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1. INTRODUCTION 

In the field of unconstrained optimization, we minimize an objective function that is dependent on real variables 

without imposing any limitations on the value of those variables. Thus, we take the following approach to the generic 

unconstrained optimization problem: 

 

𝑚𝑖𝑛{𝑓(𝑥), 𝑥 ∈ 𝑅𝑛}                              (1) 

where 𝑓: Rn → R is continuously differentiable function, we defined the gradient as  𝑔𝑘 = ∇𝑓(𝑥𝑘). The conjugate 

gradient methods are one of the best optimization techniques for solving large-scale problems. 

Generally, for solving this problem, starting from an initial point 𝑥0 ∈ 𝑅𝑛, a conjugate gradient algorithm generates a 

sequence of the points {𝑥𝑘} 

                                                     𝑥𝑘+1 = 𝑥𝑘 + 𝛼𝑘𝑑𝑘                                                          (2) 

Where 𝛼𝑘 is the stepsize selected by using line search and the directions 𝑑𝑘 are generated as 

                                                     𝑑𝑘+1 = −𝑔𝑘+1 + 𝛽𝑘𝑑𝑘,        𝑑0 = −𝑔0                                          (3) 

𝛽𝑘  is known as the conjugate gradient coefficient, The different choices for this coefficient correspond to different 

conjugate gradient methods. Some of these methods, such as (HS) (Hestenes and Stiefel) [4], (FR) (Fletcher and Reeves) 

[5], (PRP) (Polak and Ribiere) [6], (DY) (Dai and Yaun) [7], (LS) (Liu and Storey)[8] and (CD) (Fletcher)[9]. 

           𝛽𝑘
𝐻𝑆 =

𝑔𝑘+1 
𝑇  𝑦𝑘

𝑦𝑘
𝑇 𝑑𝑘

                     𝛽𝑘
𝐹𝑅 =

ǀǀ𝑔𝑘+1ǀǀ2

ǀǀ𝑔𝑘ǀǀ2
                    𝛽𝑘

𝑃𝑅𝑃 =
𝑔𝑘+1 

𝑇  𝑦𝑘

ǀǀ𝑔𝑘ǀǀ2
  

           𝛽𝑘
𝐷𝑌 =

ǀǀ𝑔𝑘+1ǀǀ2

𝑦𝑘  
𝑇 𝑑𝑘

                    𝛽𝑘
𝐿𝑆 =

𝑔𝑘+1 
𝑇  𝑦𝑘

−𝑔𝑘
𝑇 𝑑𝑘

                     𝛽𝑘
𝐶𝐷 =

ǀǀ𝑔𝑘+1ǀǀ2

−𝑑𝑘 
𝑇 𝑔𝑘

 

where 𝑦𝑘 = 𝑔𝑘+1 − 𝑔𝑘, ‖. ‖ denotes the Euclidean norm. 

In this paper, we use strong Wolfe line search (SWC) which is determined by the sub sequent criteria: 

                                                                   𝑓(𝑥𝑘 + 𝛼𝑘𝑑𝑘) − 𝑓(𝑥𝑘) ≤ 𝜌𝛼𝑘𝑔𝑘
𝑇𝑑𝑘                                     (4) 

                                                                           𝜎𝑔𝑘
𝑇𝑑𝑘 ≤ 𝑔𝑘+1

𝑇 𝑑𝑘 ≤ −𝜎𝑔𝑘
𝑇𝑑𝑘                                               (5) 

 Where  0 < 𝜌 < 𝜎 < 1, A fundamental class of conjugate gradient techniques is the hybrid algorithm [10-12]. Moreover, 

because hybrid schemes capitalize in the factors that make them up, they outer form standard conjugate gradient 

approaches in term of computational performance and have more reliable convergence characteristics [13-15, 20]. 

ABSTRACT: Conjugate gradient methods are an extremely helpful way for handling large scale non-linear 

optimization issues. In this paper, based on the three famous Dai-yuan (DY), Liu–Storey (LS)and Conjugate-Descent 

(CD) conjugate gradient methods, a new hybrid CG method is proposed. Under strong wolf line search, we prove the 

sufficient descent and global convergence features. The new formula is more efficient than other traditional conjugate 

gradient approaches, according to numerical results. 
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Because of this, academics were interested in hybrid or mix conjugate gradient approaches, for instance Sabrina et al. [1] 

proposed a new hybrid conjugate gradient method based on convex combination of HS and DY which is define as: 

𝛽𝑘
𝐶 = (1 − 𝜃𝑘)𝛽𝑘

𝐻𝑆 + 𝜃𝑘𝛽𝑘
𝐷𝑌,   0 ≤ 𝜃𝑘 ≤ 1 

See more details [2-3]. In 2014, J.K. Liu and S.J. Li. [14], Suggested a hybrid CG method between LS and DY 

𝛽𝑘 = (1 − 𝜃𝑘)𝛽𝑘
𝐿𝑆 + 𝜃𝑘𝛽𝑘

𝐷𝑌 

Furthermore, in 2017, Snezana S. Djordjevic [19], proposed the following hybrid method: 

𝛽𝑘
𝐿𝑆𝐶𝐷 = (1 − 𝜃𝑘)𝛽𝑘

𝐿𝑆 + 𝜃𝑘𝛽𝑘
𝐶𝐷,    0 ≤ 𝜃𝑘 ≤ 1 

 

In this paper, we propose a new hybrid conjugate gradient method based on convex combination of DY, LS and CD 

conjugate gradient algorithms for solving unconstraint optimization problems. 

Because of this, this paper is organized as follows: under section 2, we introduce the newly chosen hybrid conjugate 

gradient method and we obtained the parameters 𝜓 and 𝜙 through a variety of techniques, and we demonstrate that under 

mild conditions, the chosen method with Wolfe line search produce directions that meet the sufficient descent criteria. 

The algorithm will be presented in section 3. Section 4 analyzes the new chosen method’s descent condition and 

convergence features. We provided several numerical examples in section 5 to demonstrate the effectiveness of our 

approach, and section 6 concludes with a succinct analysis. 

 

2.  PROPOSED METHOD 

     In this paper, we propose a convex combination of DY, HS and HZ conjugate gradient algorithms. We use the 

following conjugate gradient parameter: 

                                              𝛽𝑘
ℎ𝐷𝑌𝐿𝑆𝐶𝐷 = 𝜓𝑘𝛽𝑘

𝐷𝑌 + 𝜙𝑘𝛽𝑘
𝐿𝑆 + (1 − 𝜓𝑘 − 𝜙𝑘)𝛽𝑘

𝐶𝐷                              (6) 

Consequently, the direction 𝑑𝑘 is given by: 

 

                                                    𝑑𝑘+1 = {
−𝑔𝑘+1                                          𝑖𝑓 𝑘 = 0

−𝑔𝑘+1 + 𝛽𝑘
ℎ𝐷𝑌𝐿𝑆𝐶𝐷  𝑑𝑘             𝑖𝑓 𝑘 ≥ 1

 

}                            (7) 

The parameters 𝜓𝑘, 𝜙𝑘 satisfying  0 ≤ 𝜓𝑘, 𝜙𝑘 ≤ 1 which will be chosen in a certain manner that will be explained 

later. It ought to be mention that: 

