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ABSTRACT: Conjugate gradient methods are an extremely helpful way for handling large scale non-linear
optimization issues. In this paper, based on the three famous Dai-yuan (DY), Liu—Storey (LS)and Conjugate-Descent
(CD) conjugate gradient methods, a new hybrid CG method is proposed. Under strong wolf line search, we prove the
sufficient descent and global convergence features. The new formula is more efficient than other traditional conjugate
gradient approaches, according to numerical results.
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1. INTRODUCTION

In the field of unconstrained optimization, we minimize an objective function that is dependent on real variables
without imposing any limitations on the value of those variables. Thus, we take the following approach to the generic
unconstrained optimization problem:

min{f(x),x € R"} ()

where f: R" — R is continuously differentiable function, we defined the gradient as g, = Vf(x;). The conjugate
gradient methods are one of the best optimization techniques for solving large-scale problems.

Generally, for solving this problem, starting from an initial point x, € R™, a conjugate gradient algorithm generates a
sequence of the points {x;}

Xiey1 = Xp + Qpdy (2
Where a, is the stepsize selected by using line search and the directions d, are generated as
Aiv1 = —Gr+1 T Bediy do = —9o 3

By is known as the conjugate gradient coefficient, The different choices for this coefficient correspond to different
conjugate gradient methods. Some of these methods, such as (HS) (Hestenes and Stiefel) [4], (FR) (Fletcher and Reeves)
[5], (PRP) (Polak and Ribiere) [6], (DY) (Dai and Yaun) [7], (LS) (Liu and Storey)[8] and (CD) (Fletcher)[9].

HS _ 9k+1 Yk FR _ gkl PRP _ Jks1 Yk
ke ™ yla k™ igkiz k™ gz
py _ Ngks1l? LS _ 9ks1 Yk ¢ _ Ngr41l?
Ty a k™ gl ay kK = Zdl g,
where ¥, = gx+1 — 9x |l || denotes the Euclidean norm.
In this paper, we use strong Wolfe line search (SWC) which is determined by the sub sequent criteria:
f Qe+ adi) — () < paggidy 4)
0gkdi < Gir1dx < —0gidy ®)

Where 0 < p < 0 < 1, Afundamental class of conjugate gradient techniques is the hybrid algorithm [10-12]. Moreover,
because hybrid schemes capitalize in the factors that make them up, they outer form standard conjugate gradient
approaches in term of computational performance and have more reliable convergence characteristics [13-15, 20].
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Because of this, academics were interested in hybrid or mix conjugate gradient approaches, for instance Sabrina et al. [1]
proposed a new hybrid conjugate gradient method based on convex combination of HS and DY which is define as:
B =1 —-0)BES +6,8P", 0<6, <1
See more details [2-3]. In 2014, J.K. Liu and S.J. Li. [14], Suggested a hybrid CG method between LS and DY
B = (1 = 6B + 6, Be”
Furthermore, in 2017, Snezana S. Djordjevic [19], proposed the following hybrid method:
Bi*P = (1= 0B + 6iBE°, 0<6,<1

In this paper, we propose a new hybrid conjugate gradient method based on convex combination of DY, LS and CD
conjugate gradient algorithms for solving unconstraint optimization problems.

Because of this, this paper is organized as follows: under section 2, we introduce the newly chosen hybrid conjugate
gradient method and we obtained the parameters i and ¢ through a variety of techniques, and we demonstrate that under
mild conditions, the chosen method with Wolfe line search produce directions that meet the sufficient descent criteria.
The algorithm will be presented in section 3. Section 4 analyzes the new chosen method’s descent condition and
convergence features. We provided several numerical examples in section 5 to demonstrate the effectiveness of our
approach, and section 6 concludes with a succinct analysis.

