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diabetes management has grown significantly. Researchers are leveraging deep learning
technologies to enhance the diagnosis, treatment, and management of diabetes mellitus by
extracting valuable insights from EHR data. Various deep learning models, including
convolutional neural networks (CNNs) and recurrent neural networks (RNNs), have been
evaluated for their effectiveness in handling EHR data and predicting clinical outcomes.
CNNs excel at processing spatial data, while RNNs are adept at managing sequential data,
although both have limitations. Advanced models like autoencoders (AEs) and deep belief
networks (DBNs) offer improvements in feature extraction and predictive accuracy.
Hybrid and ensemble techniques also show promise in enhancing performance. Despite
these advancements, challenges such as data availability, model interpretability, and
generalizability remain. Ongoing research is essential to address these issues and further
improve diabetes management through EHR analysis.
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1 Introduction

Due to the world's population explosion, there is an
urgent need to develop systems that support public health and
address growing global problems. The efficiency with which
these systems are developed is significantly increasing as
scientific research advances. Healthcare infrastructures are
designed to provide people with the necessities for good
health as well as to accurately identify and diagnose illnesses,
all while increasing efficiency in comparison to traditional
approaches. Patients usually have a great deal of concern
about the standard of the healthcare facilities and services that
are offered. The advantages resulting from improvements in
healthcare systems typically affect those who are coping with
current illnesses, which includes a sizable segment of the
population affected by common problems such as diabetes,
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blood sugar abnormalities, and hypertension [1] .

According to the 2020 National Diabetes Statistics Report, one
in ten Americans has diabetes, with the younger population
experiencing notably higher rates of new cases. Since health
and healthcare are essential components of society welfare, it
is critical to create new ways that can be implemented in
healthcare environments by utilizing the potential of
computational techniques and artificial intelligence [2]. This
project seeks to promote a healthier population, reduce the
incidence of certain diseases in the coming generations, and
improve life expectancy in general.

One of the most common diseases in the world is diabetes
mellitus (DM), which is defined as a malfunction in the body's
capacity to use food as fuel. There are four main kinds of
condition: type-1, type-2, gestational, and various variants.
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Kinds 1 and 2 are the most common [3]. People with type-1
diabetes usually become ill between the ages of thirty and
forty, and they will always need to take insulin.

These methods, which make use of neural networks like
convolutional and recurrent neural networks (RNNs and
CNNs), may automatically learn complex model properties
and identify patterns [4] and [5]. In an effort to enhance
treatment outcomes and enable ecarly diagnosis, some
research has incorporated machine learning methods, such as
gradient boosted trees, into their predictive models for the
development of prediabetes to diabetes [6]. Modified support
vector machine (SVM) methods have been employed by
others as effective instruments for the analysis of nonlinear
and linear data [7]. Real-time detection models across a range
of industries have found application for these computational
techniques since the introduction of AI and associated
technologies. The integration of data mining, machine
learning, deep learning, and computer vision has greatly
facilitated the investigation of novel approaches, resulting in
notable improvements to current practices. An extensive
overview of the methods and techniques used in this field is
given in the next section.

A cursory glance indicates that feed-forward neural networks
(FFNN), CNN, and RNN are prominent deep learning
designs for EHR analysis and modeling. Automating feature
extraction, Tran et al. [8] pioneered the use of eNRBMs
(electronic medical records-driven nonnegative restricted
Boltzmann machines) to extract a universal representation
from extensive EHR data. Notably, eNRBM performed better
in suicide risk prediction than manual feature engineering
because it included requirements for nonnegative coefficients
and structural smoothness. In a similar vein, Miotto et al. [9]
utilized deep tack denoising utoencoders (SDA). to beat
expert-driven feature creation in a range of clinical risk
prediction tasks, such as congestive heart failure and diabetes
mellitus with complications.

Both methods are "modular" in that they transfer the learned
representation to the desired outcome using a supervised
learning model (such as logistic regression, SVM, or random
forests). However, temporal information in the EHR was not
specifically taken into account by either SDA or eNRBM. By
introducing Deepr (Deep Record), a CNN architecture that
models a patient's journey as a series of medical codes,
Nguyen et al. [10] addressed this limitation. Each code is
embedded in a new space to facilitate algebraic and statistical
operations, similar to word embedding in natural language
processing. An "end-to-end" model called Deepr showed
encouraging results in anticipating readmissions that weren't
scheduled after release.

In an additional "end-to-end" modeling project, Med2Vec
[11] was presented by Choi et al. as an FFNN model for
acquiring word embeddings similar to other methods while
learning representations for medical visits and codes. By
using an RNN architecture to identify important clinical
factors and impactful previous visits while preserving clinical
interpretability across several studies, Choi et al. expanded on
their earlier research [12] and [13]. As an illustration, the
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Reverse Time Attention Network (RETAIN) model [12], a
two-level neural attention model, and two RNNs were used to
handle sequential data., obtaining great predicted accuracy in
the diagnosis of heart failure while producing results that were
understandable. The RETAIN model has been significantly
enhanced since its beginning. Improvements in prediction
accuracy and clinical interpretability have been achieved
through the creation of interactive visual interfaces, attention-
based bidirectional RNNs, and graph-based attention models.

