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Abstract

This paper is concerned with determining material parameters for
incompressible isotropic hyperelastic strain-energy functions. A systematic
procedure analysis is implemented based on the use of least squares optimization
method for fitting incompressible isotropic hyperelastic constitutive laws to
experimental data from the classical experiments of Treloar [3] on natural rubber.
Two phenomenological condtitutive models are used to fit the experimental data
of naural rubber, these are Mooney-Rivlin and Ogden models. The material
parameters using Mooney-Rivlin are obtained using the linear least squares
method, while for Ogden model the materid coefficients are nonlinear,
consequently the nonlinear least squares approach has been used. In this work the
nonlinear least squares method with trusted region TD have been used using
MATLAB Ver. 7 to find these coefficients. The comparison shows that the present
mathematical formulations are correct and vaid for modeling rubbery materials.
Also it was found that Mooney-Rivlin model is suitable when the deformation is
not to exceed 100%, while Ogden model is more appropriate when deformation
exceed 100%. In addition, as the degree of non-linearity in material behaviour
increases more materid coefficients are required.

Keywords: Constitutive laws, Finite deformation, Incompressible materials, Rubber.
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Nomenclature

e, ,eq e, Strainsinr, q, zdirection m/m
&g ,[eG] Green’s or Lagrangian strain tensor m/m
I Stretch or stretch ratio m/m
! 1 ! 2 ! 3 Principal Stretch's m/m
u Poisson'sratio
So, Sn Engineering stress N/mn?
s True or Cauchy stress N/mn?
B Left Cauchy-Green strain tensor N/mn?
C Right Cauchy-Green strain tensor N/mn?
F Deformation gradient matrix
f Displacement derivative matrix
G Shear modulus N/mm?
Il, |2, I3 Stretch or strain invariants
J Determinant of deformation gradient
Jo Jacobain matrix
p Hydrostatic pressure N/mn?
R Orthogonal rotation tensor
S 1st Piola-Kirchhof stress N/mn?
Si 2nd Piola-Kirchhof stress N/mn?
u Displacements components m
U Right stretch tensor m/m
W Strain energy function
1 Introduction Applications of rubbers include

Rubber or rubber-like materials,
have many engineering applications

solid

medical/dental,

biomechanics,
tires, gaskets, and

due to their wide availability and low
cost. They are aso used because of
their excellent damping and energy
absorption characteristics, flexibility,
resiliency, long service life, ability to
seal againd moisture, heat, and
pressure, and non-toxic. It can be
easily molded into almost any shape.

deformation at a certain frequency or
over a range of frequencies. Typicd
examples of this include tires and
engine mounts. In this type of

engine mounts.

The ability to accurately predict
the mechanical behaviour of rubbery
materials is an important
technological problem that is still far
from being completely understood
[1]. In many applications rubber
components are subjected to cyclic

gpplications the mechanical
properties are often  strongly
dependent on the loading conditions

PDF created with pdfFactory Pro trial version www.pdffactory.com



http://www.pdffactory.com
http://www.pdffactory.com

Eng.& Tech. Journal ,Vol.28, No.13, 201(

Hyperelagic Constitutive Modeling of
Rubber and Rubber-LikeMaterials
under Finite Strain

such as temperature, fregquency,
deformation state, and the
environment. To properly design new
components of rubber material it is
therefore of importance to be able to
model the material behaviour under
different loading conditions.

The unique properties of rubbery
materials are such that [2]:

8 It can undergo large
deformationsunder load.

8 Its load-extension behaviour is
markedly nonlinear.

§ Because it is viscoelastic, it
exhibits  significant  damping
properties.

8 It is incompressible or nearly
incompressible

The non-linear  reationship
between stress and strain of rubbers
can be obtained from the partid
derivative of strain energy functions
with respect to strain or stretch. One
of the mgjor difficulties encountered
by engineers consists in the choice of
a wdl-adapted constitutive model
which satisfactorily reproduces the
large strain or hyperelastic response
of rubbers. Indeed, rubbers exhibit a
time-dependent  behaviour  (creep,
relaxation, and hysteresis) and a
particular stress-softening
phenomenon in the first few cycles,
this phenomenon is known as the
Mullins effect, Mullins and Tobin
[4]. It is the aim of the present work
is to clarify the procedure of
determining material parameters for
incompressible isotropic hyperdastic
strain-energy  functions using two
phenomenol ogi cal congtitutive
models, namely Mooney-Rivlin and
Ogden models. The mathematica
complexities are simplified as
possible for this purpose.