2. PROPOSED METHOD

In this paper, we propose a convex combination of DY, HS and HZ conjugate gradient algorithms. We use the
following conjugate gradient parameter:

B = i BT + B + (1 — Y — dr)Bi” (6)

Consequently, the direction d,, is given by:

—Gk+1 ifk=0
Aiv1 = —Gpsr + BPPYESP A, ifk=>1 (7

The parameters Y, ¢, satisfying 0 <, ¢, < 1 which will be chosen in a certain manner that will be explained
later. It ought to be mention that:
1. Ify, =1and ¢, = 0 then pFPYLSCD = pbY
2. Ify, = 0and ¢, = 1then grPYLSCP = pLS
3. Ify, = 0and ¢, = 0 then gPPYLSCP = gD
4. Ifyh,=0and0 < ¢, < 1then BIPYLSD = ¢, BES + (1 — ¢, )BEP which is convex combination of S£5 and
CD
k

5. Ifg, =0and0 <y, < 1then BIPYLSCD = o, BPY + (1 — ) BEL  which is convex combination of 52 and

CcD
k

6. f(1—9r—¢)=0and0 <Yy, ¢, < 1then¢p, =1 —1p, hence
BRPYLSCD — oy BPY + (1 — 1) BLS which is convex combination of S2Y and BE5
7. Ify, €(0,1), ¢, € (0,1) and 0 < Y, + ¢, < 1 then we get a new hybrid conjugate gradient method as a
convex combination of DY, LS and CD.

From (6) and (7) it is evident that we receive:
“Ik+1 ifk=0

= [ 12 [ 12 .
Gt =) —gus + Y L dy + ¢, 2 gk“” % dj+ (1~ i — i) (%) dy,if k> 1 )
We apply the conventional conjugacy requwement to choose the parameters 1, ¢ thatis (df, v, = 0). Hence, we

have
the following lemma:

Lemmal: If the condition df, v, = 0 is satisfied at each iteration, we get:

ar I 12gy dj +II 112 dj (1—
br = k1 Vil Gk=1gk+1120) dic +1gk+117 gk, di 1=y) 0<y <1
gk+1 gkdk Yk

Proof:
from (8) we have:

Igpess 17 gk Yk
diy1 = =Gk + ¢kﬁ ¢k +1

Multiply both sides by y, we get:

g |
dk+(1—1l’k ¢k)<gk 1dk>dk
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gt 17 gk Vi Igpess 17
dir1Yk = —Gk+1Ye + Wk T; di Y + o +1 diye + (1 = — dp) u di i
d Vi k K gk d
If dir1 e =0 . )
[Py Jie+1 Yk Gl
= —Gh1 Vi + Vi d,{yk diyi + by ng diye + (1 = — di) g% dy ALy

after some algebraic computations, we have:

T T 2T 2T
— Ik+1 Yk 9k Gk+11" Gk Ak H1Ggk+11° Gk 41 Ak (1—Yg)
b = T, 9kl vk 0<yy <1 ©)
The parameter ¢, can be outside [0,1] then:
o If¢p, <Othenwesetg, =0
o |If¢p,>1thenwesetg, =1

o If¢ + 1P, = 1thenweset y + P, = 1

2.2 Algorithm (hDYLSCD)

Step 1: Initialization: Given x, € R™ and the parameters 0 < p < o < 1. compute f(x,), go = Vf (x,). Consider

dy = —go, Set the initial guess: Y, = 0.5
Step 2: If || g, |l < 1076, then stop. Else go to next
Step 3: Compute the step size a; by using strong Wolfe condition (4) and (5)
Step 4: Generate x4 = x + aydy,. Compute f(xg11), Grrr = Vf (Xks1) aNd Y = grr1 — Gi
Step 5: Compute ¢, as in equation (9)
Step 6: Calculate SPYLSCP by equation (6)
Step 7: Search direction: d = —g,, + BIPYLSCPd,, If the restart criterion of Powell[17]
|gk+19k] = 0.2[lgpesr I
is satisfied, then restart, i.e. set d,,, = —gr,, Otherwise define d; ., =d
Step 8: Put k = k + 1 and continue with Step 2.

3.THE SUFFICIENT DESCENT CONDITION AND CONVERGENCE

To show that the new method satisfies the sufficient descent condition, we need the following assumptions:

Assumption 1. The level set T= {x € R™: f(x) < f(x,)} is bounded, i.e. there is a constant B > 0 such that
ixl < Bforallx eT (10)

Assumption 2. In a neighborhood N of T, f is continuously differentiable and its gradient is Lipschitz continuous,

i.e.3 L >0 such that
W)=V )l <Llx—ylforallx,y e N (11)

According to the assumption 1 and 2 on f(x), there is a constant T > 0 such that

Wl < T forallx eT
The search direction determined by the novel approach meets sufficient descent criterion, as demonstrated by the
following theorem:

