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Abstract 

This paper is concerned with determining material parameters for 
incompressible isotropic hyperelastic strain–energy functions. A systematic 
procedure analysis is implemented based on the use of least squares optimization 
method for fitting incompressible isotropic hyperelastic constitutive laws to 
experimental data from the classical experiments of Treloar [3] on natural rubber.  
Two phenomenological constitutive models are used to fit the experimental data 
of natural rubber, these are Mooney-Rivlin and Ogden models. The material 
parameters using Mooney-Rivlin are obtained using the linear least squares 
method, while for Ogden model the material coefficients are nonlinear, 
consequently the nonlinear least squares approach has been used. In this work the 
nonlinear least squares method with trusted region TD have been used using 
MATLAB Ver. 7 to find these coefficients. The comparison shows that the present 
mathematical formulations are correct and valid for modeling rubbery materials. 
Also it was found that Mooney-Rivlin model is suitable when the deformation is 
not to exceed 100%, while Ogden model is more appropriate when deformation 
exceed 100%. In addition, as the degree of non-linearity in material behaviour 
increases more material coefficients are required. 

Keywords: Constitutive laws, Finite deformation, Incompressible materials, Rubber. 

ة عند ـوشبھ المطاطی ةـالمطاطيلمواد بالأنموذج المفرط الاستطالـة لتمثیل ال
  بیرةـالانفعالات الك

 الخلاصة

للمواد المفرطة الاستطالة  الطاقة -الانفعالدوال بايجاد معاملات المادة لهذا البحث يهتم 
ثل لطريقة المربعات الصغرى لاحكام معادلات اعتمد التحليل على الاستخدام الام. اللاانضغاطية

التصرف المفروضة رياضيا مع تلك المقابلة لها عمليا، حيث ان البيانات العملية اعتمدت بيانات 
 –موني  طريقة: تم في هذا البحث استخدام طريقتيين .]3[ الخاصة بالمطاط الطبيعي ليريتر

تم ايجاد المعاملات الخاصة بالمواد  رفلن –موني  عند استخدام طريقة . اوجدنطريقة و  رفلن
بينما اعتمدت طريقة . المطاطية اعتمادا على استخدام طريقة المربعات الصغرى الخطية

، حيث تم ايجاد المعملات بهذة الطريقة اوجدنالمربعات الصغرى اللاخطية عند استخدام طريقة 
اظهرت النتائج ان الاشتقاق  .باعتماد منطقة وثوقية معينة MATLABباستخدام برنامج الـ 

و امناسبة عندما تكون الاستطالات اقل رفلن  –موني الرياضي المتبع صحيح وان طريقة 
كذلك تكون . يفضل استخدام طريقة اوجدن في حالة الاستطالات الاكبر، بينما %100تساوي 

  .الحاجة اكبر لمعاملات اكثر عند ازدياد درجة اللاخطية لتصرف المادة
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Nomenclature 

rε , θε  zε   Strains in r, θ, z direction m/m 

Gε  ,[ ]Gε  Green’s or Lagrangian strain tensor m/m 
λ  Stretch or stretch ratio m/m 

321  , , λλλ   Principal Stretch's m/m 
υ Poisson's ratio  
σo, σn  Engineering stress N/mm2 
σ  True or Cauchy stress N/mm2 
B  Left Cauchy-Green strain tensor N/mm2 
C Right Cauchy-Green strain tensor N/mm2 
F  Deformation gradient matrix 
f  Displacement derivative matrix 
G  Shear modulus  N/mm2 

1I , 2I , 3I   Stretch or strain invariants 
J  Determinant of deformation gradient 
JD  Jacobain matrix 
p  Hydrostatic pressure N/mm2 
R  Orthogonal rotation tensor 

IS  1st Piola-Kirchhof stress N/mm2 

IIS  2nd  Piola-Kirchhof stress N/mm2 
u  Displacements components  m 
U  Right stretch tensor m/m 
W  Strain energy function 
 
1. Introduction  

Rubber or rubber-like materials, 
have many engineering applications 
due to their wide availability and low 
cost. They are also used because of 
their excellent damping and energy 
absorption characteristics, flexibility, 
resiliency, long service life, ability to 
seal against moisture, heat, and 
pressure, and non-toxic. It can be 
easily molded into almost any shape.  

