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and a_3  a_2-√(2 a_1 )  >0, this system has no global C^1 first integrals. Additionally, the 
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I. Introduction
A 3-D independent ordinary asymmetric system known as the 
generalized Michelson system appears while studying the 
travelling wave solutions of the Kuramoto-Sivashinsky 
problem [1]. It may be conceptualized using a 3-D framework 
differential system. 

u̇ =  v, 
v̇ = w, (1) 
ẇ =  𝑎𝑎1  + 𝑎𝑎2 v +  𝑎𝑎3 w − u2

2
, 

Where real arbitrary, arbitrary parameters  𝑎𝑎1, 𝑎𝑎2, and 𝑎𝑎3 are 
used. The dot denotes to the derivative with respect to time 
𝑡𝑡1. This system has a symmetric equilibrium points 
�∓�2 𝑎𝑎1, 0,0�. The field of research that focuses on systems 
(1) is of great importance in the fields of physics and
engineering, particularly in travelling waves [1].
In [2], triple-zero bifurcation in its normal form discussed.
Through analytical techniques and numerical modeling, the
homoclinic orbits for the 3-D continuous piecewise linear
generalized Michelson system- have been investigated in [3].
Invariant manifold theory and the Poincaré map are discussed

in the saddle-focus equilibrium which is connected by 
homoclinic orbits in [3].  
In [4], the author studied IIR filter model for the generalized 
Michelson interferometer.  
System (1) was discussed by more authors, although it 
provides no mention of the integrability. 
In this paper, we study the analytic type and a Darboux first 
integrals of system (1). The Darboux integration is a property 
that a function may possess technique for finding a solution of 
system (1). For additional information, see [5, 8]. 

II. Preliminary Results
The topics discussed include the issue of integrability, the 

Darboux technique, and the auxiliary conclusions that have 
been offered briefly reviewed at the beginning of this section 
[9, 10]. First, we provide some fundamental definitions and 
theorems to set the scene for this study to demonstrate our 
significant findings. The vector field associated with system 
(1) is defined as follows:

𝜒𝜒 = v 𝜕𝜕
𝜕𝜕𝜕𝜕

+ w 𝜕𝜕
𝜕𝜕𝜕𝜕

+ �𝑎𝑎1  + 𝑎𝑎2 v +  𝑎𝑎3 w − u2

2
� 𝜕𝜕
𝜕𝜕𝜕𝜕

(2)
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Let 𝐷𝐷 be an open subset of ℝ3. If 𝐻𝐻:𝐷𝐷1 → ℝ is a constant on 
all orbits �𝑢𝑢( 𝑡𝑡1),𝑣𝑣( 𝑡𝑡1),𝑤𝑤( 𝑡𝑡1)� of 𝜒𝜒 included in 𝐷𝐷, then it 
represents the polynomial of the vector field 𝜒𝜒 on 𝐷𝐷. That H 
is clearly referred to as a first integral of 𝜒𝜒 on 𝐷𝐷 if and only if  
𝜒𝜒(𝐻𝐻) = v 𝜕𝜕𝜕𝜕

𝜕𝜕𝜕𝜕
+ w 𝜕𝜕𝜕𝜕

𝜕𝜕𝜕𝜕
+ �𝑎𝑎1  + 𝑎𝑎2 v +  𝑎𝑎3 w − u2

2
� 𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

= 0
                            (3)                                                                         
A local (global) first integral 𝐻𝐻 is a first integral whose 
domain of definition is a neighborhood of an equilibrium 
point (whose domain of definition is  ℝ3) of system (1). We 
recall that H is an analytic (rational) first integral if it is an 
analytic (rational) function.  
An equilibrium points (𝑢𝑢0, 𝑣𝑣0,𝑤𝑤0) of system (1) is said to be 
an attractor if all eigenvalues 𝜆𝜆𝑖𝑖 of the Jacobian matrix of (1) 
at (𝑢𝑢0, 𝑣𝑣0,𝑤𝑤0)  have negative real parts. 
Theorem 2.1. Routh-Hurwitz Criterion [14]:  
When 𝑎𝑎1 > 0,𝑎𝑎3 > 0 and 𝑎𝑎1𝑎𝑎2 − 𝑎𝑎3 > 0, then the zero of 
 𝜆𝜆3 + 𝑎𝑎1𝜆𝜆2 + 𝑎𝑎2𝜆𝜆 + 𝑎𝑎3 = 0 has negative real components. 
Theorem 2.2. System (1) doesn’t have any 𝐶𝐶1  initial 
integrals determined in the nearby neighborhood at 
(𝑢𝑢0, 𝑣𝑣0,𝑤𝑤0),  if system (1) has an equilibrium point 
(𝑢𝑢0, 𝑣𝑣0,𝑤𝑤0) that is either an attractor or a repeller. 
 
   A Darboux theory of integrability has a best method to 
determine that systems have a first integral or not. Now, we 
will discuss some fundamental notations [10, 11]. Suppose 
that 𝑓𝑓 = 𝑓𝑓(𝑢𝑢, 𝑣𝑣,𝑤𝑤) ∈ ℝ[𝑢𝑢, 𝑣𝑣,𝑤𝑤], then 𝑓𝑓 = 0 is said to be an 
invariant algebraic surface or it is called a Darboux 
polynomial of χ if there exist a polynomial 𝐾𝐾𝑓𝑓 ∈ ℝ[𝑢𝑢, 𝑣𝑣,𝑤𝑤] 
such that  
𝜒𝜒(𝑓𝑓) = v 𝜕𝜕𝜕𝜕

𝜕𝜕𝜕𝜕
+ w 𝜕𝜕𝜕𝜕

𝜕𝜕𝜕𝜕
+ �𝑎𝑎1  + 𝑎𝑎2 v +  𝑎𝑎3 w − u2

2
� 𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

= 𝑓𝑓 𝐾𝐾𝑓𝑓,                          
(4) 
We say that 𝐾𝐾𝑓𝑓  is the cofactor of f and it has a maximum 
degree of 1. 
Proposition 2.3. System (1) has a rational first integral if it 
has two distinct invariant algebraic surfaces with the similar 
non zero cofactor. 
We denote an exponential factor of system (1) by E which 

defined by a non-constant function of the form 𝐸𝐸 = 𝑒𝑒
𝑔𝑔
𝑓𝑓 with 

greatest common divisor between g and f is equal to one. That 
means (𝑔𝑔,𝑓𝑓) = 1, where 𝑔𝑔,𝑓𝑓 ∈ ℝ[𝑢𝑢, 𝑣𝑣,𝑤𝑤] and  it is satisfied 
𝜒𝜒(𝐸𝐸) = v 𝜕𝜕𝜕𝜕