2 Advanced Techniques in Diabetes Detection

and Diagnosis.

By using data-driven computational approaches, which

teach computational systems from features in input data,
diabetes diagnosis can be accomplished effectively. Numerous
algorithms, including supervised, unsupervised, and
reinforcement learning techniques, have been created. These
methods have proven effective in diagnosing diabetes. These
data-driven algorithms are especially useful since they are
data-centric, which allows them to handle large datasets and
drastically reduce the amount of work that needs to be done by
humans. Models are trained using a variety of factors, which
reflect the many symptoms of the disease and range from
blood report data to facial traits. Scholars have conducted a
thorough investigation of several algorithms and made
multiple hyperparameter adjustments in order to optimize
outcomes for practical use.
Choudhury and Gupta [14] categorized people into high- and
low-risk groups using a variety of algorithms. They used the
LR binary classifier approach, DTs, RF, and NB classifiers, as
well as KNN for clustering fresh data and SVM for
categorization. According to the confusion matrix (Fig. 1), LR
was shown to be the most accurate and efficient, whereas DT
showed the lowest accuracy. Using the LR algorithm, Shukla
[15] determined that the body mass index (BMI), glucose, and
pregnancy status were important factors for precise prediction.
This was shown in a bar chart (Fig. 2). 82.92% accuracy was
attained by the LR model trained on dominating features, with
probabilities suggesting a diabetic state.

Classification results
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Fig 1. The SVM, KNN, NB, DTs, and LR classification
results were summarized using TP, FP, TN, and FN
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parameters, which form the confusion matrix [13] .
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Fig 2. The weight of each of the features which yield the
result variable [15]

Two datasets, PID (Case 1) and Hippokrateion (Case 2), were
separated for training and testing in a study by Dalakleidi et
al. [16]. They employed the logistic model tree algorithm
(LMT), which blends the learning philosophies of LR and
DT, and binary logistic regression (BLM). AUC of 0.85 for
BLM and 0.84 for LMT in Case 1 respectively indicate
higher accuracy of 80.47% and 77.6%. Case 2 showed that
BLM performed better than LMT, with an accuracy of
93.45% as opposed to 92.86% for LMT.

Ahuja et al. [17] utilized the UCI dataset containing 768
records of women, of which 500 were diabetic and 268 were
not. The authors used eight features for classification and
applied a feature selection technique, linear discriminant
analysis (LDA), to identify the important features needed for
classification. They employed five types of machine learning
classifiers, including support vector machines (SVM),
decision trees (DT), logistic regression (LR), random forest
(RF), and a multilayer perceptron. The authors evaluated
performance using four metrics: accuracy, precision, recall,
and F-score. Based on these metrics, they concluded that the
multilayer perceptron provided the best results. Table 1
presents the results using different values of k-fold validation.

Table 1 Accuracy results of different classifiers at different
values of k-fold validation (%)

k- Support DT | RF | LR | Multi-layer
fold Vector Perceptron
Classifier
k= |77.6 69.0 | 69.9 | 77.8 | 77.5
2
k= |77.6 69.9 | 70.0 | 77.6 | 78.7
4
k= |775 71.5 1729 | 77.6 | 78.2
5
k= |775 69.5 | 70.0 | 77.6 | 77.6
10
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This line plot in figure 3 visualizes the accuracy of
various classifiers at different k-fold values for cross-
validation. By comparing the accuracy values of each
classifier, we can determine which classifier performs
better at different k-fold values, helping in selecting the
most effective model for diabetes management using
deep learning techniques. The plot helps in
understanding the stability and robustness of the
classifiers' performance across different validation folds.

Accuracy Results of Different Classifiers at Different k-Fold Values

I

=

78 4

76 4

—8— Support Vector Classifier
Decision Tree

—e— Random Forest

—e— Logistic Regression

—&— Multi-layer Perceptron

2

Accuracy (%)

~
5]

70 1

10
k-Fold

Fig 3. Accuracy Results of Different Classifiers at Different k-
Fold Values.

3 Advancements In Deep Learning Models For

Diabetes Management Through Her Analysis

The burgeoning field of deep learning (DL) in analyzing
EHR data for diabetes management has witnessed remarkable
growth in recent years. Researchers have increasingly turned
to DL techniques to extract valuable insights from EHR data,
aiming to enhance the diagnosis, treatment, and management
of diabetes mellitus. CNNs, RNNs, AEs, and deep belief
networks (DBNs) are among the DL models that have been
investigated for their efficacy in managing the intricacies of
EHR data and forecasting clinical outcomes for patients with
diabetes.
In the study [18] S. Ayon and M. Islam proposed a deep
learning strategy for diagnosing diabetes. Utilizing the Pima
Indian Diabetes (PID) dataset from the UCI machine learning
repository, they trained a deep learning model using both five-
fold and ten-fold cross-validation. The results were promising,
with the model achieving a prediction accuracy of 98.35%, an
F1 score of 98, and an MCC of 97 for five-fold cross-
validation. For ten-fold cross-validation, the model achieved
an accuracy of 97.11%, a sensitivity of 96.25%, and a
specificity of 98.80%.
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The Deep Neural Network (DNN) prediction results are
presented in confusion matrices for both five-fold and ten-
fold cross-validation (Tables 2 and 3). The performance
metrics are summarized in Table 4.