Applications of rubbers include 
solid propellant, biomechanics, 
medical/dental, tires, gaskets, and 
engine mounts. 

The ability to accurately predict 
the mechanical behaviour of rubbery 
materials is an important 
technological problem that is still far 
from being completely understood 
[1]. In many applications rubber 
components are subjected to cyclic 

deformation at a certain frequency or 
over a range of frequencies. Typical 
examples of this include tires and 
engine mounts. In this type of 

applications the mechanical  
properties are often strongly 
dependent on the loading conditions  
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such as temperature, frequency, 
deformation state, and the 
environment. To properly design new 
components of rubber material it is 
therefore of importance to be able to 
model the material behaviour under 
different loading conditions. 

The unique properties of rubbery 
materials are such that [2]: 

§ It can undergo large 
deformations under load. 
§ Its load-extension behaviour is 

markedly nonlinear. 
§ Because it is viscoelastic, it 

exhibits significant damping 
properties.  
§ It is incompressible or nearly 

incompressible. 

The non-linear relationship 
between stress and strain of rubbers 
can be obtained from the partial 
derivative of strain energy functions 
with respect to strain or stretch. One 
of the major difficulties encountered 
by engineers consists in the choice of 
a well-adapted constitutive model 
which satisfactorily reproduces the 
large strain or hyperelastic response 
of rubbers. Indeed, rubbers exhibit a 
time-dependent behaviour (creep, 
relaxation, and hysteresis) and a 
particular stress-softening 
phenomenon in the first few cycles, 
this phenomenon is known as the 
Mullins effect, Mullins and Tobin 
[4]. It is the aim of the present work 
is to clarify the procedure of 
determining material parameters for 
incompressible isotropic hyperelastic 
strain–energy functions using two 
phenomenological constitutive 
models, namely Mooney-Rivlin and 
Ogden models. The mathematical 
complexities are simplified as 
possible for this purpose.  

2. Hyperelastic Constitutive 
Modeling  

The aim of the constitutive 
theories is to develop mathematical 
models for representing the real 
behaviour of matter. Historically, two 
approaches have been developed for 
obtaining the strain energy functions 
in rubbery materials, or generally, 
elastomers. The first approach is 
based on statistical thermodynamic, 
where the microscopic molecular 
structure of the material is taken into 
account. The second is a 
phenomenological one, which treats 
the material as a continuum [3].  

Constitutive theories are 
mathematical models for 
representing the real behaviour of 
matter. Nonlinear constitutive theory 
is suitable to model finite strains or 
hyperelastic materials. Constitutive 
equations are used to describe the 
mechanical behaviour of ideal 
materials by specification of the 
dependence of stress on kinematical 
variables such as the deformation 
gradient, rate of deformation, 
temperature …etc. 

There are several material groups 
such as elastomers, polymers, foams 
and biological tissues which can 
undergo large deformations without 
permanent set, and hence exhibit 
large nonlinear elastic behaviour. 
The nonlinear elastic behaviour 
under load or prescribed 
displacement can be modeled using 
either a physical description of the 
molecular interplay through theories 
such as the classical Gaussian theory, 
slip-link, and macromolecular 
network theories or by a 
phenomenological approach [3]. The 
strain energy expression formulated 
using a molecular approach is often 
complex and material specific [5]. In 
the phenomenological approach, 
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material is treated as a continuum 
and a strain energy density function 
is postulated, usually in terms of the 
deformation invariants, generally 
strain or stretch invariants. Several 
material parameters are usually 
needed to reflect the nonlinearity in 
the load-stretch relationships. 
Typically, the load- stretch response 
for rubber-like materials will display 
S-shaped behaviour with stiffening at 
large stretches, as shown in Figure 1. 
The number of material parameters 
depends on the level of nonlinearity.  