𝜕𝜕𝜕𝜕
+ w 𝜕𝜕𝜕𝜕

𝜕𝜕𝜕𝜕
+ �𝑎𝑎1  + 𝑎𝑎2 v +  𝑎𝑎3 w − u2

2
� 𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

= 𝐸𝐸 𝐿𝐿,                                                
(5)                                                                       
for some polynomial 𝐿𝐿 = 𝐿𝐿(𝑢𝑢, 𝑣𝑣,𝑤𝑤) ∈ ℝ[𝑢𝑢, 𝑣𝑣,𝑤𝑤] of degree at 
most 1 which is called the cofactor of 𝐸𝐸. 
Proposition 2.4. i) If 𝑓𝑓 is a non-constant polynomial and the 

function 𝐸𝐸 = 𝑒𝑒
𝑔𝑔
𝑓𝑓 is an exponential factor of the polynomial 

differential system (1), then 𝑓𝑓 = 0  is an invariant algebraic 
surface. 
ii) Lastly, 𝑒𝑒𝑔𝑔, which derives from the multiplicity of the 
infinity invariant plane, can be an exponential factor. 
Theorem 2.5. The Darboux Theory [11] 
Let a polynomial vector field 𝜒𝜒 of degree d in ℝ3 have 𝑝𝑝1 
irreducible invariant algebraic surfaces 𝑓𝑓𝑖𝑖 = 0   such that the 

𝑓𝑓𝑖𝑖  are pairwise relatively prime with cofactors 𝐾𝐾𝑖𝑖 for 𝑖𝑖 =

1, … , 𝑝𝑝1 and 𝑞𝑞1 exponential factors 𝑒𝑒
𝑔𝑔𝑗𝑗
𝑓𝑓𝑗𝑗  combined with 

cofactors 𝐿𝐿𝑗𝑗 for 𝑗𝑗 = 1, … , 𝑞𝑞1.  There exist 𝛼𝛼𝑖𝑖 ,𝛽𝛽𝑗𝑗 ∈ ℝ are not all 
zero such that.  
∑ 𝛼𝛼𝑖𝑖 𝐾𝐾𝑖𝑖
𝑝𝑝1
𝑖𝑖=1 + ∑ 𝛽𝛽𝑗𝑗 𝐿𝐿𝑗𝑗

𝑞𝑞
𝑗𝑗=1 = 0,                                                                   

(6) 
If and only if the function 

𝑓𝑓1
𝛼𝛼1 … 𝑓𝑓𝑝𝑝

𝛼𝛼𝑝𝑝 ��𝑒𝑒
𝑔𝑔1
𝑓𝑓1�

𝛽𝛽1
… �𝑒𝑒

𝑔𝑔𝑞𝑞
𝑓𝑓𝑞𝑞�

𝛽𝛽𝑞𝑞

�                                                                       

(7) 
is the first integral of the system (1). 
 
III. Basic Results and Their Proving 
      In this part, the existence of rational first integrals (see 
Theorem 3.3), Darboux first integrals (see Theorem 3.5) and 
an analytic first integral (Theorem 3.8) are the main results of 
system (1) are described. Moreover, some other results relative 
to this topic are studied in this work such as a polynomial first 
integral, invariant algebraic surfaces, exponential factors and 
 𝐶𝐶1 first integrals of system (1). 
The following proposition is the first result in this work. 
 
Proposition 3.1. System (1) has no polynomial first integrals. 
Proof. Let 𝐻𝐻 = ∑ 𝐻𝐻𝑖𝑖(𝑛𝑛

𝑖𝑖=1 𝑢𝑢, 𝑣𝑣,𝑤𝑤) be a polynomial first integral 
of the system (1), where each  Hi is a homogeneous 
polynomial in its  u, v and w variables of degree i.  by 
definition we have 
 𝑣𝑣 𝜕𝜕𝜕𝜕

𝜕𝜕𝜕𝜕
+ 𝑤𝑤 𝜕𝜕𝜕𝜕

𝜕𝜕𝜕𝜕
+ �𝑎𝑎1  + 𝑎𝑎2 𝑣𝑣 + 𝑎𝑎3 𝑤𝑤 − 𝑢𝑢2

2
� 𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

= 0                  
(8)                                                                                                                                                                                                   
Taking terms of degree n + 1, we obtain  
�− u2

2
 � ∂Hn(𝑢𝑢,𝑣𝑣,𝑤𝑤)

∂w
= 0,                                                               

(9)                                                                                                                                                                                           
that is 
                          𝐻𝐻𝑛𝑛(𝑢𝑢, 𝑣𝑣,𝑤𝑤) = 𝐹𝐹1(𝑢𝑢, 𝑣𝑣),                                                
where Hn is a polynomial of degree n. Additionally, the terms 
of degree n in equation (8), we get 
𝑣𝑣 � 𝜕𝜕

𝜕𝜕𝜕𝜕
𝐹𝐹1�+ 𝑤𝑤 � 𝜕𝜕

𝜕𝜕𝜕𝜕
𝐹𝐹1� + (𝑎𝑎2 𝑣𝑣 +  𝑎𝑎3 𝑤𝑤 ) � 𝜕𝜕

𝜕𝜕𝜕𝜕
𝐹𝐹1� −

𝑢𝑢2

2
� 𝜕𝜕
𝜕𝜕𝜕𝜕
𝐻𝐻𝑛𝑛−1� = 0,                                                                

this gives      

𝐻𝐻𝑛𝑛−1 =
2 𝑤𝑤𝑤𝑤  � 𝜕𝜕𝜕𝜕𝜕𝜕𝐹𝐹1(𝑢𝑢,𝑣𝑣)�+ 𝑧𝑧2� 𝜕𝜕𝜕𝜕𝜕𝜕𝐹𝐹1(𝑢𝑢,𝑣𝑣)�   

𝑢𝑢2
+  𝐺𝐺1(𝑢𝑢, 𝑣𝑣).                                                              

(10) 
 
In [13], The process of altering variables is carried out by 
using the weight change. 
Let 𝑢𝑢 = 𝜇𝜇1  𝑈𝑈, 𝑣𝑣 = 𝑉𝑉,  𝑤𝑤 = 𝑊𝑊 and 𝑡𝑡1 = 𝜇𝜇1 𝑇𝑇1,                 (11)                                                       
with 𝜇𝜇1 ∈ ℝ+. Then, system (8) becomes            
       𝑈𝑈′ = 𝑉𝑉  
       𝑉𝑉′ = 𝜇𝜇1 𝑊𝑊                                                                                
(12) 
       𝑊𝑊′ = 𝑎𝑎1 𝜇𝜇1 + 𝑎𝑎2 𝜇𝜇1 𝑉𝑉 + 𝑎𝑎3 𝜇𝜇1 𝑊𝑊− 𝜇𝜇13𝑈𝑈2