1. If 𝜓𝑘 = 1 and 𝜙𝑘 = 0 then 𝛽𝑘
ℎ𝐷𝑌𝐿𝑆𝐶𝐷 = 𝛽𝑘

𝐷𝑌 

2. If 𝜓𝑘 = 0 and 𝜙𝑘 = 1 then 𝛽𝑘
ℎ𝐷𝑌𝐿𝑆𝐶𝐷 = 𝛽𝑘

𝐿𝑆 

3. If 𝜓𝑘 = 0 and 𝜙𝑘 = 0 then 𝛽𝑘
ℎ𝐷𝑌𝐿𝑆𝐶𝐷 = 𝛽𝑘

𝐶𝐷 

4. If 𝜓𝑘 = 0 and 0 < 𝜙𝑘 < 1 then  𝛽𝑘
ℎ𝐷𝑌𝐿𝑆𝐶𝐷 = 𝜙𝑘𝛽𝑘

𝐿𝑆 + (1 − 𝜙𝑘)𝛽𝑘
𝐶𝐷   which is convex combination of 𝛽𝑘

𝐿𝑆 and 

𝛽𝑘
𝐶𝐷 

5. If 𝜙𝑘 = 0 and 0 < 𝜓𝑘 < 1 then  𝛽𝑘
ℎ𝐷𝑌𝐿𝑆𝐶𝐷 = 𝜓𝑘𝛽𝑘

𝐷𝑌 + (1 − 𝜓𝑘)𝛽𝑘
𝐶𝐷   which is convex combination of 𝛽𝑘

𝐷𝑌 and 

𝛽𝑘
𝐶𝐷 

6. If (1 − 𝜓𝑘 − 𝜙) = 0 and 0 ≤ 𝜓𝑘, 𝜙𝑘 ≤ 1 then 𝜙𝑘 = 1 − 𝜓, hence  

    𝛽𝑘
ℎ𝐷𝑌𝐿𝑆𝐶𝐷 = 𝜓𝑘𝛽𝑘

𝐷𝑌 + (1 − 𝜓𝑘)𝛽𝑘
𝐿𝑆 which is convex combination of 𝛽𝑘

𝐷𝑌 and  𝛽𝑘
𝐿𝑆  

7. If 𝜓𝑘 ∈ (0, 1), 𝜙𝑘 ∈ (0, 1) and 0 < 𝜓𝑘 + 𝜙𝑘 < 1 then we get a new hybrid conjugate gradient method as a 

convex combination of DY, LS and CD. 

From (6) and (7) it is evident that we receive: 

                           𝑑𝑘+1 = {

−𝑔𝑘+1                                                                                                                           𝑖𝑓 𝑘 = 0

−𝑔𝑘+1 + 𝜓𝑘
ǁ𝑔𝑘+1 ǁ

2

𝑑𝑘
𝑇 𝑦𝑘

 𝑑𝑘 + 𝜙𝑘
𝑔𝑘+1

𝑇  𝑦𝑘

−𝑑𝑘
𝑇 𝑔𝑘

 𝑑𝑘 + (1 − 𝜓𝑘 − 𝜙𝑘) (
ǁ𝑔𝑘+1 ǁ

2

−𝑔𝑘
𝑇 𝑑𝑘

) 𝑑𝑘  , 𝑖𝑓 𝑘 ≥ 1
 

}           (8)                               

    We apply the conventional conjugacy requirement to choose the parameters  𝜓, 𝜙 that is (𝑑𝑘+1
𝑇 𝑦𝑘 = 0). Hence, we 

have 

     the following lemma: 

 
Lemma1: If the condition 𝑑𝑘+1

𝑇 𝑦𝑘 = 0 is satisfied at each iteration, we get: 

 

                            𝜙𝑘 =
 𝑔𝑘+1

𝑇  𝑦𝑘𝑑𝑘
𝑇 𝑔𝑘−ǁ𝑔𝑘+1ǁ2𝑔𝑘 

𝑇 𝑑𝑘 +ǁ𝑔𝑘+1ǁ2𝑔𝑘+1 
𝑇 𝑑𝑘 (1−𝜓𝑘)

 𝑔𝑘+1
𝑇  𝑔𝑘𝑑𝑘

𝑇 𝑦𝑘
                 0 < 𝜓𝑘 < 1                                   

    Proof:  

           from (8) we have: 

𝑑𝑘+1 = −𝑔𝑘+1 + 𝜓𝑘

ǁ𝑔𝑘+1 ǁ
2

𝑑𝑘
𝑇 𝑦𝑘

 𝑑𝑘 + 𝜙𝑘

𝑔𝑘+1
𝑇  𝑦𝑘

−𝑑𝑘
𝑇 𝑔𝑘

 𝑑𝑘 + (1 − 𝜓𝑘 − 𝜙𝑘) (
ǁ𝑔𝑘+1 ǁ

2

−𝑔𝑘
𝑇  𝑑𝑘

) 𝑑𝑘 

Multiply both sides by 𝑦𝑘  we get:  
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𝑑𝑘+1
𝑇 𝑦𝑘 = −𝑔𝑘+1

𝑇 𝑦𝑘 + 𝜓𝑘

ǁ𝑔𝑘+1 ǁ
2

𝑑𝑘
𝑇 𝑦𝑘

 𝑑𝑘
𝑇𝑦𝑘 + 𝜙𝑘

𝑔𝑘+1
𝑇  𝑦𝑘

−𝑑𝑘
𝑇 𝑔𝑘

 𝑑𝑘
𝑇𝑦𝑘 + (1 − 𝜓𝑘 − 𝜙𝑘) (

ǁ𝑔𝑘+1 ǁ
2

−𝑔𝑘
𝑇  𝑑𝑘

) 𝑑𝑘
𝑇𝑦𝑘 

                      If 𝑑𝑘+1
𝑇 𝑦𝑘 = 0 

0 = −𝑔𝑘+1
𝑇 𝑦𝑘 + 𝜓𝑘

ǁ𝑔𝑘+1 ǁ
2

𝑑𝑘
𝑇 𝑦𝑘

 𝑑𝑘
𝑇𝑦𝑘 + 𝜙𝑘

𝑔𝑘+1
𝑇  𝑦𝑘

−𝑑𝑘
𝑇 𝑔𝑘

 𝑑𝑘
𝑇𝑦𝑘 + (1 − 𝜓𝑘 − 𝜙𝑘) (

ǁ𝑔𝑘+1 ǁ
2

−𝑔𝑘
𝑇  𝑑𝑘

) 𝑑𝑘
𝑇𝑦𝑘  

after some algebraic computations, we have: 

 

𝜙𝑘 =
 𝑔𝑘+1

𝑇  𝑦𝑘𝑑𝑘
𝑇 𝑔𝑘−ǁ𝑔𝑘+1ǁ2𝑔𝑘 

𝑇 𝑑𝑘 +ǁ𝑔𝑘+1ǁ2𝑔𝑘+1 
𝑇 𝑑𝑘 (1−𝜓𝑘)

 𝑔𝑘+1
𝑇  𝑔𝑘𝑑𝑘

𝑇 𝑦𝑘
                0 < 𝜓𝑘 < 1             (9) 

The parameter 𝜙𝑘 can be outside [0,1] then: 

• If 𝜙𝑘 < 0 then we set 𝜙𝑘 = 0 

• If 𝜙𝑘 > 1 then we set 𝜙𝑘 = 1 

• If 𝜙𝑘 + 𝜓𝑘 ≥ 1 then we set 𝜙𝑘 + 𝜓𝑘 = 1  

2.2 Algorithm (hDYLSCD) 

 
     Step 1: Initialization: Given 𝑥0 ∈ 𝑅𝑛 and the parameters 0 < 𝜌 < 𝜎 < 1. compute 𝑓(𝑥0), 𝑔0 = ∇𝑓(𝑥0). Consider 

                  𝑑0 = −𝑔0, set the initial guess: 𝜓𝑘 = 0.5  

     Step 2: If ‖𝑔𝑘‖ ≤ 10−6, then stop. Else go to next 

     Step 3: Compute the step size 𝛼𝑘 by using strong Wolfe condition (4) and (5) 

     Step 4: Generate 𝑥𝑘+1 = 𝑥𝑘 + 𝛼𝑘𝑑𝑘. Compute 𝑓(𝑥𝑘+1), 𝑔𝑘+1 = ∇𝑓(𝑥𝑘+1) and 𝑦𝑘 = 𝑔𝑘+1 − 𝑔𝑘 

     Step 5: Compute  𝜙𝑘 as in equation (9)  

     Step 6: Calculate 𝛽𝑘
ℎ𝐷𝑌𝐿𝑆𝐶𝐷  by equation (6) 

       Step 7: Search direction: 𝑑 = −𝑔𝑘 + 𝛽𝑘
ℎ𝐷𝑌𝐿𝑆𝐶𝐷𝑑𝑘, If the restart criterion of Powell[17] 

|𝑔𝑘+1
𝑇 𝑔𝑘| ≥ 0.2‖𝑔𝑘+1‖2 

                  is satisfied, then restart, i.e. set  𝑑𝑘+1 = −𝑔𝑘+1  otherwise define 𝑑𝑘+1 = 𝑑 

     Step 8: Put 𝑘 = 𝑘 + 1 and continue with Step 2. 