3. Constitutive Equations  for  
Hyperelastic  Material  

The strain energy function of 
hyperelastic materials is a scalar-
valued function of tensorial 
variables. For the homogeneous 
isotropic materials, the strain energy 
function depends upon only the 
deformation gradient F, 

)(FWW = . The stress tensors of 
hyperelastic materials in terms of 1st 
Piola-Kirchhoff stresses are derived 
from the given strain energy function 
as [6]: 

F
F

∂
∂

=
)(W

S I              …..(1) 

and the Cauchy stress tensor as [7]: 

[ ] TJ F
F∂

∂
= − W1σ       …..(2) 

where J is the determinant of 
deformation gradient (or volume 
ratio). The strain energy function can 
be written in terms of Cauchy-Green 
strain tensor W (C). And alternative 
expressions for the first and second 
Piola-Kirchhoff stress tensor may be 
written as [8]: 

C
CF

∂
∂

=
)(2 W

S I           ……(3) 

C
C

∂
∂

=
)(2 W

S II           ……(4) 

And in terms of Cauchy stress tensor 
as: 

[ ] T
T

J F
C

CF 







∂
∂

= − )(2 1 W
σ ..(5) 

4.  Constitutive Equations in 
Terms of Principals Invariants 

The strain invariants are 
independent of the chosen coordinate 
system and can be expressed as 
functions of the principal stretches 
λ1, λ2, λ3 [7] it can further be 
deduced that it is possible to have the 
chosen coordinate system axes 
aligned with the principal axes with 
two of the axes parallel but opposite 
in direction to two of the principal 
axes. Therefore in order to always 
obtain positive strain energy value 
the strain energy function should be 
based on the square of the principal 
stretches, 2

3
2
2

2
1  , , λλλ  .  

The square of the principal 
stretches 2

3
2
2

2
1  , , λλλ  are the 

eigenvalues of the left and right 
Cauchy-Green tensors B and C 
respectively. The non-trivial 
solutions (eigenvalues) are obtained 
from the following equation: 

022 =−=− IBIC pp λλ   …. (6) 

This leads to the following cubic 
equation: 

03
2

2
4

1
6 =−+− III ppp λλλ   

....(7) 
The coefficients of equation (7) 

are the strain invariants, and are 
expressed as follow: 

)tr(2
3

2
2

2
11 C=++= λλλI  
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( )( ) tr tr 
2
1 22

2
1

2
3

2
3

2
2

2
2

2
12

CC −=

++= λλλλλλI
 .... 

(8) 
22

3
2
2

2
13 JI === Cλλλ   

The constitutive equation for the 
isotropic hyperelastic materials may 
be expressed in terms of stretch 
invariants as ) , ,( 111 IIIWW = .  
Hence, equation (4), using chain rule, 
may be rewritten as:  









∂
∂

∂
∂

+
∂
∂

∂
∂

+
∂
∂

∂
∂

=

∂
∂

=

CCC

C
C

3

3

2

2

1

1

2

)(2

I
I

I
I

I
I

II

WWW

W
S

....(9) 

The derivatives of the stretch 
invariant with respect to Cauchy-
Green strain tensor C are as follows: 

I
C
C

C
=

∂
∂

=
∂
∂ )tr(1I

 

CI
C
CCI

C
−=

∂
∂

−=
∂
∂

1

2
2 )tr(

2
1)tr(

I

I
    ....(10) 

1
3

3 −=
∂
∂ C

C
II

 

Substituting equations (10) into 
equation (9), the second Piola-
Kirchhoff stress tensor can be written 
as:  





∂
∂

+
∂
∂

−














∂
∂

+
∂
∂

=

−1

3
3

2

2
1

1

 2

CC

I

I
I

I

I
I

III

WW

WW
S

 

…..(11) 

In similar approach, the Cauchy 
stress tensor can be expressed as: 

[ ] 










∂
∂

−







∂
∂

+
∂
∂

+
∂
∂

= − 2

22
1

13
3

1  2 BBI
II

I
II

IJ WWWW
σ                               

..…(12) 

where B is the left Cauchy-Green 
tensor. 