2
 , 
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where the dots denote the derivative of the variables 𝑈𝑈,𝑉𝑉 and 
𝑊𝑊 with respect to T1. Set 𝐹𝐹(𝑈𝑈,𝑉𝑉,𝑊𝑊) = μ1𝑛𝑛𝑓𝑓(μ1 𝑈𝑈,𝑉𝑉,𝑊𝑊) =
∑ 𝜇𝜇𝑗𝑗𝑛𝑛
𝑗𝑗=0 𝐹𝐹𝑗𝑗(𝑈𝑈,𝑉𝑉,𝑊𝑊), where 𝐹𝐹𝑗𝑗  is the weight homogeneous 

part with weight degree 𝑛𝑛 − 𝑗𝑗 of 𝐹𝐹, and 𝑛𝑛 is the weight degree 
of 𝐹𝐹 with weight exponent 𝑠𝑠 = (1,0,0). And   𝐾𝐾(𝑈𝑈,𝑉𝑉,𝑊𝑊) =
𝑘𝑘0. Then, by invariant algebraic surfaces, we have 
𝑉𝑉 ∑ 𝜇𝜇1𝑗𝑗 𝑛𝑛

𝑗𝑗=0
𝜕𝜕𝐹𝐹𝑗𝑗(𝑈𝑈,𝑉𝑉,𝑊𝑊)

𝜕𝜕𝜕𝜕
+ 𝜇𝜇1 𝑊𝑊∑ 𝜇𝜇1𝑗𝑗 𝑛𝑛

𝑗𝑗=0
𝜕𝜕𝐹𝐹𝑗𝑗(𝑈𝑈,𝑉𝑉,𝑊𝑊)

𝜕𝜕𝜕𝜕
+

( 𝑎𝑎1 𝜇𝜇1 + 𝑎𝑎2 𝜇𝜇1 𝑉𝑉 + 𝑎𝑎3 𝜇𝜇1 𝑊𝑊−
1
2

 𝜇𝜇13𝑈𝑈2)∑ 𝜇𝜇1𝑗𝑗 𝑛𝑛
𝑗𝑗=0

𝜕𝜕𝐹𝐹𝑗𝑗(𝑈𝑈,𝑉𝑉,𝑊𝑊)

𝜕𝜕𝜕𝜕
= 0           (13)                                                                                                                                                                                                                                                                                                                  

We compute the terms that include 𝜇𝜇10 to obtain’s 
    𝜕𝜕𝐹𝐹0

𝜕𝜕𝜕𝜕
𝑉𝑉 = 0, 

that is 
   𝐹𝐹0 = 𝐹𝐹0(𝑉𝑉,𝑊𝑊),                                                                                                                                          
(14) 
then from (9), we have 
𝐻𝐻𝑛𝑛(𝑢𝑢, 𝑣𝑣,𝑤𝑤) = 𝐻𝐻𝑛𝑛(𝑣𝑣), 
also, from (10), 𝐻𝐻𝑛𝑛−1 becomes  

𝐻𝐻𝑛𝑛−1(𝑢𝑢, 𝑣𝑣,𝑤𝑤) =
 𝑤𝑤2� 𝜕𝜕𝜕𝜕𝜕𝜕𝐻𝐻𝑛𝑛(𝑣𝑣)�   

𝑢𝑢2
+  𝐺𝐺1(𝑢𝑢, 𝑣𝑣)                                                                                                    

(15)                                                   
Given that 𝐻𝐻𝑛𝑛−1(𝑢𝑢, 𝑣𝑣,𝑤𝑤)  is a degree 𝑛𝑛 − 1  polynomial, it 
must be  
𝜕𝜕
𝜕𝜕𝜕𝜕
𝐻𝐻𝑛𝑛(𝑣𝑣) = 0, then 𝐻𝐻𝑛𝑛(𝑣𝑣) = 𝐾𝐾, 

where K is an arbitrary constant. Since 𝐻𝐻𝑛𝑛 is a homogeneous 
polynomial of degree n, then it must be 𝐻𝐻𝑛𝑛 = 0.   
Hence system (8) has no polynomial first integrals. Then 
there is no polynomial first integral of system (1).                   
∎                                                                                           
 
Proposition 3.2. System (1) does not have invariant 
algebraic surfaces with non-zero cofactors. 
Proof. Suppose that 𝑓𝑓 = ∑ 𝑓𝑓𝑖𝑖(𝑛𝑛

𝑖𝑖=1 𝑢𝑢, 𝑣𝑣,𝑤𝑤) is an invariant 
algebraic surface of system (1) with the cofactor 𝐾𝐾 = 𝑘𝑘0 +
𝑘𝑘1𝑢𝑢 + 𝑘𝑘2𝑣𝑣 + 𝑘𝑘3𝑤𝑤, where 𝑘𝑘𝑖𝑖 ∈ ℝ for i = 0, … , 3, and each 𝑓𝑓𝑖𝑖 
is a homogeneous polynomial in its variables of degree i. 
Assume that 𝑓𝑓𝑛𝑛 ≠ 0 for 𝑛𝑛 > 1, then by definition of invariant 
algebraic surface, we obtain 
𝑣𝑣 𝜕𝜕𝜕𝜕

𝜕𝜕𝜕𝜕
+ 𝑤𝑤 𝜕𝜕𝜕𝜕

𝜕𝜕𝜕𝜕
+ �𝑎𝑎1  + 𝑎𝑎2 𝑣𝑣 +  𝑎𝑎3 𝑤𝑤 − 𝑢𝑢2

2
� 𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

= 𝐾𝐾 𝑓𝑓                                               
(16) 
We first compute the terms of degree 𝑛𝑛 + 1, to obtain 
−𝑢𝑢2

2
�𝜕𝜕𝑓𝑓𝑛𝑛(𝑢𝑢,𝑣𝑣,𝑤𝑤)

𝜕𝜕𝜕𝜕
� = (𝑘𝑘1𝑢𝑢 + 𝑘𝑘2 𝑣𝑣 + 𝑘𝑘3 𝑤𝑤) 𝑓𝑓𝑛𝑛(𝑢𝑢, 𝑣𝑣,𝑤𝑤),                                            

(17) 
this gives  
𝑓𝑓𝑛𝑛(𝑢𝑢, 𝑣𝑣,𝑤𝑤) = 𝐺𝐺1(𝑢𝑢, 𝑣𝑣) 𝑒𝑒𝐴𝐴(𝑢𝑢,𝑣𝑣) ,                                                                                  
(18)                                                                                                                                                                  
where 
       𝐴𝐴(𝑢𝑢, 𝑣𝑣) =  (2 𝑘𝑘1𝑢𝑢+2 𝑘𝑘2𝑣𝑣+ 𝑘𝑘3 𝑤𝑤) 𝑤𝑤

𝑢𝑢2
 . 