 

3.THE SUFFICIENT DESCENT CONDITION AND CONVERGENCE  

          To show that the new method satisfies the sufficient descent condition, we need the following assumptions: 

Assumption 1. The level set T= {𝑥 ∈ 𝑅𝑛: 𝑓(𝑥) ≤ 𝑓(𝑥0)} is bounded, i.e. there is a constant B > 0 such that 

ǁ𝑥ǁ ≤ 𝐵 for all 𝑥 ∈ 𝑇                                                    (10) 

Assumption 2. In a neighborhood N of T, f is continuously differentiable and its gradient is Lipschitz continuous,  

                                      i.e. ∃ L ≥ 0 such that  

ǁ𝛻 𝑓(𝑥) − 𝛻 𝑓(𝑦)ǁ ≤ 𝐿ǁ𝑥 − 𝑦ǁ for all 𝑥, 𝑦 ∈ 𝑁                (11) 

 

According to the assumption 1 and 2 on 𝑓(𝑥), there is a constant Ʈ ≥ 0 such that   

ǁ𝛻 𝑓(𝑥)ǁ ≤  Ʈ  for all 𝑥 ∈ 𝑇 

The search direction determined by the novel approach meets sufficient descent criterion, as demonstrated by the 

following theorem: 

 

Theorem1: Let { 𝑔𝑘 } and {𝑑𝑘} generated by the new method, then 𝑑𝑘 satisfies the sufficient descent condition: 

𝑔𝑘 
𝑇 𝑑𝑘 ≤  −𝑐ǁ𝑔𝑘 ǁ

2      for all 𝑘 ≥ 0 , 𝑐 > 0                    (13) 

Proof. By using mathematical induction, we show that the search direction 𝑑𝑘 shall satisfy the sufficient 

                 descent condition when  𝑘 = 0 that is 𝑑0 = −𝑔0 hence 𝑔0
𝑇 𝑑0 =  −ǁ𝑔0 ǁ

2 then the condition is hold 

when 𝑘 = 0 

Now if  𝑘 ≥ 1:                             𝑑𝑘+1 =  −𝑔𝑘+1 + 𝛽𝑘
ℎ𝐷𝑌𝐿𝑆𝐶𝐷𝑑𝑘 

 

= −𝑔𝑘+1 + (𝜓𝑘𝛽𝑘
𝐷𝑌 + 𝜙𝑘𝛽𝑘

𝐿𝑆 + (1 − 𝜓𝑘 − 𝜙𝑘)𝛽𝑘
𝐶𝐷)𝑑𝑘 

 

= −𝜓𝑘𝑔𝑘+1 + 𝜙𝑘𝑔𝑘+1 + (1 − 𝜓𝑘 − 𝜙𝑘)) + ( 𝜓𝑘𝛽𝑘
𝐷𝑌 + 𝜙𝑘𝛽𝑘

𝐿𝑆  + (1 − 𝜓𝑘 − 𝜙𝑘) 𝛽𝑘
𝐶𝐷)𝑑𝑘 

After some algebra: 

𝑑𝑘+1 = 𝜓𝑘𝑑𝑘+1
𝐷𝑌 + 𝜙𝑘𝑑𝑘+1

𝐿𝑆 + +(1 − 𝜓𝑘 − 𝜙𝑘)𝑑𝑘+1
𝐶𝐷                                             (14) 

Multiply both sides by 𝑔𝑘+1
𝑇  we obtain: 

 

𝑔𝑘+1
𝑇  𝑑𝑘+1 = 𝑔𝑘+1

𝑇 𝑑𝑘+1
𝐷𝑌 + 𝜙𝑘𝑔𝑘+1

𝑇 𝑑𝑘+1
𝐿𝑆 + +(1 − 𝜓𝑘 − 𝜙𝑘)𝑔𝑘+1

𝑇 𝑑𝑘+1
𝐶𝐷                       (15) 
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We are going to prove the seven cases: 

 

Case (1): if 𝜓𝑘 = 1 , 𝜙𝑘 = 0 

                                      𝑔𝑘+1
𝑇  𝑑𝑘+1 = 𝑔𝑘+1

𝑇  𝑑𝑘+1
𝐷𝑌  

We have to prove the sufficient descent condition for DY 

𝑑𝑘+1 =  −𝑔𝑘+1 +  𝛽𝑘
𝐷𝑌 𝑑𝑘 

we want to show that 

 𝑔𝑘+1
𝑇 𝑑𝑘+1  ≤ −𝑐1 ǁ𝑔𝑘+1 ǁ

2 

 

𝑔𝑘+1 
𝑇 𝑑𝑘+1 = 𝑔𝑘+1 

𝑇 (− 𝑔𝑘+1 +  𝛽𝑘
𝐷𝑌 𝑑𝑘  ) 

𝑔𝑘+1 
𝑇 𝑑𝑘+1 ≤ ǁ𝑔𝑘+1ǁ2 + 𝛽𝑘

𝐷𝑌 𝑔𝑘+1 
𝑇 𝑑𝑘 

𝑔𝑘+1 
𝑇 𝑑𝑘+1 ≤ ǁ𝑔𝑘+1ǁ2 +

ǀǀ𝑔𝑘+1ǀǀ2

𝑦𝑘  
𝑇 𝑑𝑘

𝑔𝑘+1 
𝑇 𝑑𝑘 

                         𝑑𝑘 
𝑇 𝑦𝑘 = 𝑑𝑘 

𝑇 𝑔𝑘+1 − 𝑑𝑘 
𝑇 𝑔𝑘 ≥ −(1 − 𝜎)𝑑𝑘 

𝑇 𝑔𝑘 ≥ 0                              (16) 

Then it is follows from (16)    

𝑔𝑘+1 
𝑇 𝑑𝑘+1 ≤ ǁ𝑔𝑘+1ǁ2 +

ǀǀ𝑔𝑘+1ǀǀ2

𝑦𝑘  
𝑇 𝑑𝑘

|𝑔𝑘+1 
𝑇 𝑑𝑘| ≤ −

1 − 2𝜎

1 − 𝜎
ǀǀ𝑔𝑘+1ǀǀ2 

 

      𝑔𝑘+1 
𝑇 𝑑𝑘+1

𝐷𝑌 = −𝑐1 ǁ𝑔𝑘+1ǁ2, 𝑐1 =
1−2𝜎

1−𝜎
                                            (17) 

 

Case (2): if 𝜓𝑘 = 0 , 𝜙𝑘 = 1 

𝑔𝑘+1
𝑇  𝑑𝑘+1 = 𝑔𝑘+1

𝑇  𝑑𝑘+1
𝐿𝑆  

We want to prove that the sufficient descent condition for LS satisfies, i.e.: 