5. Incompressible   
Hyperelastic   Materials 

Incompressible hyperelastic 
materials are materials that can 
sustain finite deformations with 
approximately no volume changes, 
and only isochoric motions are 
possible. For many cases, this is a 
common idealization and accepted 
assumption often invoked in 
continuum and computational 
mechanics. Incompressible 
hyperelastic materials are 
characterized by the 
incompressibility constraint 1=J  or 

1det =F . In order to derive the 
general constitutive equations for 
incompressible hyperelastic 
materials, the strain energy function 
may be expressed as: 

1)-(-)( JpFWW =             … (13) 

where the scalar p is an indeterminate 
Lagrange multiplier which can be 
identified as a hydrostatic pressure.  

A general constitutive equation 
for the first Piola-Kirchhoff stress 
tensors is deduced by differentiating 
equation (13) with respect to the 
deformation gradient F as:  

F
FF

FF
F

∂
∂

+−=

∂
∂

−
∂

∂
=

)(

)(

W

W
S

-T

I

p

Jp
      ....(14) 

and the second Piola-Kirchhoff stress 
tensors may be expressed as [8], 
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C
CC

F
FFFF

∂
∂

+−=

∂
∂

+−=

)(2 

)( 

1

11

W

W
S

-

--T-
II

p

p
 

….(15) 

Similarly, for the Cauchy stress 
tensor, using (14) as: 

[ ] Tp F
F

FI
∂

∂
+−=

)( W
σ        ..(16) 

6. Constitutive  Equations  in  
Terms  of  Principal  Stretches  

When the constitutive 
relationship is expressed in terms of 
the strain energy density function, 
W, the stress-stretch behaviour is 
found by differentiation with respect 
to the stretch. For the case of 
incompressibility, the principal 
Cauchy (true) stresses, σi are found 
by differentiating with respect to the 
principal stretches, λi [9]: 

p
i

ii +
∂
∂

=
λ

λσ
W

          …(17) 

where p is the pressure determined 
by satisfying boundary conditions. If 

),(ˆ
21 IIWW = , this may be written 

as: 

pI
I

I
I ii

ii +







∂
∂

∂
∂

+
∂
∂

∂
∂

=
λλ

λσ 2

2

1

1

WW
 

   ..(18) 

7. Constitutive  Models  for  
Hyperelastic  Materials 

7.1 Mooney–Rivlin Model 
The earliest significant 
phenomenological theory of large 
elastic deformations, which has 
played a dominant part in all later 
work in the field, is that of Mooney 
[10]. Actually, Mooney's theory was 
developed in two forms, a special 

and a general. The theory is based on 
the following assumptions:  

1. The rubber is 
incompressible, and 
isotropic in the unstrained 
state; 

2. Hooke's law is obeyed in 
simple shear. The more 
general theory is based on 
an arbitrary, non-linear, 
stress-strain relation in 
shear. 

On the basis of these assumptions 
Mooney derived, by purely 
mathematical arguments involving 
considerations of symmetry, the 
strain-energy function 

( )









−+++

−++=

3111

3

2
3

2
2

2
1

10

2
3

2
2

2
101

λλλ

λλλ

c

cW

..(19) 

which contains the two elastic 
constants c01and c10 

Rivlin [11] generalized the work 
of Mooney by putting the strain 
energy function in terms of strain 
invariants. He took as his basic 
assumptions that the material is 
incompressible and that it is isotropic 
in the unstrained state. The condition 
for isotropy requires that the function 
W shall be symmetrical with respect 
to the three principal extension ratios 

2
1λ , 2

2λ , and 2
3λ . Furthermore, since 

the strain energy is unaltered by a 
change of sign of two of the stretch 
ratio iλ , corresponding to a rotation 
of the body through 180°, Rivlin 
argued that the strain-energy function 
must depend only on the even powers 

of the iλ . The three simplest 
possible even-powered functions 
which satisfy these requirements are 
the following: 
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2
3

2
2

2
11 λλλ ++=I  

 2
1

2
3

2
3

2
2

2
2

2
12 λλλλλλ ++=I  

…(20) 
2
3

2
2

2
13 λλλ=I  

These three expressions, being 
independent of the particular choice 
of coordinate axes, are termed strain 
invariants. Any more complex even-

powered function of the iλ  can 
always be expressed in terms of these 
three basic forms. 

