = n, multiply this by a, we get $a^2 - \Psi = an$, where $an \in Nil(\Re)$, say n_1 , $an = n_1$, hence $a^2 = \Psi + n_1$. By(Lemma 2.13), $a = \Psi_1 + \Psi_2 + n_1$, is strongly 2-NC. Now $a^2 = (\Psi_1 - \Psi_2)^2 + 2\Psi_1\Psi_2 + n_2$, since $2 \in Nil(\Re)$.

Then $2\Psi_1\Psi_2 + n_2 \in Nil(\Re)$, write $n_3 \in Nil(\Re)$. So $2\Psi_1\Psi_2 + n_2 = n_3$, implies $a = (\Psi_1 - \Psi_2)^2 + n_3$. Since

 $(\Psi_1 - \Psi_2)^2$ is idempotent, then $(\Psi_1 - \Psi_2)^2 = \Psi_3$. Hence $a = \Psi_3 + n_3$ is strongly NC element. So \Re is strongly NC ring.

Theorem 3.9 :

If \Re is strongly NC ring of order two units. Then for all $a \in J(\Re)$, $a^3 = 4a = 0$.

Proof: Let $a \in J(\mathfrak{R})$ then $1 - a \in U(\mathfrak{R})$. since \mathfrak{R} is strongly NC, then $a = \Psi + n$. Then $1 - a = 1 - \Psi - n$, where $\Psi \in$ $Id(\mathfrak{R})$ and $n \in Nil(\mathfrak{R})$, implies $u = 1 - \Psi - n$, then $u + \mu$ $n = 1 - \Psi$, since un = nu, then $u + n \in U(\Re)$, by (Lemma 2.7, part 2), so $1 - \Psi = u_1$ implies $1 - \Psi = 1$, hence $\Psi = 0$. So $a = \Psi + n = 0 + n = n$, where *n* is nilpotent and 1 + nis unit. Then $a \in Nil(\mathfrak{R})$, so $1 + a \in U(\mathfrak{R})$, where $u^2 = 1$. Hence 1 + a = 1 + n, implies 1 + a = u, then a = u - 1. $a^{2} = (u - 1)^{2} = u^{2} - 2u + 1 = 1 - 2u + 1 = 2 - 2u$ Now 2u = 2(1-u) = 2a. Also $a^3 = (u-1)^3 = 2(u-1)^2 =$ $2^{2}(u-1) = 4a$. So $a^{2} = 2a$, which yields $a^{3} = 4a$. Put a = 2b, since $2b \in I(\Re)$. Implies that to $(2b)^2 = 2(2b) =$ 4b. So $(2b)^3 = 4(2b) = 8b$, Hence $8b^3 = 8b$, so $8b^3 - 8b =$ 0, we get $8b(b^2 - 1) = 0$, since $b \in J(\Re)$, then $1 - b^2 \in$ $U(\Re)$, then 8b = 0. So $4a = 0 = a^3$.

Theorem 3.10 :

If \Re is a strongly NC ring of order two units. Then \Re/I is strongly NC ring of order two units.

Proof: Assume \Re is a strongly NC of order two units and *I* be an ideal of \Re and let $a \in \Re$, then $a + I \in \Re/I$. Then $a = \Psi + n$, where Ψ is an idempotent element and *n* is a nilpotent element, with $\Psi n = n\Psi$, hence $a + I = (\Psi + n + I) = \Psi + I + n + I$.

Since $(\Psi + I)(n + I) = \Psi n + I = n\Psi + I = (n + I)(\Psi + I)$. Let $u \in U(\Re)$, $u^2 = 1$, then $(u + I)^2 = (u + I)(u + I) = u^2 + I = 1 + I$. Hence \Re/I is strongly NC ring with order two units.

Proposition 3.11:

Suppose \Re is a strongly NC ring and for every $n \in Nil(\Re)$, $n^2 + 2n = 0$, then $|\Re| = 8$ and $u^2 = 1$.

Proof: Let $a \in \Re$, then $a = \Psi + n$, and $\Psi n = n\Psi$ where $\Psi \in Id(\Re)$ and $n \in Nil(\Re)$, take $u \in U(\Re)$, yielding to $u = \Psi + n$, implies that to $\Psi = u - n = v \in U(R)$. So $\Psi = 1$,

hence u = 1 + n. Now $u^2 = (1 + n)^2 = 1 + 2n + n^2$, since $n^2 + 2n = 0$ given, implies $u^2 = 1$. By (Theorem 2.10) $a^2 - a \in Nil(\Re)$, this gives $2^2 - 2 = 2 \in Nil(\Re)$. Using the hypothesis $n^2 + 2n = 0$, yielding $2^2 + 2(2) = 8 = 0$.