Theoreml: Let { g, } and {d,} generated by the new method, then d, satisfies the sufficient descent condition:

grd, < —cligI? forallk >0,c>0 (13)
Proof. By using mathematical induction, we show that the search direction d,, shall satisfy the sufficient
descent condition when k = 0 thatis d, = —g, hence g& d, = —lig, II? then the condition is hold
whenk =0
Now if k > 1: A1 = —Grsr + BRPYESCP G,

= —Grr1 T WBP" + 0rBis + (1 — Yy — di)BEP) i
= =i+ + Pebrrr + (L= — 1)) + (VB + duBi® + (1 — Yy — ) PP dy

After some algebra:

diy1 = 1Pkdk+1 + Prdiy + +(1 =P — PR (14)
Multiply both sides by g7, we obtain:

Gi+1 diex1 = Ghardits + OrGhradiss + +(1 — Yy — O gh1dion (15)
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We are going to prove the seven cases:

Case (1):ify,=1,¢, =0
Gie+1 i1 = Gisr Aicta
We have to prove the sufficient descent condition for DY

dir1 = —Gre1 + Be” dy
we want to show that

T 2
Ji+1is1 S =1 gy

Gie+1Aer1 = Ghrr (= G + BT di )
Gier1 Air1 S W Grsal® + BRY Glerr dic

G111
Gier1 i1 S NG I? +—F 4 Jiv1 die
Vi Ak

di Yk = di Grev1 — dig g 2 —(1 — 0)di g, 2 0
Then it is follows from (16)

NGpiq!l? 1-20
T 2 k+1 T 2
Ik+1 Ake1 S WGraal* +—7 d |Gk+1 dil < — 1= gkl
Vi Gk o
T DY _ 2 _1-2¢0
Gi+1 Akr1 = =€ I Gpaqll®, ¢ = -0

Case (2):ifyY, =0,¢, =1

T d — T dLS
Ik+1 Ak+1 = Gik+1 A+
We want to prove that the sufficient descent condition for LS satisfies, i.e.:

T 2

Jier1Aierr < —C2 Iggaq |l
_ LS

i1 = —Gre1 + By dy

Multiplying both sides by g7, ,
Gier1 s = Girr (—Grer + B di)

— N gpsa 17 + .BIIES g£+1 dy
By substituting S£5

Jie+1 Yk gr..d
_g;{" dk k+1 %k

k18551 = =N gper 12 +
In addition, we have
|9k+1 ViellGk+1 dicl

< —(1—-1.20)lgy, I?
gk dil o

T LS _ 2
Jies1dk31 = — Igrsr 17 +

Therefore
gFidid, < = clligrer 12, withc, = (1 — 1.20) > 0

Case (3):ifyp, =0,¢, =0
g1€+1 dgyr = g£+1 d1€21

We want to prove that the sufficient descent condition for CD satisfies, i.e.:
Gier1 Aks1 < —C3 IGpaq I?
dis1= —Gk+1 + BI?D dy

Multiplying both sides by g7, :
Gis1 Gier1 = Giewr (—Grar + B di)

—lgi+1 1+ BE® Giva di
By substituting g£” ]
Igr4ql

T JcD _ 2 T
Jk+19k+1 = = NGpsq 17 + = T Jk+1 dy
Ik Ak
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g£+1 dy

Ghe1diczs = = NGiesr P (1 = —gT dy )

T T
=9k Ak — Gr+1 9k
IEaadfRy = = lgpay IP(———F5
i Ak

Using the strong Wolfe line search, now it holds
— gk di = Gitsr di S (0 =Dy, di

> =1—-0>0
_glf dy _glf dy
Now we have
gl€+1d£21 =—(1~=0) g, I?
gF1dEP = —c3 Igper 12, Withe; =1—0 >0 (29)

Case (4):ify, =0and 0 < ¢, <1
BePHP = ¢ B + (1 — ¢y) Bic” where ¢, € [0,1]

Now suppose that 0 < ¢, < 1,i.e.,,0<a; < ¢, <a, < 1.
now we conclude
Fkr1drs1 < GGk dits + (1= a2) gisadisq
By using (18) and (19), we get
€ =a,63+ (1 —ay)c,
then we finally get
gk+1dk+15 < —¢4 Igpsq I?