The condition for 
incompressibility or constancy of 
volume during deformation 
introduces the further relation; 

13213 == λλλI            .. (21) 
which enables the remaining two 
strain invariants to be written in the 
form; 

 /1/1/1 2
3

2
2

2
12

2
3

2
2

2
11

λλλ

λλλ

++=

++=

I
I

 …(22) 

 
The quantities 1I  and 2I  may be 
regarded as two independent 
variables which are determined by 
the three extension ratios (of which, 
for an incompressible material, only 
two are independent). The general 
Rivlin strain-energy function for an 
incompressible isotropic elastic 
material may therefore be expressed 
as the sum of a series of terms;  

( ) ( ) ji

i j
ij IIc 33 21

0 0

−−=∑∑
∞

=

∞

=

W  

….(23) 

involving powers of ( )31 −I  and 
( )32 −I . These quantities are chosen 

in preference to 1I  and 2I  in order 
that W shall vanish automatically at 

zero strain ( 321 == II ); for the 
same reason c00=0. 

When only the first term is 
retained, one obtains;  

( )3110 −= IcNHW              …(24) 

which is often called the neo-
Hookean model. 

7.2 Ogden Model  
The Ogden model for incompressible 
materials formulate the strain energy 
function in terms of principal 
stretches 1λ , 2λ , and  3λ . This 
model has been shown to be of 
excellent accuracy in spite of a 
relatively complicated numerical 
realization [12, 5]. The strain energy 
function of this model is expressed 
as:  

 ( )∑
∞

=

−++=
1

321 3
n n

n nnn ααα λλλ
α
µ

W   …(25) 

μn are material constants and αn are 
dimensionless constants (determined 
experimentally). For practical 
purposes the sum in the Ogden 
model, equation (25), is restricted to 
a finite number of terms N, where N 
is a positive integer, while, for 
consistency with linear theory the 
parameter μ denotes the classical 
shear modulus and material constants 
μn and αn are related by 

     µαµ 2
1

=∑
=

N

n
nn                ….(26) 

The principal Cauchy stresses 
corresponding to the strain energy 
function (25) are of the form 

     p
N

n
ini

n −= ∑
=1

αλµσ              

…(27) 
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where p is an arbitrary hydrostatic 
stress. The indeterminacy associated 
with the arbitrary pressure p is a 
consequence of the assumption of 
incompressibility and does not 
appear in the equations for the 
differences of principal stresses. 
These are of the form; 

( )∑
=

−=−
N

n
n

nn

1
2121
αα λλµσσ    

..(28) 

8. Stress  Matrix  Using  Mooney-
Rivlin  Model 
The compressible form of 

Mooney-Rivlin material model is as 
[5]: 

( ) ( ) ( )2
201110 1

2
133 −+−+−= JKIcIcW  

…..(29) 

The 2nd Piola-Kirchhoff stress can be 
written as follows [8]: 

C∂
∂

=
∂
∂

=
WW

S 2
G

II ε
            …..(30) 

Differentiating equation (29), 

( )
CCCC ∂

∂
−+

∂
∂

+
∂
∂

=
∂
∂ JJK

I
c

I
c 12

01
1

10
W

…. (31) 

The partial differentials of 1I  and 

2I  are as follows: 







 −=

∂
∂ −− 1

1
3
1

3
1

3
1 CI

C
III

      …. (32) 

and, 







 −−=

∂
∂ −− 1

21
3
2

3
2

3
2 CCI

C
IIII

 

…(33) 

Substitute equations (32) and (33) 
into (31) gives: 