Example 3.12:

In the ring Z_8 , $Id(Z_8) = \{0,1\}$, $Nil(Z_8) = \{0,2,4,6\}$, $U(Z_8) = \{1,3,5,7\}$. Note that $1^2 = 3^2 = 5^2 = 7^2 = 1$.

Proposition 3.13:

Let \Re be a strongly NC ring and for each $n \in Nil(\Re)$, $2n^2 + 4n = 0$. Then $|\Re| = 16$ and $u^4 = 1$.

Proof:

Let $a = \Psi + n$, where $\Psi \in Id(\Re)$ and $n \in Nil(\Re)$ with $\Psi n = n\Psi$. By hypothesis, $2n^2 + 4n = 0$, since $2 \in Nil(\Re)$ yielding $2(2)^2 + 4(2) = 2(4) + 8 = 16 = 0$.

Take $u \in U(\Re)$, then $u = \Psi + n$, so $\Psi = u - n = v \in U(\Re)$. Hence $\Psi = 1$, hence u = 1 + n, then $u^4 = (1 + n)^4 = (1 + 2)^4 = 81 = 1$.

Proposition 3.14:

Let \Re be a strongly NC ring with $4n^2 + 8n = 0$ for each $n \in Nil(\Re)$. Then $|\Re| = 32$ and $u^8 = 1$.

Proof: Let a in \Re , then $a = \Psi + n$, where $\Psi \in Id(\Re)$, $n \in Nil(\Re)$ and $\Psi n = n\Psi$. Since $2 \in Nil(\Re)$, then $4(2)^2 + 8(2) = 4(4) + 16 = 32 = 0$. So $|\Re| = 32$.

Assume that $u \in U(\mathfrak{R})$, then $u = \Psi + n$, this gives $\Psi = u - n$, since un = nu, then by (Lemma 2.7), $u - n \in U(\mathfrak{R})$, so $\Psi = 1$. Thus u = 1 + n. Now consider $u^8 = (1 + n)^8 = (1 + 2)^8 = (3)^8 = 6561 = 1.$

Theorem 3.15 :

If \Re is strongly NC ring and $u^{2^{r-2}} = 1$, for all r > 2 and $n^2 + 2n = 0$. Then $|\Re| = 2^r$.

Proof: If r = 3 the unit element $u^{2^{3-2}} = u^2 = 1$. Then $|\Re| = 2^3 = 8$. Assume that for some positive integer $\mathfrak{s}, \mathfrak{r} = \mathfrak{s}$ the unit element $u^{2^{\mathfrak{s}-2}} = 1$, so $|\Re| = 2^{\mathfrak{s}}$.

Now if $\mathbf{r} = \mathbf{s} + 1$ then $u^{2^{(s+1)-2}} = 1$. We have $u^{2^{s-1}} = (u^{2^{s-2}})^2$, since $u^{2^{s-2}} = 1$ we obtain $u^{2^{s-1}} = (u^{2^{s-2}})^2 = 1^2 = 1$. The statement holds for $\mathbf{s} + 1$. Hence the $|\Re| = 2^r$.

4. Rings with every elements a in \Re , a^2 and a^4 are strongly nil-clean.

In this section, we consider , rings with every elements a in \Re , a^2 and a^4 are a strongly NC of order two units .

Proposition 4.1:

Let \mathfrak{R} be a ring with every a in \mathfrak{R} , $a^2 = \Psi + n$, where $\Psi \in Id(\mathfrak{R})$, $n \in Nil(\mathfrak{R})$ and $\Psi n = n\Psi$. Then 1- a and -a are strongly clean. 2- $\mathfrak{r}(a) \cap \Psi \mathfrak{R} = 0$.

3- $6 \in Nil(\mathfrak{R})$.

Proof:(1)

Let $a \in \mathfrak{R}$. Then $a^2 = \Psi + n$, we may write a^2 , as $a^2 = (1 - \Psi) + (2\Psi - 1) + n$. Since $2\Psi - 1 \in U(\mathfrak{R})$, then $2\Psi - 1 + n \in U(\mathfrak{R})$, by (Lemma 2.7).

So $a^2 = 1 - \Psi + u$, where $u = 2\Psi - 1 + n$. On the other hand $a^2 - (1 - \Psi) = u$, but $1 - \Psi = (1 - \Psi)^2$, then $(a - (1 - \Psi))(a + (1 - \Psi)) = u$. Hence $a - (1 - \Psi)$ and $a + (1 - \Psi) \in U(\Re)$. (2) Let $b \in r(a) \cap \Psi \Re$, then ab = 0 and $b = \Psi r$. So $a^2b = 0$, gives $(\Psi + n)\Psi r = 0$, the where u = 0, u = 1 by u = 0.

thus $\Psi \mathbf{r} + n\Psi \mathbf{r} = 0$, yielding $(1 + n)\Psi \mathbf{r} = 0$. But $1 + n \in U(\mathfrak{R})$, then $\Psi \mathbf{r} = x = 0$. Therefore $\mathbf{r}(a) \cap \Psi \mathfrak{R} = 0$.