 

𝑔𝑘+1 
𝑇 𝑑𝑘+1  ≤ −𝑐2 ǁ𝑔𝑘+1 ǁ

2    

     

𝑑𝑘+1 =  −𝑔𝑘+1 +  𝛽𝑘
𝐿𝑆 𝑑𝑘 

Multiplying both sides by 𝑔𝑘+1 
𝑇  

𝑔𝑘+1 
𝑇 𝑑𝑘+1 =  𝑔𝑘+1 

𝑇 ( −𝑔𝑘+1 +  𝛽𝑘
𝐿𝑆 𝑑𝑘) 

 

                         =  − ǁ𝑔𝑘+1 ǁ
2 +   𝛽𝑘

𝐿𝑆 𝑔𝑘+1 
𝑇 𝑑𝑘  

By substituting 𝛽𝑘
𝐿𝑆 

𝑔𝑘+1
𝑇 𝑑𝑘+1

𝐿𝑆 =  − ǁ𝑔𝑘+1 ǁ
2 +

𝑔𝑘+1 
𝑇  𝑦𝑘

−𝑔𝑘
𝑇 𝑑𝑘

 𝑔𝑘+1 
𝑇 𝑑𝑘 

In addition, we have                        

𝑔𝑘+1
𝑇 𝑑𝑘+1

𝐿𝑆 =  − ǁ𝑔𝑘+1 ǁ
2 +

|𝑔𝑘+1 
𝑇  𝑦𝑘||𝑔𝑘+1 

𝑇 𝑑𝑘|

|𝑔𝑘
𝑇 𝑑𝑘|

≤ −(1 − 1.2𝜎)ǁ𝑔𝑘+1 ǁ
2  

 

Therefore 

                         𝑔𝑘+1
𝑇 𝑑𝑘+1

𝐿𝑆 ≤  − 𝑐2ǁ𝑔𝑘+1 ǁ
2 , with 𝑐2 = (1 − 1.2𝜎) > 0                 (18) 

 

Case (3): if 𝜓𝑘 = 0 , 𝜙𝑘 = 0 

𝑔𝑘+1
𝑇  𝑑𝑘+1 = 𝑔𝑘+1

𝑇  𝑑𝑘+1
𝐶𝐷  

 

We want to prove that the sufficient descent condition for CD satisfies, i.e.: 

 

𝑔𝑘+1 
𝑇 𝑑𝑘+1  ≤ −𝑐3 ǁ𝑔𝑘+1 ǁ

2     

    

𝑑𝑘+1 =  −𝑔𝑘+1 +  𝛽𝑘
𝐶𝐷 𝑑𝑘 

Multiplying both sides by 𝑔𝑘+1 
𝑇 : 

𝑔𝑘+1 
𝑇 𝑑𝑘+1 =  𝑔𝑘+1 

𝑇 ( −𝑔𝑘+1 + 𝛽𝑘
𝐶𝐷 𝑑𝑘) 

 

                      =  − ǁ𝑔𝑘+1 ǁ
2 +  𝛽𝑘

𝐶𝐷 𝑔𝑘+1 
𝑇 𝑑𝑘 

By substituting 𝛽𝑘
𝐶𝐷 

       𝑔𝑘+1
𝑇 𝑑𝑘+1

𝐶𝐷 =  − ǁ𝑔𝑘+1 ǁ
2 +

 ǁ𝑔𝑘+1 ǁ
2

−𝑔𝑘
𝑇 𝑑𝑘

 𝑔𝑘+1 
𝑇 𝑑𝑘 
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𝑔𝑘+1
𝑇 𝑑𝑘+1

𝐶𝐷 =  − ǁ𝑔𝑘+1 ǁ
2(1 −

𝑔𝑘+1 
𝑇 𝑑𝑘

−𝑔𝑘
𝑇  𝑑𝑘

 ) 

 

𝑔𝑘+1
𝑇 𝑑𝑘+1

𝐶𝐷 =  − ǁ𝑔𝑘+1 ǁ
2(

−𝑔𝑘
𝑇 𝑑𝑘 − 𝑔𝑘+1 

𝑇 𝑑𝑘

−𝑔𝑘
𝑇 𝑑𝑘

 ) 

Using the strong Wolfe line search, now it holds 

−𝑔𝑘
𝑇 𝑑𝑘 − 𝑔𝑘+1 

𝑇 𝑑𝑘

−𝑔𝑘
𝑇  𝑑𝑘

≥
(𝜎 − 1)𝑔𝑘

𝑇 𝑑𝑘

−𝑔𝑘
𝑇  𝑑𝑘

= 1 − 𝜎 > 0 

Now we have 

𝑔𝑘+1
𝑇 𝑑𝑘+1

𝐶𝐷 = −(1 − 𝜎) ǁ𝑔𝑘+1 ǁ
2 

 

                         𝑔𝑘+1
𝑇 𝑑𝑘+1

𝐶𝐷 = −𝑐3 ǁ𝑔𝑘+1 ǁ
2, with 𝑐3 = 1 − 𝜎 > 0                          (19) 

 

Case (4): if 𝜓𝑘 = 0 𝑎𝑛𝑑 0 <  𝜙𝑘 < 1 

𝛽𝑘
ℎ𝐷𝑌𝐿𝑆𝐶𝐷 = 𝜙𝑘𝛽𝑘

𝐿𝑆 + (1 − 𝜙𝑘) 𝛽𝑘
𝐶𝐷 where 𝜙𝑘  ∈ [0,1] 

 

Now suppose that 0 < 𝜙𝑘 < 1, i.e., 0 < 𝑎1 < 𝜙𝑘 < 𝑎2 < 1.  

now we conclude 

𝑔𝑘+1
𝑇 𝑑𝑘+1 ≤ 𝑎1𝑔𝑘+1

𝑇 𝑑𝑘+1
𝐶𝐷 + (1 − 𝑎2)𝑔𝑘+1

𝑇 𝑑𝑘+1
𝐿𝑆  

By using (18) and (19), we get 

𝑐4 = 𝑎1𝑐3 + (1 − 𝑎2)𝑐2 

then we finally get 

𝑔𝑘+1
𝑇 𝑑𝑘+1

𝐶𝐷𝐿𝑆 ≤ −𝑐4 ǁ𝑔𝑘+1 ǁ
2 

 

Case (5): if  𝜙𝑘 = 0 𝑎𝑛𝑑 0 <  𝜓𝑘 < 1 then: 

 

𝛽𝑘
ℎ𝐷𝑌𝐿𝑆𝐶𝐷 =  𝜓𝑘𝛽𝑘

𝐷𝑌 + (1 − 𝜓𝑘) 𝛽𝑘
𝐶𝐷, where 𝜓𝑘  ∈ [0,1] 

We are going to prove the sufficient descent condition for the convex combination of DY and CD 

Now suppose that 0 < 𝜓𝑘 < 1, i.e., 0 < 𝑏1 < 𝜓𝑘 < 𝑏2 < 1.  

now we conclude 

𝑔𝑘+1
𝑇 𝑑𝑘+1 ≤ 𝑏1𝑔𝑘+1

𝑇 𝑑𝑘+1
𝐷𝑌 + (1 − 𝑏2)𝑔𝑘+1

𝑇 𝑑𝑘+1
𝐶𝐷  

By using (17) and (19), we get 

𝑐5 = 𝑏1𝑐1 + (1 − 𝑏2)𝑐3 

then we finally get 

𝑔𝑘+1
𝑇 𝑑𝑘+1

𝐷𝑌𝐶𝐷 ≤ −𝑐5 ǁ𝑔𝑘+1 ǁ
2 

 