Table 2. Five-Fold Cross-Validation Confusion Matrix.

Actual \ Predicted Absence Present Total
Absence 494 (98.21%) 6 (2.26%) 500
Present 9 (1.79%) 259 (97.74%) 268
Total 503 265 768

Table 3. Ten-Fold Cross-Validation Confusion Matrix.

Actual \ Predicted Absence Present Total
Absence 489 (97.99%) 11 (4.09%) 500
Present 10 (2.01%) 258 (95.91%) 268
Total 499 269 768

This confusion matrix in figure 4 illustrates the performance
of the deep learning model in distinguishing between the
presence and absence of diabetes in the dataset using five-
fold cross-validation. It helps to visualize the model's
accuracy and the distribution of true positives, true negatives,
false positives, and false negatives.

Absence

Present
L

Absence

Actual

200

Present -
100

Predicted

Fig 4. Five-Fold Cross-Validation Confusion Matrix.

Table 4. Evaluation Metrics.

Metrics Five-Fold Ten-Fold
Accuracy (%) 98.04 97.27
Sensitivity (%) 98.80 97.80
Specificity (%) 96.64 96.27

F1 Score 0.99 0.98
MCC 0.96 0.94
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The authors concluded that their system, particularly with
five-fold cross-validation, provides promising results. This
paper adds to the growing body of research that applies deep
learning techniques to medical diagnoses, specifically diabetes
prediction. The authors suggest that their approach offers
improved accuracy over previous machine learning
techniques.

Furthermore, Garcia-Ordas et al. [19] propose a deep learning
approach for predicting diabetes. This approach includes data
augmentation with a Variational Autoencoder (VAE), feature
augmentation with a Sparse Autoencoder (SAE), and a CNN
for classification. The study used the Pima Indians Diabetes
Database and achieved an accuracy of 92.31% when training
the CNN classifier with SAE over a balanced dataset,
representing a 3.17% increase in accuracy compared to the
state-of-the-art. The authors concluded that this deep learning
pipeline for data preprocessing and classification is very
promising for diabetes detection and outperforms existing
methods. This research contributes to the growing body of
work utilizing deep learning techniques for medical diagnoses,
particularly for diabetes prediction.

Similarly, in the article by K. Ryu et al. [20] provides a deep
learning model that uses information from the Korean
National Health and Nutrition Examination Survey
(KNHANES) for the purpose of predicting diabetes that has
not yet been diagnosed. The study involved 11,456
participants, excluding those with diagnosed diabetes, under
20 years old, or with missing data. The model, based on seven
non-invasive variables such as age, waist circumference, and
smoking status, performed well (AUC: 80.11) compared to
existing screening models. The authors suggest that this model
could enhance early medical care and contribute to the
growing research in deep learning techniques for diabetes
prediction.

Additionally, the study by Nilashi et al. [21], published in
Diagnostics in 2023, introduces a new method for predicting
diabetes risk using machine learning techniques. This method
employs Singular Value Decomposition to predict missing
values, Self-Organizing Map for data clustering, STEPDISC
for feature selection, and an ensemble of Deep Belief Network
classifiers for diabetes prediction. The proposed method's
performance was compared with existing prediction methods,
and the results indicate that this approach can accurately
predict diabetes mellitus in real-world datasets.

J. R. Ayala Solares et al. [22] developed nonnegative restricted
Boltzmann machines (eNRBM) powered by electronic
medical records (EHRs) to train universal representations from
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full EHR data, outperforming conventional techniques in
suicide risk prediction. Miotto et al. employed deep stacked
denoising autoencoders (SDA) to surpass expert-driven
feature engineering in clinical risk prediction tasks, including
diabetes mellitus with complications.

Recent advancements in DL have led to the development of
end-to-end models like the Deep Record architecture
proposed by F. Xie et al. [23], which leverages CNNs to
capture temporal information from a patient's medical journey
and shows promising results in predicting unplanned
readmissions.

The study [24] further explores the profound impact of DL
technology on real-world problem-solving, particularly in
healthcare, highlighting its role in early-stage DM detection,
disease management, diabetic retinopathy, and biomarker
identification. Through a comprehensive discussion, the study
emphasizes DL's pivotal role in advancing healthcare
research.

Rakshit et al. [25] used R, SQL, and Python in a Microsoft
Azure Machine Learning Studio environment with the PIMA
diabetes dataset. Of the data, 80% was utilized for training,
and 20% was used for testing. This dataset focuses on
diabetes in women and contains eight key attributes important
for building a class-2 neural network model. Figure 8 shows
the general representation of the neural network. The hidden
layer contained 100 nodes, and the output layer was
connected to the nth hidden layer. By training the model for
over 1000 epochs with a learning rate of 0.01, they achieved
an accuracy of 83.3% on a dataset consisting of 262 negative
cases and 131 positive cases.