( ) 12
1

3

1
21

3
2

301

1
1

3
1

310

1
2

3
2

3
1

−

−−

−−

−+







 −−+







 −=

∂
∂

C

CCI

CI
C

IJK

IIIc

IIcW

 

….(34) 

Rearranging, 

( ) 1

13
2

3201
3
1

3110
3
2

310

1
3
2

301
3
1

310

 1 
2
1

3
2

3
1

 

−

−−−−

−−

−+









+−−











+=

∂
∂

C

CC

I
C

JJK

IIcIIcIc

IIcIcW

 

…..(35) 
  

Hence, the 2nd Piola-Kirchhoff stress 
may be written as: 

( ) 1

13
2

3201
3
1

3110
3
2

310

1
3
2

301
3
1

310

 1 

3
2

3
122

 2

−

−−−−

−−

−+







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Or as; 

( ) 11
321  1 −− −+−−= CCCI JJKBBBIIS (36) 

Where: 
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9. Calibration and Numerical 
Examples 

9.1 Fitting Mooney-Rivlin 
Material Model to Experimental 
Data  

The incompressible form of Mooney-
Rivlin material model is as: 

( )









−+++

−++=

3111

3

2
3

2
2

2
1

01

2
3

2
2

2
110

λλλ

λλλ

c

cW

 

…(37) 

For the case of uniaxial tension 
or uniaxial compression the change 
in strain energy can be expressed in 
terms of the work done by external 
forces: 

11 λdf=W         …..(38) 

where f1 is the force acting on the 
specimen. 

Equation (38) can be written in 
variational form as: 

1
1

 λ
λ

dd 







∂
∂

=
W

W    ….(39) 

Differentiating equation (37) with 
respect to 1 λd  gives: 

3
1

01110
1

122
λ

λ
λ

cc −=
∂
∂W

  ….(40) 

For the case of incompressibility, the 
principal Cauchy (true) stresses, σi 
are given by equation (17), therefore 
using equation (40), the true stresses 
can be written as: 

pcc
i

ii +







−= 201

2
10

12
λ

λσ  ….(41) 

Thus for simple uniaxial tension and 

complete incompressibility  λλ =1  

and 2/1
32

−== λλλ . For this 

special case 032 == σσ , 
therefore, from equation (41) an 
expression for the hydrostatic 
pressure can be obtained as: 





 −−= λ

λ 0110
12 ccp   ….(42) 

Substituting equation (42) into 
equation (41) gives:   





 +






 −=

λλ
λσ 01

10
2 12 cc …. (43) 

In order to best fit the 
experimental data to the constitutive 
model coefficient, the least squares 
approach has been used, writing 
equation (43) as [2]: 

0110   cBcA iii +=σ       ….(44) 

Where: 









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






−= 2

2 1 2      ,1 2
i

ii
i

ii BA
λ

λ
λ

λ

. 

Applying the least squares 
approach to the error between the 
empirical test data and the analytical 
expression given by equation (44), 
hence: 

[ ]∑
=

−+=
N

i
iii cBcAError

1

2
0110   σ ….(45

) 

Therefore: 

[ ]∑
=

=−+=
∂

∂ N

i
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1
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10
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…(46) 

and, 
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[ ]∑
=

=−+=
∂

∂ N
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c
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1
0110
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0  2 σ (47) 

Equation (46) and equation  

….(47) 

 can be written in a matrix form 
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
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Solving for c10 and c01 leads to: 

( )∑ ∑∑
∑ ∑∑∑

−⋅

⋅−⋅
= 222

2
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iiii

iiiiiii
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c

σσ
 

....(49) 

And, 

( )∑ ∑∑
∑ ∑∑∑

−⋅

⋅−⋅
= 222

2

01

iiii

iiiiiii

BABA

BAABA
c

σσ
..(50) 

From the experimental data of 
Treloar [3], Figure 1, the Mooney-
Rivlin coefficient c01 and c10 can be 
found using the above mentioned 
procedure. Fitting these data to that 
of Treloar simple extension, the 
coefficients of Mooney-Rivlin model 
are 0.03168 and 0.03470, 
respectively. Figure2 shows the plot 
of both data of Treloar [3] and fitted 
curve of Mooney-Rivlin model. The 
maximum error deviation is 8%. 
When stretch ratio is less than 2, i.e. 
the extension is less than 100%, the 
maximum error deviations is less 
than 0.5 %. Therefore this model is 
more suitable for small to moderate 
deformations.    