(3) Let $a \in \Re$, then by (Theorem 2.10) $a^4 - a^2 \in Nil(\Re)$, so $a(a^3 - a) \in Nil(\Re)$, multiply by $a^2 - 1$ we get, $(a^2 - 1)a(a^3 - a) \in Nil(\Re)$, thus $(a^3 - a)^2 \in Nil(\Re)$, so $a^3 - a \in Nil(\Re)$, this implies $2^3 - 2 = 8 - 2 = 6 \in Nil(\Re)$.

Theorem 4.2 :

If \Re is a ring with every $a \in \Re$, a^2 is a strongly NC, and $n^2 + 2n = 0$ for each $n \in Nil(\Re)$. Then 48 = 0 and $u^4 = 1$. **Proof:** Given $a \in \Re$, a^2 is a strongly NC, then $a^2 = \Psi + n$, where $\Psi \in Id(\Re)$ and $n \in Nil(\Re)$ with $\Psi n = n\Psi$. Assume $u \in U(\Re)$, then $u^2 = \Psi + n$, gives $\Psi = u^2 - n = v \in U(\Re)$, thus $\Psi = 1$.

Hence $u^2 = 1 + n$, implies $u^4 = (1 + n)^2 = 1 + 2n + n^2$, by assumption $n^2 + 2n = 0$, so $u^4 = 1$. By (Theorem 4.1, part 3), we get $6 \in Nil(\Re)$. Hence $6^2 + 2(6) = 36 + 12 = 48 = 0$.

Example 4.3:

In the ring Z_{48} . Note that: $Id(Z_{48}) = \{0,1,16,33\}$ $Nil(Z_{48}) = \{0,6,12,18,24,30,36,42\}$ $U(Z_{48}) = \{1,5,7,11,13,17,19,23,25,29,31,35,37,41,43,47\}$ All the unit elements of Z_{48} are of order 4.

Proposition 4.4:

Let \Re be a ring, with every a in \Re , a^2 is a strongly NC and if $2n^2 + 4n = 0$ for each $n \in Nil(\Re)$. Then $|\Re| = 96$ and $u^8 = 1$.

Proof: Let $a \in \Re$, then $a^2 = \Psi + n$, where $\Psi \in Id(\Re)$ and $n \in Nil(\Re)$ with $\Psi n = n\Psi$. Appling (Lemma 2.13), we have $a^3 - a \in Nil(\Re)$, so $2^3 - 2 = 6 \in Nil(\Re)$. Since

 $2n^2 + 4n = 0$, by hypothesis, then $2(6)^2 + 4(6) = 72 + 24 = 96$. Therefore $|\Re| = 96$.

For any $u \in U(\Re)$, $u^2 = \Psi + n$, gives $\Psi = n - u^2 = \sigma \in U(\Re)$. Hence $\Psi = 1$. Now $u^8 = (1 + n)^8 = (1 + 6)^8 = 5764801 = 1$.

We next turn to consider rings with every a in \Re , a^4 is a strongly NC.

Lemma 4.5: [14]

The following are equivalent for a ring \Re :

1- R is Zhou nil-clean.

2- For any $a \in \Re$, $a^5 - a \in Nil(\Re)$.

Theorem 4.6 :

Let \Re be a ring, then a^4 is strongly NC for each a in \Re if and only if \Re is Zhou nil-clean ring.

Proof: Let a in \Re , with a^4 is a strongly NC, then $a^4 = \Psi + n$, where $\Psi \in Id(\Re)$ and $n \in Nil(\Re)$, with $\Psi n = n\Psi$. Then $(a^4)^2 - a^4 \in Nil(\Re)$, (Theorem 2.10), so $a^2(a^6 - a^2) \in Nil(\Re)$, multiply by $(a^4 - 1)$, we get $(a^4 - 1)a^2(a^6 - a^2) = (a^6 - a^2)^2 \in Nil(\Re)$, this gives $a(a^5 - a) \in Nil(\Re)$, again multiply by $(a^4 - 1)$, we get $(a^5 - a)^2 \in Nil(\Re)$, hence $a^5 - a \in Nil(\Re)$. So \Re is Zhou nil-clean ring (Lemma 4.5).

Conversely, let $a \in \Re$, then by (Lemma 4.5). $a^5 - a \in Nil(\Re)$, multiply by a^3 , we get $(a^8 - a^4) \in Nil(\Re)$. Therefore a^4 is a strongly NC, (Lemma 2.10).

Corollary 4.7:

If \Re is a ring with every a^4 is strongly NC, then $30 \in Nil(\Re)$.

Proof: Let $2 \in \Re$, then by (Theorem 4.6), $a^5 - a \in Nil(\Re)$, so $2^5 - 2 = 32 - 2 = 30 \in Nil(\Re)$.