Hidden
layers

Input
I.m.r

Output
I.|\ er

Y

.Af»».
~ \ /

s 1
N o S
Fig 5. General representation of a neural network, X, shows
the input weights and Y, is the output weights.

For cross-subject glucose prediction based on segmented
CGM time series, X. Yu et al.'s paper offers a novel prediction
framework with instance-based and network-based deep
transfer learning.

For newly diagnosed type 2 diabetics, the suggested deep
transfer learning framework produced more precise glucose
predictions. [26].

Additionally, in the study by A. R. Yousuff et al. [27], they
propose a novel approach to diabetes management by
leveraging deep learning algorithms for CGM data analysis
and prediction. By making use of an extensive dataset of CGM
readings, patient attributes, and lifestyle factors, the model is
able to identify intricate patterns and trends in glucose
fluctuations.

Presented below table 5 is a summary of the comparative
analysis:

Table 5. Deep Learning Approaches for Diabetes Prediction.

Study Dataset Techniques Used Key Findings
Diabetes  Prediction: A  Deep | Pima Indian Diabetes (PID) Deep Learning with five-fold and ten- | Achieved a prediction accuracy of
Learning Approach [18] fold cross-validation 98.35%  with  five-fold  cross-
validation

Diabetes  detection using deep | Pima Indians Diabetes Database Variational ~ Autoencoder (VAE), | 92.31% accuracy was attained when
learning techniques with Sparse Autoencoder (SAE), | using SAE to train the CNN classifier
oversampling and feature Convolutional ~ Neural = Network | on a balanced dataset.

augmentation [19] (CNN)

applied sciences A Deep Learning | Korean National Health and Nutrition | Deep Learning Model performed well (AUC: 80.11)

Model for Estimation of Patients with
Undiagnosed Diabetes [20]

Examination Survey (KNHANES)
2013-2016

compared to

models

existing screening

A Combined Method for Diabetes
Mellitus Diagnosis Using Deep
Learning, Singular Value
Decomposition, and Self-Organizing
Map Approaches [21]

Real-world datasets

Singular Value Decomposition, Self-
Organizing Map, STEPDISC,
ensemble of Deep Belief Network
classifiers

Accurately predict diabetes mellitus
in real-world datasets

Deep learning for electronic health
records: A comparative review of
multiple deep neural architectures
[22]

Full EHR data

Nonnegative restricted Boltzmann
machines (eNRBM)

Outperformed conventional
techniques in suicide risk prediction

Deep learning for temporal data
representation in electronic health
records: A systematic review of

Not specified

Convolutional ~ Neural Networks

(CNNs)

Shows promising results in predicting
unplanned readmissions
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challenges and methodologies [23]

Deep Learning Techniques Dealing
with Diabetes Mellitus: A
Comprehensive Study [24]

Not specified

Not specified Highlights DL's role in early-stage
DM detection, disease management,
diabetic retinopathy, and biomarker

identification

Prediction of Diabetes Type-II Using | PIMA diabetes dataset

a Two-Class Neural Network [25]

Achieved an accuracy of 83.3% on a
dataset consisting of 262 negative
cases and 131 positive cases

R, SQL, and Python in a Microsoft
Azure Machine Learning Studio
environment

Deep transfer learning: a novel
glucose prediction framework for
new subjects with type 2 diabetes
[26]

Not specified

increased the accuracy of glucose
estimates for newly diagnosed type 2
diabetic participants.

Instance-based and network-based
deep transfer learning

Leveraging deep learning models for
continuous glucose monitoring and
prediction in diabetes management:
towards enhanced blood sugar control
[27]

Not specified

identified intricate trends and patterns
in the variations in blood sugar.

Deep learning methods for the
analysis and forecasting of CGM data

A Deep Learning Approach For | Pima Indian Diabetes Database

Detecting Type 2 Diabetes Mellitus

Deep Neural Network (DNN) Achieved an accuracy of 90.15% and

provided early detection capabilities

[28]

Diabetes  detection using deep | Diabetes 130-US hospitals dataset CNN-LSTM Hybrid Model Improved accuracy to 95.7% by

learning algorithms [29] combining convolutional and
recurrent neural networks

Blended Ensemble Learning | Does not specify a unique dataset but | LR, DT, SVM, KNN, and RF Achieved an accuracy of 97.11%,

indicates the use of clinical data
relevant to diabetes mellitus

Prediction Model for Strengthening
Diagnosis and Treatment of Chronic
Diabetes Disease [30]

outperforming  individual models
through ensemble learning techniques

These studies in Table 5 demonstrate the advancements in
deep learning models for diabetes management through EHRs
analysis. They highlight the potential of deep learning in
unlocking EHR data for diabetes care and management.
However, challenges such as data availability, interpretability
of DL models, and generalizability of findings remain areas of
ongoing investigation and improvement.