2. Hyperelastic Conditutive
Modeling

The am of the constitutive
theories is to develop mathematical
models for representing the red
behaviour of matter. Historically, two
gpproaches have been developed for
obtaining the strain energy functions
in rubbery materids, or generaly,
elasomers. The first approach is
based on statistical thermodynamic,
where the microscopic molecular
structure of the material is taken into
account. The second is a
phenomenological one, which treats
the materia asacontinuum [3].

Constitutive theories are
mathematical models for
representing the real behaviour of
matter. Nonlinear constitutive theory
is suitable to model finite strains or
hyperelastic materids. Congtitutive
equations are used to describe the
mechanical  behaviour of idea
materials by specification of the
dependence of stress on kinematical
variables such as the deformation
gradient, rate of deformation,
temperature ...etc.

There are several material groups
such as elastomers, polymers, foams
and biologica tissues which can
undergo large deformations without
permanent set, and hence exhibit
large nonlinear elastic behaviour.
The nonlinear elastic  behaviour
under load or prescribed
displacement can be modeled usng
either a physical description of the
molecular interplay through theories
such as the classical Gaussian theory,
dip-link, and macromol ecular
network  theories or by a
phenomenological approach [3]. The
strain energy expression formulated
using a molecular approach is often
complex and materia specific [5]. In
the phenomenologicd  approach,
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material is treated as a continuum
and a strain energy density function
is postulated, usudly in terms of the
deformation invariants, generally
strain or dretch invariants. Severa
material parameters are usudly
needed to reflect the nonlinearity in
the | oad-stretch relati onships.
Typicaly, the load- sretch response
for rubber-like materials will display
S-shaped behaviour with stiffening at
large stretches, as shown in Figure 1.
The number of material parameters
depends on the level of nonlinearity.
3. Congtitutive Equations for
Hyperelastic Material

The strain energy function of
hyperelastic materials is a scdar-
valued function of tensorid
variables. For the homogeneous
isotropic materids, the strain energy
function depends upon only the
deformation gradient F,
W =W (F). The stress tensors of

hyperelastic materials in terms of
Piola-Kirchhoff stresses are derived
from the given strain energy function
as[6]:

_wW(F)
= P (D
and the Cauchy stress tensor as[7]:
[s] =3 lﬂw (2

where J is the determinant of
deformation gradient (or volume
ratio). The strain energy function can
be written in terms of Cauchy-Green
strain tensor W (C). And alternative
expressions for the firs and second
Piola-Kirchhoff stress tensor may be
written as[8]:

s, =2 W(C) © ©)
qC

And in terms of Cauchy stress tensor
as:

5] =23 FEW(C)0

F'.(5
e 1C g ©

4, Congtitutive Equations in
Terms of PrincipalsInvariants

The strain  invariants are
independent of the chosen coordinate
system and can be expressed as
functions of the principal stretches
l1, 12 I3 [7] it can further be
deduced that it is possible to have the
chosen coordinate system axes
aigned with the principal axes with
two of the axes pardlel but opposite
in direction to two of the principal
axes. Therefore in order to aways
obtain positive strain energy vaue
the strain energy function should be
based on the sguare of the principa

stretches, | 2,13,12 .

The square of the principal
stretches 12,1212 are  the
eigenvalues of the left and right
Cauchy-Green tensors B and C
respectively. The non-trivial
solutions (eigenvalues) are obtained
from the following equation:

c-121|=[B-121|=0 ...

This leads to the following cubic
equation:

18- 114 +1,02-1,=0
we(7)

The coefficients of equation (7)
are the strain invariants, and are
expressed as follow:

L=12+12+12=1tr(C)
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L,=1212+41212+132
=>(troy- we?)