Case (5): if ¢, = 0and 0 < Y, < 1then:

BRPYLSED =y, BPY + (1 — ) BEP, where 1, € [0,1]
We are going to prove the sufficient descent condition for the convex combination of DY and CD
Now suppose that 0 < i, < 1,i.e.,0 < b; <Y, < b, < 1.
now we conclude
Gier19k+1 < b1 GisrdRis + (1= by) g1 dits
By using (17) and (19), we get
¢s = by + (1 — by)cs

then we finally get

T DYCD 2
Ir+19k+1 < —Cs llgpqq

Case (6): If (1 — ¢y, — ) =0 when 0 < Y, ¢, < 1then ¢k =1—-1Yy
BEPYISP = B = RV + (1~ ) B (20)
where the second inequality follows from (5), the Triangular inequality and step (7) for Powell restart. Finally, when

Yy € (0, 1), the parameter BPYLSCP s computed by (20). Then it follows from (3) that

9k+1dll<)ﬁ5 < = lgks1 1% + |,3kDY| ) |91€+1 di| + |91€+1 dyl - |ﬁl€s|

< —gis1 12 + alB2Y| - |gk di| + olgk dil - |BES|
=l gk+1 1% + 0'|,81?Y| : |9£+1 Al + 0’|91€+1 Vil - |,811€s|

< = lgps1 % 4 0 1gis1 12 + 01gk+1 gicl + 01941 iesa

DYLS < —

Gieardicit Igks1 1? + 1.20 I gps P + 0l gisq dyesal

From the above inequality, we have
Gir1dist® = 0lGks1 digsr] S —(1 = 1.20) g, I?
Since o < 0.5, the symbol of the left side of the above inequality is consistent with the symbol of d%,, gx1. So there
always exists a constant u > 0 such that
Fkr1dkis = 0lGks1 dicsr| = udiyq Gia

Then we have

T DYLS 2
Jr+19k+1" < —Co g |

M =1+ o or 1 — g, this inequality with (17) and (18) leads to case (6) holds for k + 1.m

Where ¢, =
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Case (7): If0<yp<land 0< ¢, <1land 0 <y + ¢,<1then we get a new hybrid conjugate gradient method as a
convex combination of DY, LS and CD
We have to prove the direction satisfies the sufficient descent condition at each iteration i.e.

Gka1disr < —C7llggesr 17 when (0 <py <Lland 0 < ¢y < 1)

We have
disr = —Grrr + B2 P dy (21)
when BRPYLSCD s convex combination of the parameters of DY, LS and CD
BePTEP = WBRY + A8 + A3B° (22)

When A;,A;,A3 >0and A, + A, + 13 =1

This ensures that g*PYL5CP js a weighted average of the individual conjugate gradient parameters inheriting properties
from each of them. Since BPYLSCP is convex combination of the parameters of SPY, BES and BEP and since each
individual methods have well known descent properties and under standard condition (such as using line search that
satisfies Wolfe conditions), each method satisfies sufficient descent condition

Now from (21) and (22) we get:

Gir1 dicyr = =l Gpess 12 + BEPYESCP gL dy,
Gier1 e < =NGperr 12+ (MBEY + 12B8° + A3B°) Gierr die
we have:
Gir1dke1 < A (=cillgpess 1) + (=2l gpesq 12) + A3(—c3llgsq 17)
hence

gl€+1dk+1 < —(he + 2205 + A3c3)ll g 17
Let C7 = Alcl + AzCz + A3C3 then
Gier1dksr < —Collgpyq I (23)
When ¢; > 0 and ¢, is a constant derived from the convex combination of the individual descent conditions.

4, CONVERGENCE ANALYSIS

The conjugate gradient method’s global convergence is frequently demonstrated using the Zoutendijk criterion[18].
Furthermore, the Zoutendijk requirement is met by the new approach under the strong Wolfe condition, as demonstrated
by the following lemma:

LEMMA 2: consider that Assumptions (1) and (2) hold and
Xp+1 = Xptagd, where d,, isthe descent direction and «, is the step size determined by strong Wolfe conditions. Then,
the Zoutendijk condition

T 2
Tiso S < 00 (24)
k+1

holds.
The novel method’s global convergence is provided by the following theorem:

THEOREM 2: suppose the assumption (1) and (2) hold and {x; }be generated by the new algorithm, then
Ilim infllgp =0 (25)

Proof: we use contradiction for proving this theorem. Suppose
Ilim infllg, I = 0 is not true, then there exist C > 0 s.t. llg, Il = C for all k = 1 from theorem (1) we have:

grd, < —Klg,I*>forallK >0
Since we have from Lipschitz rule:

lyll = N grer — gl < Llixg oy — x Il < LD
Where D = max {llx — yll: x,y € N} is the diameter of N
We have
dir1 = —Grsr + B2 5P d,,

Idjesrll < Nggaal + | BPVEP [lldl
And since we have
BRPVESD = i BEY + duBES + (1 =W — dRIBE”
where 0 <y, ¢, <land0<1 -1, — ¢, <1
we get
|BEPYEP | < 1B |+ 1B 1+ 1B |
= Igrs1l? | Gher Y | NGisa!l?