4  Deep Learning Model Development
Opportunities and Challenges Using Ehr Data
The overview is organized as follows: we start by
outlining the analytics tasks and the related EHR data. We
then look at the tasks for a number of widely used deep
learning architectures. Third, we describe the unique problems
arising from deep learning modeling of EHR data and outline
the methods applied in the examined papers. Lastly, we talk
about how these tasks were evaluated.

4.1
4.1.1

Analytics tasks using EHR data
Classification of Diseases.

The objective of creating a deep learning model for
illness classification is to use numerous layers of neural
networks to map the EHR data to the output disease target. A
few of the surveyed articles made use of databases unique to
particular diseases. Examples include the data from the
Parkinson's Progression Markers Initiative (used in) and the
Pooled Resource Open-Access Amyotrophic Lateral Sclerosis
(ALS) Clinical Trials used in [31]. [32] Certain studies
support both binary classification (e.g., onset of disease) and
multi-class classification (e.g., phases of Parkinson's disease)
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and incorporate data from multiple modalities (e.g., cognitive
tests, vital signs, medical pictures). [33] Certain research
employed multivariate time series data in addition to
multimodal data relevant to a given condition. For example,
[34] trained convolutional neural networks with multimodal
electroencephalogram (EEG) data to automatically classify
individuals as having seizures, preictal seizures, or normal
subjects. Using vital sign data from the Medical Information
Mart for Intensive Care III (MIMIC III [35]), a long-short-
term memory model (LSTM) for sepsis identification was
built in 2013. In 2018, an interpretable model based on the
convolution plus attention model architecture was developed
to explain the categorization from clinical notes to diagnosis
codes [36]. An additional multilabel classification problem is
the automatic coding of clinical notes based on diagnostic or
disease codes. In 2021, the hierarchical attention bidirectional
gated (GRU) model utilized to
automatically tag clinical records from the MIMIC III dataset
with corresponding diagnosis codes [37]. Deep feedforward
neural networks in [36] and [37] convolutional neural
networks were used, respectively, to automate the extraction

recurrent unit was

of the primary cancer locations and their laterality from free-
text pathology reports.

4.1.2  Sequential Prediction of Clinical Events

Neural networks were utilized to model longitudinal
EHR data and identify correlations between past observations
and future events. In these situations, it is possible to use a
patient's medical history to create prediction models of future
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occurrences (such as clinical outcomes like mortality). Some
of the examined publications involved applying RNN to
longitudinal outpatient data from Sutter Health to predict the
future start of a new illness condition, such as heart failure
(HF).[36] The best AUC performance was demonstrated by
the deep feedforward neural network (AUC 0.734) in [36]
utilizing a cohort of 1328, 384 patients (3,295 775 visits) from
the New Zealand National Minimum Dataset in predicting the
next hospital admission. 114,003 patient records from the
University of California were used by the authors in [38].
Furthermore, a substantial number of publications used EHR
data from numerous patients to perform multilabel sequential
prediction of clinical events. Multiple target labels may co-
occur during a single visit for each patient according to
multilabel prediction (e.g., multiple diagnoses in one visit). In
order to predict all the illness categories for a follow-up visit,
for example, in [39], the encounter records (i.e., diagnosis
codes, prescription codes, or procedure codes) of 263 706
patients from Sutter Health were used as input to an RNN
model. In addition to forecasting hospital admissions or
disease diagnoses, a number of studies have developed
prescription medication as a sequential prediction problem.
For example, sequential medication prediction was performed
in [40] using 610 076 patient information from Vanderbilt's
Electronic Medical Record. The association between
comorbid conditions and a series of drugs was later shown by
[41] utilizing a sequence-to-sequence model to provide
treatment recommendations based on 50 206 medical
encounter records from MIMIC III and 2 415 414 medical
encounters from Sutter Health.

4.1.3 Embedding concepts

It is interesting to note that different EHR data items
are mapped to the desired phenotype in clinical phenotyping,
which is a specific instance of idea embedding. Nevertheless,
feature representation of those phenotypes (i.e., a vector
associated with each phenotype) is also provided by generic
concept embedding, as demonstrated by med2vec. [11] Deep
learning models are frequently trained in an unsupervised
environment without target labels for concept embedding
tasks. Large EHR databases are frequently used in these
assignments to guarantee strong generalization capability. For
instance, patient representation (embedding) was obtained by
combining the electronic health records of about 700,000
patients from the Mount Sinai data warehouse [9]. The
concept embedding that resulted was assessed using disease
prediction tasks and contrasted with other popular shallow
feature learning algorithms, including the Gaussian mixture,
k-means clustering, and principal component analysis. The
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findings demonstrated that concept embedding-based disease
prediction tasks performed better than those utilizing
conventional feature-learning techniques. In [42], concept
embedding showed enhanced performance in several real-
world prediction challenges after learning from the data of
550,339 patients at Children's Healthcare of Atlanta (CHOA).
Some concept embedding techniques, such as [43]— using
MIMIC III data, extract pre-defined medical categories from
discharge reports and apply them to patient phenotype
prediction—only accept free-text as input. [44] compared
deep models with shallow models (e.g., random forest) using
classification tasks on clinical notes and found that when the
training sample size is small (e. g., 662 total subjects in
this case), deep learning shows inferior performance.
Nevertheless, deep learning models do not always outperform
traditional models.