(8)

I, =121212 =[] = J°

The constitutive equation for the
isotropic hyperelastic materials may
be expressed in terms of stretch
invariants a W =W (l,1,,1,).
Hence, equation (4), using chain rule,
may be rewritten as:

SHZM(Q

i
_ e, e, w0
LI 1%L 19Ty
The derivatives of the stretch

invariant with respect to Cauchy-
Green strain tensor C are as follows:

(9)

m :_‘Htr(C) =]
ic 1C
m, _ _19tr(C?)
c -5 c  ..(10
=1,l-C
|
L
qic

Substituting equations (10) into
equation (9), the second Piola
Kirchhoff stress tensor can be written
as.

S, =2 —+|1MI|

TR T
_MC+|3MC lg
1“2 1“3 9

In similar approach, the Cauchy
stress tensor can be expressed as:

'Y 1“2 7]
e (12)

where B is the left Cauchy-Green
tensor.

2w s Wwo_ Tw_,0
=2] I—I+§+I—£- B>~
H ]§3ﬂ|3 ﬂll 1ﬂl =

5. Incompressible
Hyperelastic Materials

Incompressible hyperelastic
materials are materials that can
sustain finite deformations with
gpproximately no volume changes,
and only isochoric motions are
possible. For many cases, this is a
common idealization and accepted

assumption  often  invoked in
continuum and compuitational
mechanics. Incompressible
hyperelastic materials are
characterized by the

incompressihility constraint J =1 or
detF=1. In order to derive the
general constitutive equations for
incompressible hyperelastic
materials, the strain energy function
may be expressed as:

W =W (F)- p(J-1) .. (13)

where the scalar p is an indeterminate
Lagrange multiplier which can be
identified as a hydrostatic pressure.

A generd constitutive equation
for the first PiolaKirchhoff stress
tensors is deduced by differentiating
equation (13) with respect to the
deformation gradient F as:

F J
.(14)
- pF—T + T[\N (F)
TF

and the second Piola-Kirchhoff stress
tensors may be expressed as[8],
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T e IV E)
1
w (C)
1C
...(15)

Similarly, for the Cauchy stress
tensor, using (14) as:

W ()
iF

6. Congtitutive Equations in
Terms of Principal Stretches
When the constitutive
relationship is expressed in terms of
the strain energy density function,
W, the stress-stretch behaviour is
found by differentiation with respect
to the stretch. For the case of
incompressibility,  the  principa
Cauchy (true) stresses, o are found
by differentiating with respect to the
principd stretches, 4 [9]:

-pCt'+2—=~

[s] =-pl+—= ..(16)

w
= LA (1
S, "|T|i+p a7

where p is the pressure determined
by satisfying boundary conditions. If

W =W (I,,1,), this may be written

(18)
7. Constitutive Models for
Hypereastic Materials
7.1 Mooney-Rivlin M ode
The earliest significant

phenomenologica theory of large
elastic deformations, which has
played a dominant part in al later
work in the field, is that of Mooney
[10]. Actualy, Mooney's theory was
developed in two forms, a specid

and a general. The theory is based on
the following assumptions:

1. The rubber is
incompressible, and
isotropic in the ungrained
sate;

Hooke's law is obeyed in
simple shear. The more
genera theory is based on

an arbitrary, non-linear,
stress-strain ~ relation  in
shear.

On the basis of these assumptions
Mooney  derived, by purely
mathematical arguments involving
considerations of symmetry, the
strain-energy function

w:c01(|f+|§+|§-3)

1 0..(19)
Cloél > I_Z —- 3=
3 ﬂ
which contains the two €astic
constants cgrand €y

Rivlin [11] generdized the work
of Mooney by putting the strain
energy function in terms of strain
invariants. He took as his basic
assumptions that the material is
incompressible and that it is isotropic
in the unstrained state. The condition
for isotropy requires that the function
W shdl be symmetrical with respect
to the three principal extension ratios

|2, 13, and | 5. Furthermore, since
the strain energy is unaltered by a
change of sign of two of the stretch
ratio | ,, corresponding to a rotation

of the body through 18C, Rivlin
argued that the strain-energy function
must depend only on theeven powers

of the |;. The three simplest

possible even-powered  functions
which satisfy these requirements are
the following:
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—12 2 2
Il_Il-I-IZ-I-IZ-i

—1212 212 2] 2
I2"1'2""2':-;"":-;'1
...(20)
ls=111315
These three expressions, being
independent of the particular choice

of coordinate axes, are termedstrain
invariants. Any more complex even-

powered function of the Ii can

always be expressed in terms of these
three basic forms.