9.2 Fitting Ogden Material Model 
to Experimental Data 

A very sophisticated development for 
simulating incompressible rubber-
like materials in the 
phenomenological contest is due to 

Ogden. The postulated strain energy 
is a function of the principal stretches 
λi, i=1, 2, 3 is computationally 
simple, and plays a crucial role in the 
theory of finite elasticity and has the 
form: 

( )∑
∞

=

−++=
1

321 3
n n

n nnn ααα λλλ
α
µ

W  

For the case of simple tension, 
let λi=λ be the stretch ratio in the 
direction of elongation and σ1=σ 
be the corresponding Cauchy 
stress. Here, σ2=σ3=0. From 
incompressibility constraint, 
λ2=λ3= λ-1/2. Hence, 

p
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…. (51) 
For σ2 or σ3  

p
N

n
n
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=

−

1

2/0 αλµ  

Eliminating p, 

( )∑
=

−−=
N

n
n

nn

1

2/αα λλµσ  …(52) 

For the case of pure shear, 
one of the principal extension 
ratios is fixed, say λi=1. Setting, 
λ1=λ3= λ-1, therefore,  

p
N

n
n

n += ∑
=1

1
αλµσ ,    

p
N

n
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2 µσ , 

p
N
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0 αλµ , and  
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( )∑
=

+−− −=
N

n
n

nn

1

)1(1 αα λλµσ  … 

(53) 

For the case of equibiaxial 
tension, two principal stresses are 
equal, σ2=σ3=σ while the third is 
zero. Correspondingly, λ2=λ3=λ, 
and λ1=λ-2 . As before, 
elimination of p yields 

( )∑
=

−−=
N

n
n

nn

1

2αα λλµσ  ] 

… (54) 

Best fitting of the experimental 
data to Ogden constitutive model are 
not straight forward, because the 
coefficients are nonlinear, therefore 
the nonlinear least squares approach 
has to be used. In this work 
MATLAB ver. 7 with trusted region 
TD has been used to find these 
coefficients. Hence the resulted 
fitting is plotted against Treloar 
experimental work, as shown in 
Figure 3.   

10. Conclusions  
Hyperelastic constitutive model 

predict the mechanical response of 
rubbery material in the equilibrium 
state.  There are many constitutive 
models available in literatures; the 
more suitable constitutive model is 
that the one which represents the real 
behaviour of matter under different 
loading conditions. In this work two 
constitutive model are used: 
Mooney-Rivlin and Ogden material 
constitutive models. From which the 
following conclusions have been 
deduced: 

1. Using Mooney-Rivlin, the 
material parameters are linear; 
therefore, the linear least squares 
method has been used. While 

nonlinear least squares approach 
has been used for Ogden model 
because the material coefficients 
are nonlinear.  

2. The present mathematical 
formulations are proved to be 
correct and valid for modeling 
rubbery materials behaviour via 
comparing the results with that of 
Treloar [3] experimental data on 
natural rubber. The comparison 
shows good agreement and the 
validity of the present 
formulations have been confirmed. 

3. The analysis shows that Mooney-
Rivlin model is simple and more 
suitable when the deformation is 
not to exceed 100%.  Whereas, for 
more extreme conditions, when 
deformation exceed 100%, the 
Ogden model is more suitable.  

4. As a final point, the number of 
required material coefficients 
(terms) is increased as the degree 
of non-linearity in material 
behaviour increases.  

11. References 

[1]BERGSTROM, J.S., AND BOYCE, 
M.C., “Constitutive modeling of 
the large strain time-dependent 
behavior of elastomers”, J. Mech. 
Phys. Solids 46, 931-954, 1998. 