Yie dk —gpdx  —di gk
< Ngparl® | IgEq Myl | lggyq!l?
= yLindgl  ghundgl o ndl gyl
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And since we have gf d, < —Kllg, I, IV f(x)Il < T and ly,ll <LD

| gRPYLSCD | < T TLD  TLD =M

KLD + KLD + KLD
From (7) and since o, = A( where A > 0,k = 0) , then

1
N S —
ay A
Hence
Idp il < Ugeiqll + |ﬁ,?D”5CD [ Ndll
hDYLSCD
I —xl MD
= ||gk+1"+ 1B al Tet1 Tk ST+T=W
k
Hence
Idp Il < W
Then

1
—— =0 >
Zkz1”dk”2 k=0

Since we have from Zoutendijk condition

(Gk+19k+1)?
ldj 1,117
and since
lgpsill = C
And
Gier1 a1 S —Kligpeyq 17
1 k2 14
e YL o YRl
£ ldj |l £ ldj |l
Which is contradiction with };50 ﬁ =
k+1
Hence Ilim infllges11=0

5. NUMERICAL RESULTS

In this section, we present numerical experiment results obtained by testing our new algorithm hDYLSCD with DY,
LS and CD conjugate gradient algorithms on a set of 81 unconstrained optimization test problems. in which the problems
1-39 are taken from the CUTE library [21] and the others come from the unconstrained problem collections [22, 23]. The
dimensions of the test problems vary from 500 to 500000. For the sake of fairness, all the comparison methods use the
strong Wolfe line search to compute the step-length «;, and the relevant parameters are set to p = 0.0001 and 0 = 0.9
and the hybridization parameter i, = 0.5. For our methods, we adopt the strategy described in [40] to compute the initial
step length. The termination criterion is (1) [|gxlle < 107° or (2) Itr > 2000, where “Itr” represents the number of
iterations. When (2) does happen, we claim that the relevant algorithm is invalid for the corresponding test problem, and
denote it by “F”. All codes are written in Matlab 2024b, and run on a Lenovo PC with 3.60 GHz CPU processor and 8
GB RAM memory as well as Windows 10 operation system. comparisons of these methods are given in the following
context. Let £1 and £? be the optimal value found by H1 and H2, for problem i=1,...81, respectively. We say that in
the particular problem i the performance of H1 was better than the performance of H2 if

|fiH1 _finl <1073 (26)
and the number of iterations (NOI), or the number of function-gradient evaluations (NOF), or the CPU time of H1
methods is less than those of H2 methods, respectively. to obtain complete comparisons we used the profile of Dolan and
Moré [17] to evaluate and compare the performance of the set of methods.
In this set of numerical experiments, we compare the performance of our new algorithm to the HS, DY and HZ conjugate
gradient algorithms. Figures 1, 2 and 3 represent the performance profiles of the new method hDYLSCD versus DY, LS
and CD based on the NOI, NOF and CPU time, respectively.
Table 1. Show that the compare the numerical results of the new algorithm (hDYLSCD) versus DY, LS and CD, and
show that our new algorithm more effective and faster than DY, LS and CD.
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Table 1. Numerical Results

Function/size

DY

LS

CD

hDYLSCD

Ite/Tcpu/Grad.

Ite/Tcpu/Grad.

Ite/Tcpu/Grad.