Case (6): If (1 − 𝜓𝑘 − 𝜙𝑘) = 0  when 0 <  𝜓𝑘  , 𝜙𝑘  < 1 then 𝜙𝑘 = 1 − 𝜓𝑘 

                           𝛽𝑘
ℎ𝐷𝑌𝐿𝑆𝐶𝐷 = 𝛽𝑘

𝐷𝑌𝐿𝑆 =  𝜓𝑘𝛽𝑘
𝐷𝑌 + (1 − 𝜓𝑘) 𝛽𝑘

𝐿𝑆                         (20) 

where the second inequality follows from (5), the Triangular inequality and step (7) for Powell restart. Finally, when 

𝜓𝑘 ∈ (0, 1), the parameter 𝛽𝑘
ℎ𝐷𝑌𝐿𝑆𝐶𝐷  is computed by (20). Then it follows from (3) that 

𝑔𝑘+1
𝑇 𝑑𝑘+1

𝐷𝑌𝐿𝑆 ≤ − ǁ𝑔𝑘+1 ǁ
2 + |𝛽𝑘

𝐷𝑌| ∙ |𝑔𝑘+1 
𝑇 𝑑𝑘| + |𝑔𝑘+1 

𝑇 𝑑𝑘| ∙ |𝛽𝑘
𝐿𝑆| 

 

≤ − ǁ𝑔𝑘+1 ǁ
2 + 𝜎|𝛽𝑘

𝐷𝑌| ∙ |𝑔𝑘 
𝑇 𝑑𝑘| + 𝜎|𝑔𝑘 

𝑇 𝑑𝑘| ∙ |𝛽𝑘
𝐿𝑆| 

 

= − ǁ𝑔𝑘+1 ǁ
2 + 𝜎|𝛽𝑘

𝐷𝑌| ∙ |𝑔𝑘+1 
𝑇 𝑑𝑘+1| + 𝜎|𝑔𝑘+1 

𝑇 𝑦𝑘| ∙ |𝛽𝑘
𝐿𝑆| 

 

≤ − ǁ𝑔𝑘+1 ǁ
2 + 𝜎 ǁ𝑔𝑘+1 ǁ

2 + 𝜎|𝑔𝑘+1 
𝑇 𝑔𝑘| + 𝜎|𝑔𝑘+1 

𝑇 𝑑𝑘+1| 
 

𝑔𝑘+1
𝑇 𝑑𝑘+1

𝐷𝑌𝐿𝑆 ≤ − ǁ𝑔𝑘+1 ǁ
2 + 1.2𝜎 ǁ𝑔𝑘+1 ǁ

2 + 𝜎|𝑔𝑘+1 
𝑇 𝑑𝑘+1| 

From the above inequality, we have 

𝑔𝑘+1
𝑇 𝑑𝑘+1

𝐷𝑌𝐿𝑆 − 𝜎|𝑔𝑘+1 
𝑇 𝑑𝑘+1| ≤ −(1 − 1.2𝜎) ǁ𝑔𝑘+1 ǁ

2 

Since 𝜎 < 0.5, the symbol of the left side of the above inequality is consistent with the symbol of 𝑑𝑘+1 
𝑇 𝑔𝑘+1. So there 

always exists a constant 𝑢 > 0 such that 

𝑔𝑘+1
𝑇 𝑑𝑘+1

𝐷𝑌𝐿𝑆 − 𝜎|𝑔𝑘+1 
𝑇 𝑑𝑘+1| = 𝑢𝑑𝑘+1 

𝑇 𝑔𝑘+1 

Then we have 

𝑔𝑘+1
𝑇 𝑑𝑘+1

𝐷𝑌𝐿𝑆 ≤ −𝑐6 ǁ𝑔𝑘+1 ǁ
2 

Where 𝑐6 =
(1−1.2𝜎)

𝑢
, 𝑢 = 1 + 𝜎 𝑜𝑟 1 − 𝜎, this inequality with (17) and (18) leads to case (6) holds for 𝑘 + 1.■ 
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Case (7): If 0 < 𝜓𝑘 < 1 and 0 < 𝜙𝑘 < 1 and 0 < 𝜓𝑘 + 𝜙𝑘< 1 then we get a new hybrid conjugate gradient method as a 

convex combination of DY, LS and CD 

We have to prove the direction satisfies the sufficient descent condition at each iteration i.e. 

𝑔𝑘+1 
𝑇 𝑑𝑘+1  ≤ −𝑐7ǁ𝑔𝑘+1 ǁ

2  when (0 < 𝜓𝑘 < 1 and 0 < 𝜙𝑘 < 1) 

We have 

                             𝑑𝑘+1 =  −𝑔𝑘+1 + 𝛽𝑘
ℎ𝐷𝑌𝐿𝑆𝐶𝐷𝑑𝑘                                                (21) 

when 𝛽𝑘
ℎ𝐷𝑌𝐿𝑆𝐶𝐷  is convex combination of the parameters of DY, LS and CD 

                       𝛽𝑘
ℎ𝐷𝑌𝐿𝑆𝐶𝐷 =  𝜆1𝛽𝑘

𝐷𝑌 + 𝜆2𝛽𝑘
𝐿𝑆 + 𝜆3𝛽𝑘

𝐶𝐷                                            (22)                 

When  𝜆1, 𝜆2, 𝜆3 > 0 and 𝜆1 + 𝜆2 +  𝜆3 = 1  
This ensures that 𝛽𝑘

ℎ𝐷𝑌𝐿𝑆𝐶𝐷  is a weighted average of the individual conjugate gradient parameters inheriting properties 

from each of them. Since 𝛽𝑘
ℎ𝐷𝑌𝐿𝑆𝐶𝐷  is convex combination of the parameters of  𝛽𝑘

𝐷𝑌 , 𝛽𝑘
𝐿𝑆  and 𝛽𝑘

𝐶𝐷  and since each 

individual methods have well known descent properties and under standard condition (such as using line search that 

satisfies Wolfe conditions), each method satisfies sufficient descent condition   

Now from (21) and (22) we get: 

𝑔𝑘+1 
𝑇 𝑑𝑘+1 = −ǁ𝑔𝑘+1 ǁ

2 + 𝛽𝑘
ℎ𝐷𝑌𝐿𝑆𝐶𝐷𝑔𝑘+1 

𝑇 𝑑𝑘 

𝑔𝑘+1 
𝑇 𝑑𝑘+1 ≤ −ǁ𝑔𝑘+1 ǁ

2 + (𝜆1𝛽𝑘
𝐷𝑌 + 𝜆2𝛽𝑘

𝐿𝑆 + 𝜆3𝛽𝑘
𝐶𝐷)𝑔𝑘+1 

𝑇 𝑑𝑘 

we have: 

𝑔𝑘+1
𝑇 𝑑𝑘+1  ≤  𝜆1(−𝑐1ǁ𝑔𝑘+1 ǁ

2) + 𝜆2(−𝑐2ǁ𝑔𝑘+1 ǁ
2) + 𝜆3(−𝑐3ǁ𝑔𝑘+1 ǁ

2) 

hence 

𝑔𝑘+1
𝑇 𝑑𝑘+1  ≤  −(𝜆1𝑐1 + 𝜆2𝑐2 + 𝜆3𝑐3)ǁ𝑔𝑘+1 ǁ

2 

Since 𝜆1 + 𝜆2 + 𝜆3 = 1 

Let 𝑐7 = 𝜆1𝑐1 + 𝜆2𝑐2 + 𝜆3𝑐3 then  

                               𝑔𝑘+1
𝑇 𝑑𝑘+1  ≤  −𝑐7ǁ𝑔𝑘+1 ǁ

2                                                (23) 

When 𝑐7 > 0 and 𝑐7 is a constant derived from the convex combination of the individual descent conditions.                                          

 

4. CONVERGENCE ANALYSIS 
         The conjugate gradient method’s global convergence is frequently demonstrated using the Zoutendijk criterion[18]. 