4.14  Data Augmentation

A variety of data synthesis and creation strategies are
included in data augmentation, which can produce more
labeled data to lower the cost of label acquisition, more
training data to prevent overfitting, or even adverse drug
reaction trajectories to identify potential dangers.[44] For
instance, in [45], patients who had ever taken statins or HMG-
CoA reductase inhibitors were included from the Columbia
University Irving Medical Center/New York Presbyterian
database. After gathering their total cholesterol readings, the
Generative Adversarial Networks (GAN) were included. The
records created performed well when tested, utilizing tasks
including the prediction of drug-induced laboratory test
trajectories. Static patient records of discrete events, including
diagnostic numbers, were created in [46] using GAN. In
numerous trials, such as distribution statistics, predictive
modeling tasks, and medical expert assessment, the synthetic
data performed comparably to real data.

4.1.5 Privacy of EHR data

One of the most important tasks in protecting patient
EHR data privacy is de-identification. Using i2b2 2014 data
(1304 notes with a 46 803-word vocabulary) and MIMIC de-
identification data (1635 notes with a 69 525-word
vocabulary), Dernancourt et al. developed an RNN-based de-
identification system [47]. Their system demonstrated
superior performance using RNN compared to current
systems. A bidirectional LSTM model was used for character-
level representation to capture the morphological information
of words, and later in [48], an RNN hybrid model was built

for clinical note de-identification.
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4.2  Deep learning models for analytical
applications

Computational models consisting of several processing
layers can acquire numerous levels of abstraction in their data
representations through deep learning [49]. This has shown
excellent performance in the healthcare and medical domains,
such as using deep neural networks to detect referable diabetic
retinopathy. It has also significantly improved machine
learning performance in many domains, including
computer vision, natural speech

recognition, and more [50].

language processing,

4.2.1 Networks of recurrent neurons (RNNs)

To represent sequential data, such as time series,
event sequences, and natural language text, RNNs are a
development of feedforward neural networks [51]. RNNs are
the recommended architecture for a number of EHR modeling
tasks, including sequential clinical event prediction, disease
classification,[52][12] , and computational phenotyping. This
is because RNNs, in particular, have the recurrent structure
that can capture the complex temporal dynamics in the
longitudinal EHR data [53]. As the current state of the hidden
layer depends on both the input at that moment and its
previous state, the hidden states of the RNN function as its
memory. Since the current state of the hidden layer depends
on both its prior state and the input at that particular moment,
the hidden states of the RNN function as its memory. This
allows variable-length sequence input to be handled by the
RNN as well. The LSTM unit [54] and the GRU [55] are two
popular RNN variations that are frequently utilized and have
gating mechanisms. They are made to account for the impact
of long-term interdependence and overcome the vanishing
gradient issue.

4.2.2 Convolutional neural networks (CNNs)

CNNs are used in image, audio, and video analysis to
take use of local features of the data (such as compositionality
and stationarity) and use convolutional and pooling layers to
gradually extract abstract patterns. CNNs, for instance,
significantly enhanced the efficacy of automatically
classifying skin lesions from image data.[56] The way CNNs
operate is as follows: the convolutional layers create
translation-invariant local features by connecting many local
filters to their input data, which can be either raw data or the
outputs of earlier layers. The output size is then gradually
shrunk by pooling layers to prevent overfitting. In this case,
convolution and pooling are both locally produced, meaning
that the representation of one local feature in image analysis
won't affect other regions. Given that temporal EHR data is
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frequently informative, temporality must be taken into
account when modeling it with CNNs. For instance, a second
convolutional operation was carried out over the temporal
dimension in [57],[58]. In order to combine temporal
summarization and feature extraction, a hybrid convolutional
recurrent neural network was employed in 103. In addition to
representing pictures and events, CNNs have been applied to
the labeling of clinical texts [59].

4.2.3 Embedding without supervision

In addition to AEs, a number of other unsupervised
learning techniques have been used with EHR concept
representations. Variants of Word2Vec have been used to
learn medical coding representation [11], [60] Specifically,
word2vec has been expanded to establish bilevel associations
between medications and illnesses). Furthermore, for latent
concept embedding, a Restricted Boltzmann Machine (RBM)
has been employed [9], It models the input's underlying data
production process using a generative technique, which can
also yield latent representations for EHR data.

4.3 Unique Problems and Potential Fixes

Specific difficulties stem from features of the model
(e.g., interpretability) and EHR data (e.g., temporality,
irregularity, various modalities, absence of label). There are
more details about those issues and offer potential fixes from
the reviewed papers in this section. Supplementary Table S2

[61] has the detailed summary available.