Ite/Tcpu/Grad.

cosine/5000
cosine/50000
cosine/500000
dixmaana/15000
dixmaana/150000
dixmaanb/15000
dixmaanb/150000
dixmaanc/15000
dixmaanc/150000
dixmaand/15000
dixmaand/150000
dixmaane/15000
dixmaane/150000
dixmaanf/15000
dixmaanf/150000
dixmaang/15000
dixmaang/150000
dixmaanh/15000
dixmaanh/150000
dixmaani/15000
dixmaanj/15000
dixmaanj/150000
dixmaank/15000
dixmaank/150000
dixmaanl/15000
dixmaanl/150000
dixon3dqg/500
dqdrtic/5000
dqdrtic/50000
dqrtic/5000
dqrtic/50000
edensch/5000
edensch/50000
edensch/500000
€g2/500
fletchcr/5000
fletcher/50000
fletchcr/500000
freuroth/500
genrose/5000
himmelbg/50000
himmelbg/500000
liarwhd/5000
liarwhd/50000
penalty 1/500
penalty 1/5000
quartc/5000
quartc/50000
quartc/500000
tridia/500
tridia/5000
wo0ds/50000
woods/500000
bdexp/5000
bdexp/50000

64

11/0.189/4.68e-07
12/0.429/2.19e-07
NaN/NaN/NaN
9/0.533/5.77e-07
11/5.067/3.14e-07
10/0.534/2.82e-07
11/4.956/5.74e-07
10/0.562/3.55e-07
11/5.010/1.98e-07
9/0.556/3.27e-07
10/4.730/8.70e-07
534/15.877/9.88e-07
1393/281.0/9.91e-07
443/11.990/9.82e-07
453/118.01/9.92e-07
434/24.578/9.87e-07
812/2275.4/9.99e-07
449/12.731/9.99e-07
659/160.56/9.88e-07
NaN/NaN/NaN
1067/21.69/9.97e-07
1484/253.7/9.96e-07
NaN/NaN/NaN
1603/259.0/9.91e-07
NaN/NaN/NaN
1111/199.3/9.97e-07
1079/0.389/9.72e-07
35/0.058/4.28e-07
NaN/NaN/NaN
48/0.641/8.47e-07
93/10.567/9.67e-07
NaN/NaN/NaN
NaN/NaN/NaN
67/83.755/9.79e-07
NaN/NaN/NaN
178/0.267/7.08e-07
NaN/NaN/NaN
333/22.406/9.57e-07
NaN/NaN/NaN
NaN/NaN/NaN
2/0.056/7.15e-295
3/0.279/0.00e+00
88/0.115/3.78e-07
616/2.272/8.53e-07
29/0.088/2.88e-08
136/18.474/9.18e-07
48/0.639/8.47e-07
93/10.560/9.67e-07
174/187.03/7.90e-07
323/0.170/8.69e-07
1105/0.861/9.94e-07
NaN/NaN/NaN
NaN/NaN/NaN
2/0.044/3.35e-37
2/0.062/0.00e+00

13/0.067/4.07e-07
12/0.404/4.86e-07
245/57.812/9.73e-07
16/0.803/8.02e-08
15/6.154/7.54e-07
13/0.589/6.83e-07
23/10.043/6.27e-07
17/0.786/6.59¢e-07
14/5.880/1.69¢e-07
16/0.756/6.52e-07
25/10.206/5.14e-08
591/17.178/9.97e-07
1488/306./9.94e-07
447/12.139/9.77e-07
NaN/NaN/NaN
405/23.265/9.93e-07
790/170.38/9.92e-07
434/11.455/9.83e-07
NaN/NaN/NaN
NaN/NaN/NaN
1019/21.39/9.94e-07
1519/276.1/9.92e-07
980/21.128/9.99e-07
1426/311.1/9.95e-07
NaN/NaN/NaN
NaN/NaN/NaN
1551/0.477/9.95e-07
54/0.051/4.68e-07
47/0.211/5.46e-07
39/0.529/6.40e-07
78/7.840/4.02e-07
35/0.508/2.98e-07
42/5.625/7.25e-07
34/39.110/7.48e-07
130/0.119/2.57e-07
83/0.098/6.83e-07
34/0.217/7.89e-07
71/4.882/3.27e-07
851/0.483/5.08e-07
NaN/NaN/NaN
2/0.028/3.21e-280
3/0.290/6.82e-70
24/0.022/4.72e-07
54/0.265/8.28e-07
NaN/NaN/NaN
NaN/NaN/NaN
39/0.507/6.40e-07
78/7.862/4.02e-07
150/149.75/8.46e-07
406/0.149/9.74e-07
1600/1.204/9.73e-07
148/0.517/9.40e-07
199/7.607/9.97e-07
NaN/NaN/NaN
2/0.061/0.00d+00