Furthermore, the Zoutendijk requirement is met by the new approach under the strong Wolfe condition, as demonstrated 

by the following lemma: 

  

 LEMMA 2: consider that Assumptions (1) and (2) hold and  

𝑥𝑘+1 =  𝑥𝑘+𝛼𝑘𝑑𝑘   where 𝑑𝑘  is the descent direction and 𝛼𝑘 is the step size determined by strong Wolfe conditions. Then, 

the Zoutendijk condition  

                                ∑
(𝑔𝑘+1

𝑇 𝑑𝑘+1)2

ǁ𝑑𝑘+1ǁ2𝑘≥0  < ∞                                                           (24) 

holds. 

The novel method’s global convergence is provided by the following theorem: 

 

THEOREM 2: suppose the assumption (1) and (2) hold and {𝑥𝑘 }be generated by the new algorithm, then 

                               lim
𝑘→∞

𝑖𝑛𝑓ǁ𝑔𝑘 ǁ = 0                                                                  (25) 

Proof: we use contradiction for proving this theorem. Suppose 

 lim
𝑘→∞

𝑖𝑛𝑓ǁ𝑔𝑘 ǁ = 0 is not true, then there exist C > 0 s.t. ǁ𝑔𝑘ǁ ≥ 𝐶 for all 𝑘 ≥ 1 from theorem (1) we have: 

𝑔𝑘 
𝑇 𝑑𝑘 ≤  −𝐾ǁ𝑔𝑘 ǁ

2 for all 𝐾 > 0 

Since we have from Lipschitz rule: 

ǁ𝑦𝑘ǁ =  ǁ𝑔𝑘+1 −  𝑔𝑘 ǁ ≤ 𝐿ǁ𝑥𝑘+1 −  𝑥𝑘ǁ ≤ 𝐿𝐷 

Where D = max {ǁ𝑥 − 𝑦ǁ: 𝑥, 𝑦 ∈ 𝑁} is the diameter of N 

We have 

𝑑𝑘+1 = −𝑔𝑘+1 + 𝛽𝑘
ℎ𝐷𝑌𝐿𝑆𝐶𝐷𝑑𝑘 

ǁ𝑑𝑘+1ǁ ≤  ǁ𝑔𝑘+1ǁ +⎹ 𝛽𝑘
ℎ𝐷𝑌𝐿𝑆𝐶𝐷⎹ ǁ𝑑𝑘ǁ 

And since we have 

𝛽𝑘
ℎ𝐷𝑌𝐿𝑆𝐶𝐷 = 𝜓𝑘𝛽𝑘

𝐷𝑌 + 𝜙𝑘𝛽𝑘
𝐻𝑆 + (1 − 𝜓𝑘 − 𝜙𝑘)𝛽𝑘

𝐻𝑍  
where 0 < 𝜓𝑘 , 𝜙𝑘 < 1 and 0 < 1 − 𝜓𝑘 − 𝜙𝑘 < 1  

we get 

⎹ 𝛽𝑘
ℎ𝐷𝑌𝐿𝑆𝐶𝐷⎹ ≤  ⎹ 𝛽𝑘

𝐷𝑌⎹ + ⎹ 𝛽𝑘
𝐿𝑆⎹ + ⎹ 𝛽𝑘

𝐶𝐷⎹   

                                                     =
ǀǀ𝑔𝑘+1ǀǀ2

𝑦𝑘  
𝑇 𝑑𝑘

+
𝑔𝑘+1 

𝑇  𝑦𝑘

−𝑔𝑘
𝑇 𝑑𝑘

+
ǀǀ𝑔𝑘+1ǀǀ2

−𝑑𝑘    
𝑇 𝑔𝑘

  

                                                     ≤
ǀǀ𝑔𝑘+1ǀǀ2

ǁ𝑦𝑘 
𝑇ǁǁ𝑑𝑘ǁ

+
ǁ𝑔𝑘+1 

𝑇 ǁǁ 𝑦𝑘ǁ

ǁ𝑔𝑘
𝑇ǁǁ 𝑑𝑘ǁ

+
ǀǀ𝑔𝑘+1ǀǀ2

ǁ𝑑𝑘 
𝑇 ǁǁ𝑔𝑘ǁ
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And since we have 𝑔𝑘 
𝑇 𝑑𝑘 ≤  −𝐾ǁ𝑔𝑘 ǁ

2,    ǁ𝛻 𝑓(𝑥)ǁ ≤  Ʈ  and ǁ𝑦𝑘ǁ ≤ 𝐿𝐷 

⎹ 𝛽𝑘
ℎ𝐷𝑌𝐿𝑆𝐶𝐷⎹ ≤  

Ʈ2

𝐾𝐿𝐷
+

ƮLD

𝐾𝐿𝐷
+

ƮLD

𝐾𝐿𝐷
  = 𝑀 

From (7) and since αk  ≥ λ( where λ > 0, k ≥ 0) , then  
1

𝛼𝑘

 ≤  
1

𝜆
 

 Hence 

ǁ𝑑𝑘+1ǁ ≤ ǁ𝑔𝑘+1ǁ + ⎹ 𝛽𝑘
ℎ𝐷𝑌𝐿𝑆𝐶𝐷⎹ ǁ𝑑𝑘ǁ 

                                                 ≤  ǁ𝑔𝑘+1ǁ +
⎹ 𝛽𝑘

ℎ𝐷𝑌𝐿𝑆𝐶𝐷⎹ ǁ𝑥𝑘+1−𝑥𝑘ǁ 

𝛼𝑘
≤ Ʈ +

𝑀𝐷

λ
= 𝑊 

Hence  

ǁ𝑑𝑘+1ǁ ≤ 𝑊  

Then 

 ∑
1

ǁ𝑑𝑘ǁ2𝑘≥1 = ∞ ,𝑘 ≥ 0 

Since we have from Zoutendijk condition 

∑
(𝑔𝑘+1

𝑇 𝑑𝑘+1)2

ǁ𝑑𝑘+1ǁ2

𝑘≥0

 < ∞ 

and since 

ǁ𝑔𝑘+1ǁ ≥ 𝐶 

And 

𝑔𝑘+1 
𝑇 𝑑𝑘+1 ≤  −𝐾ǁ𝑔𝑘+1 ǁ

2 

 

𝑘2𝑐4  ∑
1

ǁ𝑑𝑘+1ǁ2

𝑘≥0

 ≤  ∑
𝑘2ǁ𝑔𝑘+1ǁ4

ǁ𝑑𝑘+1ǁ2

𝑘≥0

 ≤ ∞ 

Which is contradiction with ∑
1

ǁ𝑑𝑘+1ǁ2𝑘≥0 = ∞ 

Hence                                                                 lim
𝑘→∞

𝑖𝑛𝑓ǁ𝑔𝑘+1 ǁ = 0                                                                            

 

5. NUMERICAL RESULTS 

 
    In this section, we present numerical experiment results obtained by testing our new algorithm hDYLSCD with DY, 

LS and CD conjugate gradient algorithms on a set of 81 unconstrained optimization test problems. in which the problems 