 Since 𝑓𝑓𝑛𝑛(𝑈𝑈,𝑉𝑉,𝑊𝑊) is a polynomial function of degree n, this 
implies that 𝑘𝑘1 =  𝑘𝑘2 = 𝑘𝑘3 = 0 . Then equation (18) becomes 
𝑓𝑓𝑛𝑛(𝑢𝑢, 𝑣𝑣,𝑤𝑤) = 𝐺𝐺1(𝑢𝑢, 𝑣𝑣) , 
where 𝐺𝐺1  a polynomial of degree n is expressed in terms of 

the variables u and v. Furthermore, calculating the terms with 
a degree of n in the equation (10), we obtain  
𝑣𝑣 � 𝜕𝜕

𝜕𝜕𝜕𝜕
𝑓𝑓𝑛𝑛� + 𝑤𝑤 � 𝜕𝜕

𝜕𝜕𝜕𝜕
𝑓𝑓𝑛𝑛� + (𝑎𝑎2 𝑣𝑣 +  𝑎𝑎3 𝑤𝑤) � 𝜕𝜕

𝜕𝜕𝜕𝜕
𝑓𝑓𝑛𝑛� −

1
𝑢𝑢2
�𝜕𝜕𝑓𝑓𝑛𝑛
𝜕𝜕𝜕𝜕
� =

𝑘𝑘0  𝑓𝑓𝑛𝑛,      
this gives 

𝑓𝑓𝑛𝑛−1 =
2 𝑣𝑣 𝑤𝑤 � 𝜕𝜕𝜕𝜕𝜕𝜕𝐺𝐺1(𝑈𝑈,𝑉𝑉)�+ 𝑤𝑤2 � 𝜕𝜕𝜕𝜕𝜕𝜕𝐺𝐺1(𝑈𝑈,𝑉𝑉)�   

𝑢𝑢2
− 2 𝑘𝑘0 𝑤𝑤 𝐺𝐺1(𝑈𝑈,𝑉𝑉)  

𝑢𝑢2
+

𝐺𝐺2(𝑈𝑈,𝑉𝑉).  
Since 𝑓𝑓𝑛𝑛−1 is a polynomial then  
2 𝑣𝑣 𝑤𝑤 � 𝜕𝜕𝜕𝜕𝜕𝜕𝐺𝐺1(𝑈𝑈,𝑉𝑉)�+ 𝑤𝑤2 � 𝜕𝜕𝜕𝜕𝜕𝜕𝐺𝐺1(𝑈𝑈,𝑉𝑉)�   

𝑢𝑢2
− 2 𝑘𝑘0 𝑤𝑤 𝐺𝐺1(𝑈𝑈,𝑉𝑉)  

𝑢𝑢2
= 0.                            

(19)                                      
The solution of equation (19), is 

                       𝐺𝐺1(𝑢𝑢, 𝑣𝑣) = 𝐺𝐺2(−𝑢𝑢 𝑤𝑤 + 𝑣𝑣2) 𝑒𝑒
2 𝑘𝑘0 𝑣𝑣 
𝑤𝑤 , 

since, 𝐺𝐺1 is the polynomial of n-th degree then it must be 𝑘𝑘0 =
0,              
This implies that system (1) has no invariant algebraic 
surfaces with non-zero cofactors. ∎ 
 
Theorem 3.3. System (1) has no rational first integrals. 
Proof. From Proposition 3.2, system (1) has no Darboux 
polynomials. Then by Proposition 2.3, system (1) has no 
proper rational first integral. ∎ 
       We proved that in Proposition 3.2, system (1) does not 
have invariant algebraic surfaces. So, by Proposition 2.4, an 
exponential function must be in the following  

𝐸𝐸 = 𝑒𝑒𝑔𝑔(𝑢𝑢,𝑣𝑣,𝑤𝑤), 
for the more information see the [12].  
Proposition 3.4. System (1)   has two exponential factors 
𝑒𝑒𝑢𝑢 and 𝑒𝑒𝑣𝑣 with cofactors 𝑣𝑣 and 𝑤𝑤, respectively. 
Proof. Let 𝐸𝐸 = 𝑒𝑒𝑔𝑔(𝑢𝑢,𝑣𝑣,𝑤𝑤), 𝑔𝑔(𝑢𝑢, 𝑣𝑣,𝑤𝑤)=∑ 𝑔𝑔𝑘𝑘(𝑢𝑢, 𝑣𝑣,𝑤𝑤)𝑛𝑛

𝑘𝑘=0  be an 
exponential factor with non-zero cofactor 𝐿𝐿 = 𝐿𝐿0 + 𝐿𝐿1𝑢𝑢 +
𝐿𝐿2𝑣𝑣 + 𝐿𝐿3𝑤𝑤, where each 𝑔𝑔𝑘𝑘 is a homogeneous polynomial in 
its variables of degree 𝑘𝑘. Then, we have 
𝑣𝑣 � 𝜕𝜕

𝜕𝜕𝜕𝜕
𝑒𝑒𝑔𝑔(𝑢𝑢,𝑣𝑣,𝑤𝑤)� + 𝑤𝑤 � 𝜕𝜕

𝜕𝜕𝜕𝜕
𝑒𝑒𝑔𝑔(𝑢𝑢,𝑣𝑣,𝑤𝑤)� + �𝑎𝑎1  + 𝑎𝑎2 𝑣𝑣 +  𝑎𝑎3 𝑤𝑤 −

𝑢𝑢2

2
� � 𝜕𝜕

𝜕𝜕𝜕𝜕
𝑒𝑒𝑔𝑔(𝑢𝑢,𝑣𝑣,𝑤𝑤)� = 𝐿𝐿 𝑒𝑒𝑔𝑔(𝑢𝑢,𝑣𝑣,𝑤𝑤) .                  (20)                      

Simplifying  

𝑣𝑣 � 𝜕𝜕
𝜕𝜕𝜕𝜕
𝑔𝑔(𝑢𝑢, 𝑣𝑣,𝑤𝑤)� + 𝑤𝑤 � 𝜕𝜕

𝜕𝜕𝜕𝜕
𝑔𝑔(𝑢𝑢, 𝑣𝑣,𝑤𝑤)� + �𝑎𝑎1  + 𝑎𝑎2 𝑣𝑣 +

 𝑎𝑎3 𝑤𝑤 − 𝑢𝑢2

2
� � 𝜕𝜕

𝜕𝜕𝜕𝜕
𝑔𝑔(𝑢𝑢, 𝑣𝑣,𝑤𝑤)� = 𝐿𝐿.                          (21)                                                                                                                                