10/0.049/6.23e-07
10/0.348/5.62e-07
206/44.696/8.56e-07
9/0.465/8.59¢e-07
11/4.944/5.55e-07
10/0.482/2.54e-07
27/10.732/8.26e-07
10/0.493/5.61e-07
11/5.125/1.41e-07
10/0.495/6.94e-07
12/5.675/2.98e-07
610/18.089/9.97e-07
1460/267.0/9.97e-07
446/12.039/9.99e-07
613/150.17/9.96e-07
438/24.584/9.81e-07
1037/209.4/1.00e-06
NaN/NaN/NaN
996/201.30/9.98e-07
NaN/NaN/NaN
1389/26.40/9.99¢e-07
1820/312.0/9.98e-07
884/19.816/9.99e-07
NaN/NaN/NaN
NaN/NaN/NaN
1206/213.6/9.96e-07
1848/0.598/9.94e-07
30/0.029/6.29¢e-07
40/0.183/5.15e-07
49/0.688/8.36e-07
88/10.199/9.38e-07
38/0.520/5.06e-07
63/7.347/8.81e-07
NaN/NaN/NaN
NaN/NaN/NaN
93/0.091/9.73e-07
77/0.522/6.28e-07
738/35.295/3.69e-07
464/0.232/5.95e-07
NaN/NaN/NaN
2/0.029/7.15e-295
3/0.274/0.00e+00
75/0.076/9.45e-07
317/1.260/8.63e-07
166/0.386/3.80e-07
NaN/NaN/NaN
49/0.669/8.36e-07
88/10.201/9.38e-07
178/192.26/7.82e-07
484/0.167/9.45e-07
1590/1.176/9.57e-07
NaN/NaN/NaN
NaN/NaN/NaN
2/0.013/3.35e-37
2/0.061/0.00e+00

10/0.060/3.03e-07
11/0.402/8.04e-07
776/184.20/9.22e-07
10/0.482/4.97e-07
10/4.675/1.43e-07
9/0.440/8.51e-08
10/4.338/9.83e-07
11/0.492/1.50e-07
10/4.775/1.47e-07
9/0.467/8.65e-07
11/5.231/1.13e-07
535/15.947/9.81e-07
1381/293.5/9.94e-07
455/12.529/9.91e-07
977/319.84/9.90e-07
443/24.472/9.65e-07
926/193.02/9.96e-07
437/11.749/9.83e-07
804/175.89/9.98e-07
NaN/NaN/NaN
1037/21.63/9.98e-07
1429/239.3/9.92e-07
929/19.723/9.87e-07
1290/224.7/1.00e-06
825/18.451/9.98e-07
1137/204.4/1.00e-06
1418/0.457/9.69e-07
25/0.030/3.30e-07
27/0.142/7.21e-07
15/0.238/5.36e-07
19/2.574/1.00e-07
27/0.397/8.99e-07
38/5.309/7.12e-07
40/53.203/9.82e-07
NaN/NaN/NaN
40/0.056/8.91e-07
76/0.552/9.98e-07
102/8.045/4.55e-08
NaN/NaN/NaN
NaN/NaN/NaN
2/0.029/7.43e-295
3/0.295/0.00e+00
61/0.060/2.69e-08
131/0.689/8.18e-07
NaN/NaN/NaN
NaN/NaN/NaN
15/0.229/5.36e-07
19/2.581/1.00e-07
76/81.55/8.69e-07
391/0.140/9.65e-07
1431/1.144/9.84e-07
45/0.205/6.56e-07
53/3.066/7.22e-07
2/0.013/3.51e-37
2/0.062/0.00e+00



Hawraz N. Jabbar., Wasit Journal for Pure Science Vol. 4 No. 1 (2025) p. 57-67

bdexp/500000
exdenschnf/5000
exdenschnf/50000
exdenschnf/500000
exdenschnb/5000
exdenschnb/50000
exdenschnb/500000
genquartic/5000
genquartic/50000
genquartic/500000
biggsh1/500
sine/5000
sine/50000
sine/500000
fletcbv3/500
nonscomp/5000
nonscomp/50000
power 1/500
raydan 1/500
raydan1/5000
raydan2/5000
raydan 2/50000
raydan2/500000
diagonal1/500
diagonal1/5000
diagonal2/5000
diagonal1/5000