4.3.1 Temporality and irregularity

Longitudinal EHR data illustrates the course of
patients health over time. The short-term dependencies
between medical events in EHRs were regarded as a local
context for patient history, while the long-term effects
provided globally context.[9] These contexts influence the
hidden relationships (e.g.,
diagnoses, procedures, medications, etc.) and the health
outcomes of future patients (i.e., disease or readmission).
Nevertheless, the complex associations among the clinical
events make it difficult to discern the true signals from the
long-term context.[32],[39],[51] Additionally, some patient
records differ significantly in terms of data density, as events
are irregularly sampled.[33],[38] Such irregularity, the
performance of the model would be impacted if improperly
managed.

4.3.2

between clinical variables

Multiple modes of operation

Multiple data modalities are included in EHR data,
including discrete codes for diagnosis, medicine, and
procedures, free-text clinical notes, continuous monitoring
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data (ECG and EEG), medical photographs, and quantitative
values from lab tests. It has been established by researchers
that discovering patterns in multimodal data can improve the
learning system's overall performance as well as diagnosis
and prediction accuracy. However, because of the
heterogeneity of the input, multimodal learning presents
difficulties. Prior research frequently employed a multitask
learning approach to collaboratively acquire data from various
modalities.[62],[63].

Multitask Learning. A technique used in multi-modal EHR
learning frequently calls for some neurons in the neural
network model to be specialized for particular tasks and
others to be shared across all tasks.[62],[63], [64] The tasks
could consist of various lab test kinds or data modalities [65].
[64] for instance, in [66], the authors jointly modeled the
prediction tasks based on two data modalities—medical codes
and natural language text from clinical notes—using a
multitask learning approach, and they empirically showed
increased performance. Parameterized in terms of hidden
binary units, each modality in [64] is represented as a Poisson
distribution composed of observed counts. A feed forward
network of shared hidden units was then used to communicate
data from various modalities.

4.3.3 Interpretability

Even though deep learning models are capable of
making precise predictions, they are frequently seen as
"black-box" models that are opaque and difficult to
understand.[67]  Clinicians frequently reject machine
recommendations without understanding the underlying logic,
which makes this a serious issue. Some recent attempts have
been made to provide an explanation for black-box deep
models.[68] The reviewed publications' various methods for
improving EHR modeling's interpretability and transparency
are listed below.

Attention mechanism: The original attention mechanism
suggested in [69] focuses on improved knowledge of what
portion of history information weighs more in predicting
disease beginnings or future events. Attention-mechanism-
based learning is a recent trend [12], [70].

A current trend in determining which aspect of past
information is more important in forecasting the onset of a
disease or future occurrences is attention-mechanism-based
learning [12], [70]. Enhancing neural machine translation
performance is the goal of the original attention mechanism
that was presented in [69]. Attention weights are a new
concept in EHR modeling that show how well the model can
anticipate future occurrences or illness onsets based on
clinical events.[71] Another use of the attention process is the
derivation of a latent representation of medical codes (e.g.,
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medication codes, diagnosis codes). [12]
infusion of knowledge through focus. In order to improve

interpretability and model robustness, the attention
mechanism has been added to a significant source of
biological knowledge, biomedical ontology. This is

accomplished in [70] by taking the latent embedding of a
clinical code (such as a diagnosis code) and learning it as a
convex combination of the code's own embedding, its
ancestor's embedding and the ontology graph.

Dissection of knowledge. A complex model's knowledge is
condensed into a simpler, more usable model through the
process of knowledge distillation. Knowledge distillation and
mimic learning, two recent developments, have made it
possible to move information from more complicated
models—Ilike deep neural networks—to simpler ones, like
decision trees. Recently, attempts have been made to use
mimic learning in the healthcare industry to improve the
interpretability of deep models by using boosting trees.
[72],[73] The basic approach is to train a simpler model by
using the complex model to produce more soft-labeled
samples.

5
5.1

Discussion
Diabetes Detection Computational Models:
Diabetes diagnosis has significantly benefited from

computational approaches, which leverage computational
systems to analyze input data features effectively. These
algorithms, including supervised, unsupervised, and
reinforcement learning methods, offer efficient diagnosis by
learning from diverse datasets. The data-driven nature of these
computational algorithms allows them to handle large
datasets, intervention. Through the
exploration of wvarious algorithms and hyperparameter
adjustments, researchers have optimized outcomes for
practical Choudhury and Gupta [14] categorized
individuals into high- and low-risk groups using several
computational algorithms such as LR, DT, RF, NB, and KNN.
Among these, LR exhibited the highest accuracy in diabetes
prediction, highlighting Shukla [15]
identified crucial factors like body mass index (BMI), glucose

minimizing human

use.

its effectiveness.
levels, and pregnancy status using the LR algorithm,
achieving an accuracy of 82.92% in predicting diabetes.
Dalakleidi [16] utilized two datasets, PID and
Hippokrateion, employing logistic model tree (LMT) and
binary logistic regression (BLM) algorithms. The results
showed promising accuracies of 80.47% and 93.45% for
BLM, outperforming LMT in both cases.

et al.