We first assume that 𝑛𝑛 is greatest than one, taking the terms of 
degree 𝑛𝑛 + 1 in equation (21), we obtain  

−𝑢𝑢2

2
 � 𝜕𝜕
𝜕𝜕𝜕𝜕
𝑔𝑔𝑛𝑛(𝑢𝑢, 𝑣𝑣,𝑤𝑤)� = 0,                                                                                                                            

(22)                                        
that is 
𝑔𝑔𝑛𝑛(𝑢𝑢, 𝑣𝑣,𝑤𝑤) = 𝐺𝐺1(𝑢𝑢, 𝑣𝑣), 
where gn is a polynomial of degree 𝑛𝑛. Also, computing the 
terms of degree 𝑛𝑛 in equation (21), we obtain  

𝑣𝑣 � 𝜕𝜕
𝜕𝜕𝜕𝜕
𝐺𝐺1(𝑢𝑢, 𝑣𝑣)� + 𝑤𝑤 � 𝜕𝜕

𝜕𝜕𝜕𝜕
𝐺𝐺1(𝑢𝑢, 𝑣𝑣)� + (𝑎𝑎2 𝑣𝑣 +
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𝑎𝑎3 𝑤𝑤 ) � 𝜕𝜕
𝜕𝜕𝜕𝜕
𝐺𝐺1(𝑢𝑢, 𝑣𝑣)� − 𝑢𝑢2

2
� 𝜕𝜕
𝜕𝜕𝜕𝜕
𝑔𝑔𝑛𝑛−1(𝑢𝑢, 𝑣𝑣,𝑤𝑤)� = 0,  

this gives 

𝑔𝑔𝑛𝑛−1 =
2 𝑣𝑣 𝑤𝑤 � 𝜕𝜕𝜕𝜕𝜕𝜕 𝐺𝐺1(𝑢𝑢,𝑣𝑣)�+ 𝑤𝑤2� 𝜕𝜕𝜕𝜕𝜕𝜕 𝐺𝐺1(𝑢𝑢,𝑣𝑣)�  

𝑢𝑢2
+  𝐺𝐺2(𝑢𝑢, 𝑣𝑣),                               

(23)             
The technique of weight modification of variables is used as 
explained in [13]. 
Let 𝑢𝑢 = 𝜇𝜇1  𝑈𝑈, 𝑣𝑣 = 𝑉𝑉,  𝑤𝑤 = 𝑊𝑊 and 𝑡𝑡1 = 𝜇𝜇1 𝑇𝑇1,        
with 𝜇𝜇1 ∈ ℝ+. Then, system (1) becomes

  𝑈𝑈′ = 𝑉𝑉 , 
       𝑉𝑉′ = 𝜇𝜇1 𝑊𝑊 ,                        
(24)

𝑊𝑊′ = 𝑎𝑎1 𝜇𝜇1 + 𝑎𝑎2 𝜇𝜇1 𝑉𝑉 + 𝑎𝑎3 𝜇𝜇1 𝑊𝑊− 1
2

 𝜇𝜇13𝑈𝑈2. 
Set 𝐹𝐹(𝑈𝑈,𝑉𝑉,𝑊𝑊) = 𝜇𝜇1𝑛𝑛 𝑓𝑓(𝜇𝜇1 𝑈𝑈,𝑉𝑉,𝑊𝑊) = ∑ 𝜇𝜇1𝑗𝑗𝑛𝑛

𝑗𝑗=0 𝐹𝐹𝑗𝑗(𝑈𝑈,𝑉𝑉,𝑊𝑊), 
where 𝐹𝐹𝑗𝑗  is the weight homogeneous part with weight degree 
𝑛𝑛 − 𝑗𝑗 of 𝐹𝐹 and 𝑛𝑛 is the weight degree of F with weight 
exponent 𝑠𝑠 = (1,0,0)  and 𝐿𝐿 = 𝜇𝜇1 𝐿𝐿(𝜇𝜇1 𝑈𝑈 + 𝑉𝑉 + 𝑊𝑊) =
𝐿𝐿1 𝜇𝜇12 𝑈𝑈 + 𝐿𝐿2 𝜇𝜇1 𝑉𝑉 + 𝐿𝐿3 𝜇𝜇1 𝑊𝑊. 
Then, by definition of exponential factor, we have 
𝑉𝑉 ∑ 𝜇𝜇1𝑗𝑗 𝑛𝑛

𝑗𝑗=0
𝜕𝜕𝐹𝐹𝑗𝑗(𝑈𝑈,𝑉𝑉,𝑊𝑊)

𝜕𝜕𝜕𝜕
+ 𝜇𝜇1 𝑊𝑊∑ 𝜇𝜇1𝑗𝑗 𝑛𝑛

𝑗𝑗=0
𝜕𝜕𝐹𝐹𝑗𝑗(𝑈𝑈,𝑉𝑉,𝑊𝑊)

𝜕𝜕𝜕𝜕
+

( 𝑎𝑎1 𝜇𝜇1 + 𝑎𝑎2 𝜇𝜇1 𝑉𝑉 + 𝑎𝑎3 𝜇𝜇1 𝑊𝑊−
1
2

 𝜇𝜇13𝑈𝑈2)∑ 𝜇𝜇1𝑗𝑗 𝑛𝑛
𝑗𝑗=0

𝜕𝜕𝐹𝐹𝑗𝑗(𝑈𝑈,𝑉𝑉,𝑊𝑊)

𝜕𝜕𝜕𝜕
= 0.                                                           

(25)
We take the terms which contain 𝜇𝜇10 to obtain  
𝜕𝜕𝐹𝐹0(𝑈𝑈,𝑉𝑉,𝑊𝑊)

𝜕𝜕𝜕𝜕
𝑉𝑉 = 0,  

that is 
𝐹𝐹0�(𝑈𝑈,𝑉𝑉,𝑊𝑊)� = 𝐹𝐹0(𝑉𝑉,𝑊𝑊),                              
(26)

then from (16), we have 
𝑔𝑔𝑛𝑛(𝑢𝑢, 𝑣𝑣,𝑤𝑤) = 𝑔𝑔𝑛𝑛(𝑣𝑣), 
also, from (23), 𝑔𝑔𝑛𝑛−1 becomes 