1-39 are taken from the CUTE library [21] and the others come from the unconstrained problem collections [22, 23]. The 

dimensions of the test problems vary from 500 to 500000. For the sake of fairness, all the comparison methods use the 

strong Wolfe line search to compute the step-length 𝛼𝑘, and the relevant parameters are set to 𝜌 = 0.0001 and 𝜎 = 0.9 

and the hybridization parameter 𝜓𝑘 = 0.5. For our methods, we adopt the strategy described in [40] to compute the initial 

step length. The termination criterion is (1) ‖𝑔𝑘‖∞ ≤ 10−6  or (2) Itr > 2000, where “Itr” represents the number of 

iterations. When (2) does happen, we claim that the relevant algorithm is invalid for the corresponding test problem, and 

denote it by “F”. All codes are written in Matlab 2024b, and run on a Lenovo PC with 3.60 GHz CPU processor and 8 

GB RAM memory as well as Windows 10 operation system. comparisons of these methods are given in the following 

context. Let 𝑓𝑖
𝐻1 and 𝑓𝑖

𝐻2 be the optimal value found by H1 and H2, for problem i=1,...81, respectively. We say that in 

the particular problem i the performance of H1 was better than the performance of H2 if 
                                               |𝑓𝑖

𝐻1 − 𝑓𝑖
𝐻2| < 10−3                                              (26) 

and the number of iterations (NOI), or the number of function-gradient evaluations (NOF), or the CPU time of H1 

methods is less than those of H2 methods, respectively. to obtain complete comparisons we used the profile of Dolan and 

Moré [17] to evaluate and compare the performance of the set of methods. 

In this set of numerical experiments, we compare the performance of our new algorithm to the HS, DY and HZ conjugate 

gradient algorithms. Figures 1, 2 and 3 represent the performance profiles of the new method hDYLSCD versus DY, LS 

and CD based on the NOI, NOF and CPU time, respectively. 

Table 1. Show that the compare the numerical results of the new algorithm (hDYLSCD) versus DY, LS and CD, and 

show that our new algorithm more effective and faster than DY, LS and CD. 
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Table 1. Numerical Results 

 
Function/size  DY  LS      CD hDYLSCD 

 Ite/Tcpu/Grad. Ite/Tcpu/Grad. Ite/Tcpu/Grad.  Ite/Tcpu/Grad. 

cosine/5000 11/0.189/4.68e-07 13/0.067/4.07e-07 10/0.049/6.23e-07  10/0.060/3.03e-07 

cosine/50000 12/0.429/2.19e-07 12/0.404/4.86e-07 10/0.348/5.62e-07  11/0.402/8.04e-07 

cosine/500000 NaN/NaN/NaN 245/57.812/9.73e-07 206/44.696/8.56e-07  776/184.20/9.22e-07 

dixmaana/15000 9/0.533/5.77e-07 16/0.803/8.02e-08 9/0.465/8.59e-07  10/0.482/4.97e-07 

dixmaana/150000 11/5.067/3.14e-07 15/6.154/7.54e-07 11/4.944/5.55e-07  10/4.675/1.43e-07 

dixmaanb/15000 10/0.534/2.82e-07 13/0.589/6.83e-07 10/0.482/2.54e-07  9/0.440/8.51e-08 

dixmaanb/150000 11/4.956/5.74e-07 23/10.043/6.27e-07 27/10.732/8.26e-07  10/4.338/9.83e-07 

dixmaanc/15000 10/0.562/3.55e-07 17/0.786/6.59e-07 10/0.493/5.61e-07  11/0.492/1.50e-07 

dixmaanc/150000 11/5.010/1.98e-07 14/5.880/1.69e-07 11/5.125/1.41e-07  10/4.775/1.47e-07 

dixmaand/15000 9/0.556/3.27e-07 16/0.756/6.52e-07 10/0.495/6.94e-07  9/0.467/8.65e-07 

dixmaand/150000 10/4.730/8.70e-07 25/10.206/5.14e-08 12/5.675/2.98e-07  11/5.231/1.13e-07 

dixmaane/15000 534/15.877/9.88e-07 591/17.178/9.97e-07 610/18.089/9.97e-07  535/15.947/9.81e-07 

dixmaane/150000 1393/281.0/9.91e-07 1488/306./9.94e-07 1460/267.0/9.97e-07  1381/293.5/9.94e-07 

dixmaanf/15000 443/11.990/9.82e-07 447/12.139/9.77e-07 446/12.039/9.99e-07  455/12.529/9.91e-07 

dixmaanf/150000 453/118.01/9.92e-07 NaN/NaN/NaN 613/150.17/9.96e-07  977/319.84/9.90e-07 

dixmaang/15000 434/24.578/9.87e-07 405/23.265/9.93e-07 438/24.584/9.81e-07  443/24.472/9.65e-07 

dixmaang/150000 812/2275.4/9.99e-07 790/170.38/9.92e-07 1037/209.4/1.00e-06  926/193.02/9.96e-07 

dixmaanh/15000 449/12.731/9.99e-07 434/11.455/9.83e-07 NaN/NaN/NaN  437/11.749/9.83e-07 

dixmaanh/150000 659/160.56/9.88e-07 NaN/NaN/NaN 996/201.30/9.98e-07  804/175.89/9.98e-07 

dixmaani/15000 NaN/NaN/NaN NaN/NaN/NaN NaN/NaN/NaN  NaN/NaN/NaN 

dixmaanj/15000 1067/21.69/9.97e-07 1019/21.39/9.94e-07 1389/26.40/9.99e-07  1037/21.63/9.98e-07 

dixmaanj/150000 1484/253.7/9.96e-07 1519/276.1/9.92e-07 1820/312.0/9.98e-07  1429/239.3/9.92e-07 

dixmaank/15000 NaN/NaN/NaN 980/21.128/9.99e-07 884/19.816/9.99e-07  929/19.723/9.87e-07 

dixmaank/150000 1603/259.0/9.91e-07 1426/311.1/9.95e-07 NaN/NaN/NaN  1290/224.7/1.00e-06 

dixmaanl/15000 NaN/NaN/NaN NaN/NaN/NaN NaN/NaN/NaN  825/18.451/9.98e-07 

dixmaanl/150000 1111/199.3/9.97e-07 NaN/NaN/NaN 1206/213.6/9.96e-07  1137/204.4/1.00e-06 

dixon3dq/500 1079/0.389/9.72e-07 1551/0.477/9.95e-07 1848/0.598/9.94e-07  1418/0.457/9.69e-07 

dqdrtic/5000 35/0.058/4.28e-07 54/0.051/4.68e-07 30/0.029/6.29e-07  25/0.030/3.30e-07 

dqdrtic/50000 NaN/NaN/NaN 47/0.211/5.46e-07 40/0.183/5.15e-07  27/0.142/7.21e-07 

dqrtic/5000 48/0.641/8.47e-07 39/0.529/6.40e-07 49/0.688/8.36e-07  15/0.238/5.36e-07 

dqrtic/50000 93/10.567/9.67e-07 78/7.840/4.02e-07 88/10.199/9.38e-07  19/2.574/1.00e-07 

edensch/5000 NaN/NaN/NaN 35/0.508/2.98e-07 38/0.520/5.06e-07  27/0.397/8.99e-07 

edensch/50000 NaN/NaN/NaN 42/5.625/7.25e-07 63/7.347/8.81e-07  38/5.309/7.12e-07 

edensch/500000 67/83.755/9.79e-07 34/39.110/7.48e-07 NaN/NaN/NaN  40/53.203/9.82e-07 

eg2/500 NaN/NaN/NaN 130/0.119/2.57e-07 NaN/NaN/NaN  NaN/NaN/NaN 

fletchcr/5000 178/0.267/7.08e-07 83/0.098/6.83e-07 93/0.091/9.73e-07  40/0.056/8.91e-07 

fletcher/50000 NaN/NaN/NaN 34/0.217/7.89e-07 77/0.522/6.28e-07  76/0.552/9.98e-07 

fletchcr/500000 333/22.406/9.57e-07 71/4.882/3.27e-07 738/35.295/3.69e-07  102/8.045/4.55e-08 