5.2 Advancements in Deep Learning Models for
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Diabetes Management:

The application of deep learning (DL) techniques in
analyzing EHR data for diabetes management has witnessed
significant growth. Various DL models, including CNNs,
RNNs, AEs, and DBNs, have been explored for their
effectiveness in handling EHR complexities and forecasting
diabetic patients' clinical results.

J. R. Ayala Solares et al. [17] Introducing nonnegative
restricted Boltzmann machines (eNRBM) driven by electronic
medical records demonstrates superior performance in suicide
risk prediction compared to traditional methods. Similarly,
Miotto et al. applied deep stacked denoising autoencoders
(SDA) to clinical risk prediction problems, such as diabetes
mellitus with complications, to outperform expert-driven
feature creation.

Azzalini et al. [74] present an interpretable deep-learning
framework for predicting unplanned hospital readmissions
from EHRs. Their approach, utilizing Convolutional Long
Short-Term Memory (ConvLSTM) networks and natural
language processing, outperforms traditional models in
predictive accuracy while ensuring result interpretability,
which is essential for medical applications.

5.3 Opportunities and Challenges in Developing
DL Models Using EHR Data:

The discussion explores various analytics tasks using
EHR data, including disease classification and sequential
prediction of clinical events. Researchers have employed
advanced computational architectures such as RNNs and
CNNs to model longitudinal EHR data effectively. However,
challenges such as temporality, irregularity, and multiple data
modalities pose significant hurdles in EHR modeling. To
address these challenges, researchers have proposed solutions
such as attention mechanisms for improved interpretability
and knowledge infusion through focus.
Additionally, data augmentation techniques
employed to generate synthetic data, enhancing model
robustness and performance. While advanced computational
models hold immense potential for revolutionizing diabetes
care and management, ongoing research is essential to
overcome challenges related to data availability, model
interpretability, and generalizability of findings.

In conclusion, the discussion underscores the transformative
impact of advanced computational techniques in diabetes
diagnosis and management, highlighting the need for
continued research to address existing challenges and unlock
the full potential of these technologies in healthcare.

have been

5.4 Strengths and Weaknesses of Each Model

In this section, table 6 we evaluate the strengths and
weaknesses of the various models presented for diabetes

detection and management.

Table 6. Evaluate the strengths and weaknesses.

Model Strengths Weaknesses
Logistic - High accuracy in | - Poor handling of
Regression (LR) | diabetes prediction. | complex, non-linear
Identifies  crucial | relationships.
factors like BMI
and glucose levels.
Binary Logistic | - High accuracies | -Performance
Regression (80.47% and | variability  across
Model (BLM) 93.45%) on two | different datasets.
datasets.
Convolutional -Handles complex | -Requires
Neural EHR data well. | significant
Networks Improved accuracy | computational
(CNNs) with data | resources.
augmentation. Challenging
interpretability.
Recurrent -Good for | -Issues with
Neural modeling temporal | vanishing gradients
Networks dependencies  in | over long
(RNNs) EHR data. sequences.
Variational & | -Effective in | -Higher
Sparse feature implementation and
Autoencoders augmentation and | tuning complexity.
(VAE & SAE) handling
imbalanced
datasets.
Ensemble -Improved - Computationally
Methods prediction accuracy | expensive, potential
and robustness. overfitting.
Attention -Enhances - Increases model
Mechanisms & | interpretability and | complexity,
Knowledge integrates domain- | requiring
Distillation specific sophisticated
knowledge. infrastructure.
Nonnegative -Superior - May require task-
Restricted performance in | specific
Boltzmann specific tasks like | customization.
Machines suicide risk
(eNRBM) prediction.
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6 Conclusions
The use of deep learning models in the analysis of

electronic health records (EHR) data for diabetes management
has shown significant promise. These models, including
CNNs and RNNs, have demonstrated their potential to handle
the complexities of EHR data and predict clinical outcomes
for patients with diabetes.

Researchers have made considerable strides in enhancing the
diagnosis, treatment, and management of diabetes mellitus by
extracting valuable insights from EHR data. The research
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evaluated thus far indicates that deep learning-based methods
are effective in improving diabetes control through EHR data
analysis.

However, there are still challenges to be addressed, such as
the availability of data, the interpretability of deep learning
models, and the ability to generalize results. As such, ongoing
research and development are necessary to further refine these
models and improve their effectiveness.

Moreover, the integration of data mining, machine learning,
deep learning, and computer vision has significantly
facilitated the exploration of novel approaches, leading to
substantial improvements in current practices. The
advancements in deep learning have led to the development of
end-to-end models that show promising results in predicting
clinical outcomes.

In conclusion, the utilization of deep learning models in
analyzing EHR data for diabetes management holds
significant promise. However, there exist challenges that need
to be addressed, such as data availability, interpretability of
deep learning models, and the generalization of results.
Additionally, the integration of various techniques, including
data mining, machine learning, deep learning, and computer
vision, has greatly facilitated the exploration of novel
approaches and substantial improvements in current practices.
Despite the enhanced accuracy of deep learning techniques in
predicting  clinical efforts are
imperative to tackle existing challenges and further enhance
the effectiveness of these models.

outcomes, continuous
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