𝑔𝑔𝑛𝑛−1(𝑢𝑢, 𝑣𝑣,𝑤𝑤) =
 𝑤𝑤2� 𝜕𝜕𝜕𝜕𝜕𝜕𝑔𝑔𝑛𝑛(𝑣𝑣)�  

𝑢𝑢2
+ 𝐺𝐺1(𝑢𝑢, 𝑣𝑣),                                  

(27)
Since 𝑔𝑔𝑛𝑛−1(𝑢𝑢, 𝑣𝑣,𝑤𝑤) is a polynomial of degree 𝑛𝑛 − 1, then it 
must be  
𝜕𝜕
𝜕𝜕𝜕𝜕
𝑔𝑔𝑛𝑛(𝑣𝑣) = 0, then 𝑔𝑔𝑛𝑛(𝑣𝑣) = 𝐾𝐾, 

where 𝐾𝐾 is an arbitrary constant. Since 𝑔𝑔𝑛𝑛 is a homogeneous 
polynomial of degree 𝑛𝑛, Then, for 𝑛𝑛 > 1 we obtain 𝑔𝑔 = 0. 
Now, let  𝑔𝑔 = 𝑐𝑐1𝑢𝑢 + 𝑐𝑐2 𝑣𝑣 + 𝑐𝑐3 𝑤𝑤. Then, by equation (21), we 
have 
𝑣𝑣 𝑐𝑐1 + 𝑤𝑤 𝑐𝑐2 + �𝑎𝑎1  + 𝑎𝑎2  𝑉𝑉 + 𝑎𝑎3  𝑊𝑊 − 1

2
 𝑈𝑈2�  𝑐𝑐3 = 𝐿𝐿1 𝑢𝑢 +

𝐿𝐿2 𝑣𝑣 + 𝐿𝐿3 𝑤𝑤.  
Comparing the coefficient, we obtain   𝑐𝑐3 = 𝐿𝐿1 = 0,  𝑐𝑐2 =
𝐿𝐿3 and  𝑐𝑐1 = 𝐿𝐿2. 
That is 

𝑔𝑔(𝑢𝑢, 𝑣𝑣,𝑤𝑤) = 𝐿𝐿2 𝑢𝑢 + 𝐿𝐿3 𝑣𝑣. 
This implies that 𝑒𝑒𝐿𝐿2 𝑢𝑢+𝐿𝐿3 𝑣𝑣  is the exponential factor with 
cofactor  𝐿𝐿2 𝑣𝑣 + 𝐿𝐿3 𝑤𝑤. Hence, the only two independent 

exponential factors of system (1) are 𝑒𝑒𝑢𝑢 and 𝑒𝑒𝑣𝑣 with cofactors 
v and w, respectively. ∎ 

Theorem 3.5. System (1) has not Darboux first integrals. 
Proof. Considering that the unique exponential factors 𝑒𝑒𝑢𝑢 and 
𝑒𝑒𝑣𝑣, have cofactors 𝑣𝑣 and  𝑤𝑤, respectively. Next, using 
Darboux Theorem 2.5, we obtain  
    𝛽𝛽1(𝑣𝑣) +  𝛽𝛽2(𝑤𝑤) = 0,
(28)   
The constants 𝛽𝛽1,  𝛽𝛽2 ∈ ℝ  are non-zero. There is not a non-
trivial solution to the above equation. Consequently, there is 
no Darboux first integral in system (1). ∎ 

Theorem 3.6.  If 𝑎𝑎3 < 0,�2 𝑎𝑎1  > 0 and 𝑎𝑎3 𝑎𝑎2 − �2 𝑎𝑎1  > 0 
then system (1)  has no a global C1 first integral. 
Proof. Since ��2 𝑎𝑎1, 0,0� is the equilibrium point of 
system (1), then the Jacobian matrix of system (1), at 
��2 𝑎𝑎1 ,0,0�  is  

            𝐽𝐽 = �
0 1 0
0 0 1

�2 𝑎𝑎1 𝑎𝑎2 𝑎𝑎3
� .

The characteristic equation of the above matrix is 
 𝐽𝐽(𝛾𝛾) = 𝛾𝛾3 − 𝑎𝑎3 𝛾𝛾2 − 𝑎𝑎2 𝛾𝛾 + �2 𝑎𝑎1 = 0. 

The eigenvalues are 

𝛾𝛾1 = 1
6 
𝐴𝐴
1
3 −   6 𝐵𝐵

𝐴𝐴
1
3

+  1
3
𝑎𝑎3  and  𝛾𝛾2,3 = − 1

12 
𝐴𝐴
1
3 +   3 𝐵𝐵

𝐴𝐴
1
3

+  1
3

 𝑎𝑎3 

± √3 𝑖𝑖
2  

( 1
6
𝐴𝐴 

1
3 + 6 𝐵𝐵

 𝐴𝐴 
1
3
), 

where 

𝐴𝐴 = 36 𝑎𝑎2 𝑎𝑎3 − 108 �2 𝑎𝑎1 + 8 𝑎𝑎33 +

12 �−12 𝑎𝑎23 − 3 𝑎𝑎22 𝑎𝑎32 − 54 �2 𝑎𝑎1 𝑎𝑎2𝑎𝑎3  + 162 𝑎𝑎1 − 12 �2 𝑎𝑎1 𝑎𝑎32 and 

𝐵𝐵 = −1
3

 𝑎𝑎2  −  1
9

  𝑎𝑎32. 
The eigenvalues have non-zero negative real portions, 
according to Theorem 2.1, if and only if 
𝑎𝑎3 < 0,�2 𝑎𝑎1  > 0 and 𝑎𝑎3 𝑎𝑎2 − �2 𝑎𝑎1  > 0. 

Then, by Theorem 2.2 system (1) has no global 𝐶𝐶1 first 
integrals in the neighborhood of ��2 𝑎𝑎1, 0,0�. ∎ 

Proposition 3.7. Suppose that 𝐻𝐻1 = −𝑎𝑎2 𝑢𝑢 − 𝑎𝑎3 𝑣𝑣 + 𝑤𝑤 is a 
polynomial first integral of the linear part of system (1). 
Proof. By definition if  𝐻𝐻1 is a polynomial first integral of the 
linear part of system (1), then it must be satisfied 
𝑢̇𝑢  𝜕𝜕𝐻𝐻1

𝜕𝜕𝜕𝜕
+ 𝑣̇𝑣  𝜕𝜕𝐻𝐻1

𝜕𝜕𝜕𝜕
+ 𝑤̇𝑤  𝜕𝜕𝐻𝐻1

𝜕𝜕𝜕𝜕
= 0  

This gives that 
𝑣𝑣 𝜕𝜕(−𝑎𝑎2 𝑢𝑢−𝑎𝑎3 𝑣𝑣+𝑤𝑤 )