2/0.741/0.00e+00
14/0.059/7.19e-07
48/0.266/8.38e-07
531/24.436/8.86e-07
11/0.042/2.60e-07
276/0.845/9.59¢e-07
13/0.679/9.00e-07
865/0.648/9.80e-07
NaN/NaN/NaN
16/1.026/6.44e-07
551/0.213/8.75e-07
NaN/NaN/NaN
266/7.916/9.77e-07
NaN/NaN/NaN
NaN/NaN/NaN
NaN/NaN/NaN
NaN/NaN/NaN
1853/0.580/9.96e-07
160/0.130/9.08e-07
522/1.125/9.98e-07
12/0.058/5.21e-07
13/0.446/1.05e-07
14/4.607/8.24e-07
986/0.960/9.62¢e-07
NaN/NaN/NaN
NaN/NaN/NaN
NaN/NaN/NaN

2/0.872/3.52e-18
11/0.013/3.89e-07
26/0.174/2.97e-07
26/1.836/6.74e-08
15/0.015/6.19e-08
15/0.064/6.25e-07
22/1.178/2.68e-08
60/0.064/4.69e-07
468/2.156/5.20e-08
15/1.033/6.11e-07
700/0.220/8.35e-07
NaN/NaN/NaN
NaN/NaN/NaN
NaN/NaN/NaN
NaN/NaN/NaN
NaN/NaN/NaN
79/0.386/5.87e-07
NaN/NaN/NaN
159/0.093/8.91e-07
540/1.144/9.75e-07
72/0.302/1.16e-08
844/28.881/2.11e-07
72/22.972/5.48e-07
491/0.469/9.86e-07
NaN/NaN/NaN
NaN/NaN/NaN
NaN/NaN/NaN

2/0.739/0.00e+00
16/0.020/3.62e-08
50/0.252/8.06e-07
1519/72.52/9.53e-07
10/0.008/9.80e-07
15/0.069/4.05e-07
12/0.676/7.44e-07
32/0.033/9.21e-07
NaN/NaN/NaN
16/1.031/5.53e-07
904/0.291/9.76e-07
939/3.622/5.34e-07
1391/44.47/7.12e-07
NaN/NaN/NaN
NaN/NaN/NaN
NaN/NaN/NaN
48/0.234/8.75e-07
NaN/NaN/NaN
156/0.079/9.69e-07
528/1.100/9.89e-07
42/0.195/7.26e-08
19/0.681/7.84e-07
22/7.654/7.15e-07
719/0.678/9.71e-07
NaN/NaN/NaN
NaN/NaN/NaN
NaN/NaN/NaN

2/0.759/0.00e+00
17/0.025/1.33e-08
18/0.130/4.29¢e-08
23/1.741/5.20e-08
16/0.015/3.98e-07
18/0.098/2.67e-07
15/0.866/5.22e-09
18/0.022/1.36e-07
251/1.440/9.41e-07
11/0.784/3.80e-07
813/0.266/8.97e-07
22/0.094/2.69e-07
30/1.277/4.20e-07
143/57.181/8.98e-07
NaN/NaN/NaN
NaN/NaN/NaN
56/0.271/8.71e-07
NaN/NaN/NaN
160/0.088/9.08e-07
535/1.092/9.88e-07
27/0.118/1.16e-08
26/0.931/3.61e-07
19/6.527/6.82e-08
410/0.414/2.63e-07
NaN/NaN/NaN
NaN/NaN/NaN
NaN/NaN/NaN

Figure 1. show that the performance profiles based on number of iterations, we can conclude hDYLSCD method is also
better than DY, LS, DY methods
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FIGURE 1. - Performance profiles using the iteration number
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Figure 2. show that the performance profiles based on number of the function evaluation, we can conclude hDYLSCD
method is also better than DY, LS, DY methods
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FIGURE 2. - Performance profiles using function evaluation

Figure 3. show that the performance profiles based on CPU time, we can conclude hDYLSCD method is also faster than
DY, LS, DY methods
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FIGURE 3. - Performance profiles using CPU time

6. CONCLUSION

Conjugate gradient techniques are widely used to solve unconstrained optimization problems, particularly of a large
scale. The hybrid approach, which combines traditional methodologies is one of the most beneficial techniques. In order
to develop a novel, effective technique we have presented a new hybrid approach in this research that computes parameter
B as a convex combination of three parameters DY, LS and CD.
The practical results demonstrate that the chosen strategy is faster and more effective than alternative approaches. The
sufficient descent and global convergence have been demonstrated.
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