[2]GENT, A.N., Engineering with 
Rubber: How to Design Rubber 
Components, Hanser Publishers, 
1992. 

[3]TRELOAR, L. R. G., The Physics 
of Rubber Elasticity, 3rd Edition, 
Clarendon Press, Oxford, 1975. 

[4]MULLINS, L., AND TOBIN, N.R., 
“Stress softening in rubber 
vulcanizates. Part I. Use of a strain 
amplification factor to describe the 
elastic behavior of filler reinforced 
vulcanized rubber”, J. Appl. 
Polym. Sci. 9, 2993-3009, 1965. 

PDF created with pdfFactory Pro trial version www.pdffactory.com

http://www.pdffactory.com
http://www.pdffactory.com


Eng.& Tech. Journal ,Vol.28, No.13, 2010                       Hyperelastic   Constitutive   Modeling of      
                                                                                               Rubber   and Rubber-Like Materials   
                                                                                                               under  Finite Strain 

                                                                                                                   

 

[5]BOYCE, M.C., ARRUDA, E.M., 
“Constitutive models of rubber 
elasticity: A Review”, Rubber 
Chemistry and Technology, 73, 
504-523, 2000. 

[6]GREEN, A.E., Theoretical 
Elasticity, 2nd Edition, Oxford 
University Press, Ely House, 
London, 1968. 

[7]MASE, G.E., Continuum 
Mechanics, Schaum's Outline 
series, McGraw-Hill, 1971. 

[8] CALVO, B., MARTINEZ, M.A., 
DOBLARE, M., “On solving large 
strain hyperelastic problems with 
the natural element method”, Int. 
J. Numer. Meth. Engng; 62: 159-
185, 2005. 

[9]BAUER, R.F. AND A.H. 
CROSSLAND. “The Resolution of 
Elastomer Blend Properties by 
Stress-Strain Modeling—An 
Extension of the Model to Carbon-
Black-Loaded Elastomers,” 
Rubber Chemistry and 
Technology, Vol. 63, No. 5, pp. 
779-791, 1990. 

[10MOONEY, M, “A theory of large 
elastic deformation”, J. Appl. 
Phys. 11, 582-592, 1940. 

[11]RIVLIN,  R.S., “Large elastic 
deformations of isotropic 
materials IV. Further 
developments of the general 
theory”, Phil. Trans. R. Soc. A241, 
379-397, 1948. 

[12]OGDEN, R.W., “Large elastic 
isotropic elasticity-on the 
correlation of the theory and 
experiment for the incompressible 
rubber-like solids”. Proc. of Roy. 
Soc. London A326, 565-584, 1972. 

[13]GUO, Z., SLUYS, L.J., 
“Application of a new constitutive 
model for the description of 
rubber-like materials under 
monotonic loading”, Int. J. of 

Solids and Struct. 43, 2799-2819, 
2006. 

[14]CHAGNON, G., VERRON, E., 
MARCKMANN, G., and GARNET, 
L., “Development of new 
constitutive equations for the 
Mullins effect in rubber using the 
network alteration theory”, Int. 
Journal of Solids and Structures 
43, 6817-6831,  2006. 

[15]SHI SHOUXIA AND YANG 
JIALING, “Large deformation of 
incompressible rubber cylinder 
under plane strain,” ACTA 
Mechanica Solida Sinica, Vol. 12, 
No. 4, December 1999. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

 

 

 

PDF created with pdfFactory Pro trial version www.pdffactory.com

http://www.pdffactory.com
http://www.pdffactory.com


Eng.& Tech. Journal ,Vol.28, No.13, 2010                       Hyperelastic   Constitutive   Modeling of      
                                                                                               Rubber   and Rubber-Like Materials   
                                                                                                               under  Finite Strain 

                                                                                                                   

 

 

 

 

 

 
Figure 1: Experimental data for simple extension, equibiaxial 

extension, and pure shear [3]. 

 
Figure 2: Treloar [3] simple extension and Mooney-Rivlin model. 
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Figure 3: Treloar [3] simple extension and Ogden model. 
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