Theorem 4.8 :

If a^4 is Strongly NC for every a in \Re and if $n^2 + 2n = 0$, for every nilpotent n in \Re , then $|\Re| = 960$ and every unit is of order 16.

Proof: Since a^4 is strongly NC, then $a^4 = \Psi + n$, where $\Psi \in Id(\mathfrak{R})$ and $n \in Nil(\mathfrak{R})$

With $\Psi n = n\Psi$, let $u \in U(\Re)$ so $u^4 = \Psi + n$, we obtain $\Psi = u^4 - n \in U(\Re)$.

Hence $\Psi = 1$, so $u^4 = 1 + n$.

Now $(u^4)^4 = (1+n)^4 = 1 + 4n + 6n^2 + 4n^3 + n^4$

From assumption where $n^2 = -2n$, we get $u^{16} = 1 + 4n + 6(-2n) + 4n(-2n) + (-2n)^2$

$$u^{10} = 1 + 4n + 6(-2n) + 4n(-2n) + (-2n)^{2}$$

- 1 + 4n - 12n - 8n² + 4n²

$$= 1 + 4n - 12n - 8n + 4n$$

= 1 - 8n - 8(-2n) + 4(-2n)= 1 - 8n + 16n - 8n = 1.

From (Corollary 4.7), we get $30 \in Nil(\Re)$, so $30^2 + 2(30) = 900 + 60 = 960 = 0.$

III. Conclusion

In this article, new properties of a strongly nil-clean ring are given. We consider a strongly nil-clean ring with units of order two, four and eight. Additionally, we consider rings with a^2 and a^4 are a strongly nil-clean elements with units of order two and four. We discuss some of the fundamental properties of such rings.

Acknowledgement

The authors would like to express their gratitude to the College of Computer Science and Mathematics at the University of Mosul for its support of this report.

References

- W. K. Nicholson, "Lifting idempotents and exchange rings," Trans. Am. Math. Soc., vol. 229, pp. 269–278, 1977, doi: 10.1090/S0002-9947-1977-0439876-2.
- W. K. Nicholson, "Strongly clean rings and fitting's lemma," Commun. Algebra, vol. 27, no. 8, pp. 3583–3592, Jan. 1999, doi: 10.1080/00927879908826649.
- [3] A. J. Diesl, "Nil clean rings," J. Algebra, vol. 383, pp. 197–211, Jun. 2013, doi: 10.1016/j.jalgebra.2013.02.020.
- [4] T. Koşan, Z. Wang, and Y. Zhou, "Nil-clean and strongly nil-clean rings," J. Pure Appl. Algebra, vol. 220, no. 2, pp. 633–646, 2016.
- [5] D. D. R. Diana, S. Irawati, and T. D. Rasdadik, "Some Properties of Strongly Nil Clean Elements", Accessed: Apr. 15, 2024. [Online]. Available: http://wwjmrd.com/upload/some-properties-of-strongly-nilclean-elements_1643635635.pdf
- [6] M. T. Koşan and Y. Zhou, "On weakly nil-clean rings," Front. Math. China, vol. 11, no. 4, pp. 949–955, Aug. 2016, doi: 10.1007/s11464-016-0555-6.
- H. Chen and M. Sheibani, "Strongly 2-nil-clean rings," J. Algebra Its Appl., vol. 16, no. 09, p. 1750178, Sep. 2017, doi: 10.1142/S021949881750178X
- [8] P. V. Danchev, "Invo-clean unital rings," Commun. Korean Math. Soc., vol. 32, no. 1, pp. 19–27, 2017.
- [9] J. J. Watkins, Topics in Commutative Ring Theory. Princeton University Press, 2009.
- [10] T. Y. Lam, A First Course in Noncommutative Rings, vol. 131. in Graduate Texts in Mathematics, vol. 131. New York, NY: Springer New York, 2001. doi: 10.1007/978-1-4419-8616-0.
- [11] Z. Ying, T. Koşan, and Y. Zhou, "Rings in which every element is a sum of two tripotents," Can. Math. Bull., vol. 59, no. 3, pp. 661–672, 2016.
- [12] M. S. Abdolyousefi, N. Ashrafi, and H. Chen, "On Zhou nil-clean rings." arXiv, May 15, 2017. doi: 10.48550/arXiv.1705.05094.
- [13] R. M. Salim and N. Shuker, "Strongly 2-nil clean rings with units of order two," Eur. J. Pure Appl. Math., vol. 16, no. 3, pp. 1675–1684, 2023.
- [14] H. Chen and M. Sheibani, "Structure of Zhou Nil-clean Rings," Algebra Colloq., vol. 25, no. 03, pp. 361–368, Sep. 2018, doi: 10.1142/S1005386718000251.