freuroth/500 NaN/NaN/NaN 851/0.483/5.08e-07 464/0.232/5.95e-07  NaN/NaN/NaN 

genrose/5000 NaN/NaN/NaN NaN/NaN/NaN NaN/NaN/NaN  NaN/NaN/NaN 

himmelbg/50000 2/0.056/7.15e-295 2/0.028/3.21e-280 2/0.029/7.15e-295  2/0.029/7.43e-295 

himmelbg/500000 3/0.279/0.00e+00 3/0.290/6.82e-70 3/0.274/0.00e+00  3/0.295/0.00e+00 

liarwhd/5000 88/0.115/3.78e-07 24/0.022/4.72e-07 75/0.076/9.45e-07  61/0.060/2.69e-08 

liarwhd/50000 616/2.272/8.53e-07 54/0.265/8.28e-07 317/1.260/8.63e-07  131/0.689/8.18e-07 

penalty 1/500 29/0.088/2.88e-08 NaN/NaN/NaN 166/0.386/3.80e-07  NaN/NaN/NaN 

penalty 1/5000 136/18.474/9.18e-07 NaN/NaN/NaN NaN/NaN/NaN  NaN/NaN/NaN 

quartc/5000 48/0.639/8.47e-07 39/0.507/6.40e-07 49/0.669/8.36e-07  15/0.229/5.36e-07 

quartc/50000 93/10.560/9.67e-07 78/7.862/4.02e-07 88/10.201/9.38e-07  19/2.581/1.00e-07 

quartc/500000 174/187.03/7.90e-07 150/149.75/8.46e-07 178/192.26/7.82e-07  76/81.55/8.69e-07 

tridia/500 323/0.170/8.69e-07 406/0.149/9.74e-07 484/0.167/9.45e-07  391/0.140/9.65e-07 

tridia/5000 1105/0.861/9.94e-07 1600/1.204/9.73e-07 1590/1.176/9.57e-07  1431/1.144/9.84e-07 

woods/50000 NaN/NaN/NaN 148/0.517/9.40e-07 NaN/NaN/NaN  45/0.205/6.56e-07 

woods/500000 NaN/NaN/NaN 199/7.607/9.97e-07 NaN/NaN/NaN  53/3.066/7.22e-07 

bdexp/5000 2/0.044/3.35e-37 NaN/NaN/NaN 2/0.013/3.35e-37  2/0.013/3.51e-37 

bdexp/50000 2/0.062/0.00e+00 2/0.061/0.00d+00 2/0.061/0.00e+00  2/0.062/0.00e+00 
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bdexp/500000 2/0.741/0.00e+00 2/0.872/3.52e-18 2/0.739/0.00e+00  2/0.759/0.00e+00 

exdenschnf/5000 14/0.059/7.19e-07 11/0.013/3.89e-07 16/0.020/3.62e-08  17/0.025/1.33e-08 

exdenschnf/50000 48/0.266/8.38e-07 26/0.174/2.97e-07 50/0.252/8.06e-07  18/0.130/4.29e-08 

exdenschnf/500000 531/24.436/8.86e-07 26/1.836/6.74e-08 1519/72.52/9.53e-07  23/1.741/5.20e-08 

exdenschnb/5000 11/0.042/2.60e-07 15/0.015/6.19e-08 10/0.008/9.80e-07  16/0.015/3.98e-07 

exdenschnb/50000 276/0.845/9.59e-07 15/0.064/6.25e-07 15/0.069/4.05e-07  18/0.098/2.67e-07 

exdenschnb/500000 13/0.679/9.00e-07 22/1.178/2.68e-08 12/0.676/7.44e-07  15/0.866/5.22e-09 

genquartic/5000 865/0.648/9.80e-07 60/0.064/4.69e-07 32/0.033/9.21e-07  18/0.022/1.36e-07 

genquartic/50000 NaN/NaN/NaN 468/2.156/5.20e-08 NaN/NaN/NaN  251/1.440/9.41e-07 

genquartic/500000 16/1.026/6.44e-07 15/1.033/6.11e-07 16/1.031/5.53e-07  11/0.784/3.80e-07 

biggsb1/500 551/0.213/8.75e-07 700/0.220/8.35e-07 904/0.291/9.76e-07  813/0.266/8.97e-07 

sine/5000 NaN/NaN/NaN NaN/NaN/NaN 939/3.622/5.34e-07  22/0.094/2.69e-07 

sine/50000 266/7.916/9.77e-07 NaN/NaN/NaN 1391/44.47/7.12e-07  30/1.277/4.20e-07 

sine/500000 NaN/NaN/NaN NaN/NaN/NaN NaN/NaN/NaN  143/57.181/8.98e-07 

fletcbv3/500 NaN/NaN/NaN NaN/NaN/NaN NaN/NaN/NaN  NaN/NaN/NaN 

nonscomp/5000 NaN/NaN/NaN NaN/NaN/NaN NaN/NaN/NaN  NaN/NaN/NaN 

nonscomp/50000 NaN/NaN/NaN 79/0.386/5.87e-07 48/0.234/8.75e-07  56/0.271/8.71e-07 

power 1/500 1853/0.580/9.96e-07 NaN/NaN/NaN NaN/NaN/NaN  NaN/NaN/NaN 

raydan 1/500 160/0.130/9.08e-07 159/0.093/8.91e-07 156/0.079/9.69e-07  160/0.088/9.08e-07 

raydan1/5000 522/1.125/9.98e-07 540/1.144/9.75e-07 528/1.100/9.89e-07  535/1.092/9.88e-07 

raydan2/5000 12/0.058/5.21e-07 72/0.302/1.16e-08 42/0.195/7.26e-08  27/0.118/1.16e-08 

raydan 2/50000 13/0.446/1.05e-07 844/28.881/2.11e-07 19/0.681/7.84e-07  26/0.931/3.61e-07 

raydan2/500000 14/4.607/8.24e-07 72/22.972/5.48e-07 22/7.654/7.15e-07  19/6.527/6.82e-08 

diagonal1/500 986/0.960/9.62e-07 491/0.469/9.86e-07 719/0.678/9.71e-07  410/0.414/2.63e-07 

diagonal1/5000 NaN/NaN/NaN NaN/NaN/NaN NaN/NaN/NaN  NaN/NaN/NaN 

diagonal2/5000 NaN/NaN/NaN NaN/NaN/NaN NaN/NaN/NaN  NaN/NaN/NaN 

diagonal1/5000 NaN/NaN/NaN NaN/NaN/NaN NaN/NaN/NaN  NaN/NaN/NaN 

 

 

Figure 1. show that the performance profiles based on number of iterations, we can conclude hDYLSCD method is also 

better than DY, LS, DY methods 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  FIGURE 1. - Performance profiles using the iteration number 

 

 

Figure 2. show that the performance profiles based on number of the function evaluation, we can conclude hDYLSCD 

method is also better than DY, LS, DY methods 
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FIGURE 2. - Performance profiles using function evaluation 

 

Figure 3. show that the performance profiles based on CPU time, we can conclude hDYLSCD method is also faster than 

DY, LS, DY methods 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

FIGURE 3. - Performance profiles using CPU time 

 

 

 

 

6. CONCLUSION 
    Conjugate gradient techniques are widely used to solve unconstrained optimization problems, particularly of a large 

scale. The hybrid approach, which combines traditional methodologies is one of the most beneficial techniques. In order 

to develop a novel, effective technique we have presented a new hybrid approach in this research that computes parameter 

𝛽 as a convex combination of three parameters DY, LS and CD. 

The practical results demonstrate that the chosen strategy is faster and more effective than alternative approaches. The 

sufficient descent and global convergence have been demonstrated. 
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