𝜕𝜕𝜕𝜕
+ 𝑤𝑤 𝜕𝜕(−𝑎𝑎2 𝑢𝑢−𝑎𝑎3 𝑣𝑣+𝑤𝑤 )

𝜕𝜕𝜕𝜕
+ (𝑎𝑎2 𝑣𝑣 +

𝑎𝑎3 𝑤𝑤) 𝜕𝜕(−𝑎𝑎2 𝑢𝑢−𝑎𝑎3 𝑣𝑣+𝑤𝑤 )
𝜕𝜕𝜕𝜕

= 0  
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Then 𝐻𝐻1 is a first integral of the linear part of (1). ∎ 
Theorem 3.8. System (1) has no analytic first integrals 
at ��2 a1, 0,0�. 
Proof. Let the analytic first integral of system (1) is 𝐻𝐻 =
∑ 𝐻𝐻𝑖𝑖(𝑢𝑢, 𝑣𝑣,𝑤𝑤) 𝑖𝑖≥1 , where each homogeneous polynomial of 
degree 𝑖𝑖, ∀  𝑖𝑖 ≥ 1, is represented by 𝐻𝐻i. We will demonstrate 
via induction that 
𝐻𝐻𝑖𝑖 = 0, ∀  𝑖𝑖 ≥ 1.  
Note that, 𝐻𝐻 is a first integral of (1), Consequently, by 
definition, we have 
𝑣𝑣 𝜕𝜕𝜕𝜕

𝜕𝜕𝜕𝜕
+ 𝑤𝑤 𝜕𝜕𝜕𝜕

𝜕𝜕𝜕𝜕
+ �𝑎𝑎1  + 𝑎𝑎2 𝑣𝑣 + 𝑎𝑎3 𝑤𝑤 − 𝑢𝑢2

2
� 𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

= 0                                           
(29)        
Using the degree 1 terms in equation (29), we obtain 
𝑣𝑣 𝜕𝜕𝐻𝐻1(𝑢𝑢,𝑣𝑣,𝑤𝑤)

𝜕𝜕𝜕𝜕
 + 𝑤𝑤 𝜕𝜕𝐻𝐻1(𝑢𝑢,𝑣𝑣,𝑤𝑤)

𝜕𝜕𝜕𝜕
+ (𝑎𝑎1  + 𝑎𝑎2 𝑣𝑣 +  𝑎𝑎3 𝑤𝑤 )  

𝜕𝜕𝐻𝐻1(𝑢𝑢,𝑣𝑣,𝑤𝑤)
𝜕𝜕𝜕𝜕

 = 0.                                                                    
(30)      
By Proposition 3.7 we get that  H1 is a polynomial first 
integral of the linear part of system (1), this gives   
𝐻𝐻1 = 𝛼𝛼1(−𝑎𝑎2 𝑢𝑢 − 𝑎𝑎3 𝑣𝑣 + 𝑤𝑤 )𝑙𝑙1, for some 𝑙𝑙1 ∈ ℕ and 𝛼𝛼1 ∈ ℝ.   
Since 𝐻𝐻1 is the homogeneous polynomial of degree 1, we 
obtain 
𝐻𝐻1 = 𝛼𝛼1(𝑎𝑎2 𝑢𝑢 − 𝑎𝑎3 𝑣𝑣 + 𝑤𝑤).  
 
Taking the terms of degree 2 in equation (29),  
𝑣𝑣 𝜕𝜕𝐻𝐻2(𝑢𝑢,𝑣𝑣,𝑤𝑤)

𝜕𝜕𝜕𝜕
 + 𝑤𝑤 𝜕𝜕𝐻𝐻2(𝑢𝑢,𝑣𝑣,𝑤𝑤)

𝜕𝜕𝜕𝜕
+ (𝑎𝑎2 𝑣𝑣 +  𝑎𝑎3 𝑤𝑤 ) 𝜕𝜕𝐻𝐻2(𝑢𝑢,𝑣𝑣,𝑤𝑤)

𝜕𝜕𝜕𝜕
−

𝑢𝑢2

2
𝜕𝜕𝐻𝐻1(𝑢𝑢,𝑣𝑣,𝑤𝑤)

𝜕𝜕𝜕𝜕
= 0.     

That is 
 𝑣𝑣 𝜕𝜕𝐻𝐻2(𝑢𝑢,𝑣𝑣,𝑤𝑤)

𝜕𝜕𝜕𝜕
 + 𝑤𝑤 𝜕𝜕𝐻𝐻2(𝑢𝑢,𝑣𝑣,𝑤𝑤)

𝜕𝜕𝜕𝜕
+ (𝑎𝑎2 𝑣𝑣 +  𝑎𝑎3 𝑤𝑤 ) 𝜕𝜕𝐻𝐻2(𝑢𝑢,𝑣𝑣,𝑤𝑤)

𝜕𝜕𝜕𝜕
−

𝛼𝛼1
𝑢𝑢2

2
= 0.                     (31)    

 By Proposition 3.7 equation (31) has a polynomial solution 
if 𝛼𝛼1 = 0, this implies that 𝐻𝐻1 = 0. In this case 
𝐻𝐻2 = 𝛼𝛼2(𝑎𝑎2 𝑢𝑢 − 𝑎𝑎3 𝑣𝑣 + 𝑤𝑤)𝑙𝑙2, for some 𝑙𝑙2 ∈ ℕ and 𝛼𝛼2 ∈ ℝ.   
Note that 𝐻𝐻2 is the homogeneous polynomial of the second 
degree, then 
𝐻𝐻2 = 𝛼𝛼2(𝑎𝑎2 𝑢𝑢 − 𝑎𝑎3 𝑣𝑣 + 𝑤𝑤)2.  
Taking the terms of degree 3 of equation (29), then 
  𝑣𝑣 𝜕𝜕𝐻𝐻3(𝑢𝑢,𝑣𝑣,𝑤𝑤)

𝜕𝜕𝜕𝜕
 + 𝑤𝑤 𝜕𝜕𝐻𝐻3(𝑢𝑢,𝑣𝑣,𝑤𝑤)

𝜕𝜕𝜕𝜕
+ (𝑎𝑎2 𝑣𝑣 +  𝑎𝑎3 𝑤𝑤 ) 𝜕𝜕𝐻𝐻3(𝑢𝑢,𝑣𝑣,𝑤𝑤)

𝜕𝜕𝜕𝜕
−

𝑢𝑢2

2
𝜕𝜕𝐻𝐻2(𝑢𝑢,𝑣𝑣,𝑤𝑤)

𝜕𝜕𝜕𝜕
= 0.                                            (32) 

By Proposition 2.7 equation (32) has a polynomial solution if 
𝛼𝛼2 = 0, this implies that 𝐻𝐻2 = 0. Then  
𝐻𝐻3 = 𝛼𝛼3(𝑎𝑎2 𝑢𝑢 − 𝑎𝑎3 𝑣𝑣 + 𝑤𝑤)𝑙𝑙3, for some l3 ∈ ℕ and α3 ∈ ℝ.   
Now, assume that 𝐻𝐻𝑖𝑖 = 0 for 𝑖𝑖 = 𝑚𝑚 with 2 ≤ 𝑚𝑚 ≤ 𝑛𝑛 − 1, 
and we will prove that 𝐻𝐻𝑖𝑖 = 𝛼𝛼𝑖𝑖(𝑎𝑎2 𝑢𝑢 − 𝑎𝑎3 𝑣𝑣 + 𝑤𝑤)𝑖𝑖 = 0, with 
𝛼𝛼𝑖𝑖 ∈ ℝ for 𝑖𝑖 = 𝑛𝑛. By the induction hypothesis, taking the 
terms of degree 𝑛𝑛 + 1 in equation (29), we obtain 
 𝑣𝑣 𝜕𝜕𝐻𝐻𝑛𝑛+1(𝑢𝑢,𝑣𝑣,𝑤𝑤)

𝜕𝜕𝜕𝜕
 + 𝑤𝑤 𝜕𝜕𝐻𝐻𝑛𝑛+1(𝑢𝑢,𝑣𝑣,𝑤𝑤)

𝜕𝜕𝜕𝜕
+ (𝑎𝑎2 𝑣𝑣 +  𝑎𝑎3 𝑤𝑤 ) 

𝜕𝜕𝐻𝐻𝑛𝑛+1(𝑢𝑢,𝑣𝑣,𝑤𝑤)
𝜕𝜕𝜕𝜕

− 𝑢𝑢2

2
𝜕𝜕𝐻𝐻𝑛𝑛(𝑢𝑢,𝑣𝑣,𝑤𝑤)

𝜕𝜕𝜕𝜕
= 0. 

That is  

 𝑣𝑣 𝜕𝜕
𝜕𝜕𝜕𝜕

 𝐻𝐻𝑛𝑛+1(𝑢𝑢, 𝑣𝑣,𝑤𝑤) + 𝑤𝑤 𝜕𝜕
𝜕𝜕𝜕𝜕
𝐻𝐻𝑛𝑛+1(𝑢𝑢, 𝑣𝑣,𝑤𝑤) + (𝑎𝑎2 𝑣𝑣 +  𝑎𝑎3 𝑤𝑤 ) 

𝜕𝜕
𝜕𝜕𝜕𝜕
𝐻𝐻𝑛𝑛+1(𝑢𝑢, 𝑣𝑣,𝑤𝑤) −  

𝑢𝑢2

2
𝛼𝛼𝑛𝑛 ( − 𝑎𝑎2 𝑢𝑢 − 𝑎𝑎3 𝑣𝑣 + 𝑤𝑤) 𝑛𝑛−1 = 0,                                                                                       

(33) 
By Proposition 3.7 equation (33) has a polynomial solution 
if 𝛼𝛼𝑛𝑛 = 0. Then by induction we obtain that 𝐻𝐻𝑖𝑖 = 0 for all 𝑖𝑖 ≥
1. Hence, system (1) has not analytic first integrals at the 
neighborhood of �√2 𝑎𝑎1, 0,0�. 
 
IV. Conclusion 

In this paper, we proved that the Generalized Michelson 
system has no Darboux first integrals. Also, this system has no 
analytic first integrals at the neighborhood of the equilibrium 
point and we obtained that the system has no global C1 first 
integrals for 𝑎𝑎3 < 0,�2 𝑎𝑎1  > 0  , and 𝑎𝑎3 𝑎𝑎2 − �2 𝑎𝑎1  > 0. 
 
References 
 
[1] Llibre, J. and Zhang, X., (2011). On the Hopf-zero bifurcation of the 

Michelson system. Nonlinear Analysis: Real World Applications, 12, 
1650-1653. 

[2] Llibre, J. and Makhlouf, A., (2016). Zero-Hopf bifurcation in the 
generalized Michelson system. Chaos, Solitons & Fractals, 89, 228-231. 

[3] Algaba, A., Freire, E., Gamero, E. and Rodríguez-Luis, A.J., (2015). An 
exact homoclinic orbit and its connection with the Rössler 
system. Physics Letters A, 379(16-17), pp.1114-1121. 

[4] Cheng, C.H., (2005). IIR filter model for the generalized Michelson 
interferometer. In Digest of the LEOS Summer Topical Meetings. (pp. 
197-198). IEEE. 

[5] Ollagnier, J. M., (1997). Polynomial first integrals of the Lotka–Volterra 
system. Bull. Sci. Math, 121, 463-476. 

[6] Christopher, C., Llibre, J. and Pereira, J. V., (2007). Multiplicity of 
invariant algebraic curves in polynomial vector fields. Pacific Journal of 
Mathematics, 229, 63-117 

[7] Llibre, J. and Valls, C., (2011a). On the C1 non-integrability of the 
Belousov–Zhabotinskii system. Computers & Mathematics with 
Applications, 62, 2342-2348. 

[8] Muhammed, S. F., Hussein, N. H. and Amen, A. I., (2020). Darboux and 
Analytic First Integrals of Kingni–Jafari System with Only One Stable 
Equilibrium Point. Zanco Journal of Pure and Applied Sciences, 32. 

[9] Llibre, J. and Zhang, X., (2010). Rational first integrals in the Darboux 
theory of integrability in Cn. Bulletin des sciences mathematiques, 134, 
189-195. 

[10] Llibre, J. and Valls, C., (2011b). Polynomial, rational and analytic first 
integrals for a family of 3-dimensional Lotka-Volterra systems. 
Zeitschrift für angewandte Mathematik und Physik, 62, 761-777. 

[11] Christopher, C. and Llibre, J., (2000). Integrability via invariant 
algebraic curves for planar polynomial differential systems. Annals of 
Differential Equations, 16, 5-19 

[12] Llibre, J. and Zhang, X., (2012). On the Darboux integrability of 
polynomial differential systems. Qualitative theory of dynamical 
systems, 11, 129-144. 

[13] Llibre, J. and Zhang, X. (2002). Invariant algebraic surfaces of the 
Lorenz system. Journal of Mathematical Physics, 43, 1622-1645. 

[14] ZHENG, Y., LIU, Z. and ZHOU, J. 2002. A new synchronization 
principle and application to Chua's circuits. International Journal of 
Bifurcation and Chaos, 12, 815-818. 

 
 


	Article information  Abstract