The condition for
incompressibility or constancy of
volume during deformation
introduces the further relation;

l,=1,0,15=1 . (22)
which enables the remaining two

strain invariants to be written in the
form;

—12 2 2
Il_|l+|2+|3

.(22)
I, =2/12+1/12+1/172

The quantities |; and |, may be
regarded as two  independent
variables which are determined by
the three extension ratios (of which,
for an incompressible material, only
two are independent). The generd
Rivlin strain-energy function for an
incompressible  isotropic  dastic
material may therefore be expressed
as the sum of aseries of terms;

¥ ¥ _ _
W zééqj'(ll' 3)I(|2' 3)J

=0 j=0
(23)

involving powers of (I1 - 3) and
(1, - 3). These quantities are chosen
in preference to |, and |, in order
that W shdl vanish automatically at

zero strain (1, =1, =3); for the
same reason Gy=0.

When only the first term is
retained, one obtains;

Wiy = Clo(ll' 3)

which is often cdled the neo-
Hookean model.

7.2 Ogden Model

The Ogden model for incompressible
materials formulate the strain energy
function in terms of principa

stretchesl 4, |5, and | 35. This

model has been shown to be of
excellent accuracy in spite of a
relatively  complicated numerica
reaization [12, 5]. The strain energy
function of this model is expressed
as:

..(24)

¥
W= (2 n3a2-3 (25
I’Flan

U are materid constants and o, are
dimensionless constants (determined
experimentally). For practical
purposes the sum in the Ogden
model, equation (25), is restricted to
a finite number of termsN, where N
is a positive integer, while, for
consistency with linear theory the
parameter p denotes the classical
shear modulus and material constants
U, and oy arerelated by

N
éman:Zm ....(26)

n=1

The principal Cauchy  stresses
corresponding to the strain energy
function (25) are of the form

J
si=amli-p
n=1
..(27)
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where p is an arbitrary hydrostatic
stress. The indeterminacy associated
with the arbitrary pressure p is a
consequence of the assumption of
incompressibility and does not
appear in the equations for the
differences of principd stresses.
These are of the form;

=am(r-1y)
" (28)

8. Stress Matrix Using Mooney-
Rivlin Mode

The compressble form of
Mooney-Rivlin materid model is as

[5]:
w=e - 3+, ?)+ K(3-1f

The 2™ Piola-Kirchhoff stress can be
written as follows [8]:

_w _,w

S, =2— ... 30
e, C9C (30)
Differentiating equation (29),
w_ i, T, 17
—= +K 1
fC = Goqe Fonge tKO-Bee
.. (31

The partial differentials of |, and

|, areasfollows:

m, |36?-—|Cl° (32
1C e 3 a

and,

v 2 ..
&:|33§1| _c-2c0
|[@ e 3 [}

..(33)

Substitute equations (32) and (33)
into (31) gives:

w

= |36F IClO
1iC Cms@ 3 p

+Cm|338?| _él Clo

(7]
K :
+E(J' ])|3C

Rearranging,

§J3 -H:E)l 3' —I

1 24
—q0|33C §QO|1 3+ (61|2|33‘+C1
a9

7K -1ct
ks

Hence, the 29 Piola-Kirchhoff stress
may be written as:

®e ! 20
SII :ﬁ:mlss +C01|33|1i|
a9
2 1 2 A
£ = -£0
- 2:10|33C' ac?Lollls3 +—2C‘01|2|331Cl
3 2}
+KJ(3-1c?
Or as;

S, =Bl - BC- BC'+K J(J-1)C*(36)
Where:

®e -1 2.0
81:2§010|33+C01|33|1i
a9
.2
Bzzzcmls3
& oo 24
Bz:2§_010|1|33+_C01|2|33i
3 3 5
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9. Calibration and Numerical
Examples

9.1 Fitting M ooney-Rivlin
Material Mode to Experimental
Data

The incompressible form of Mooney-
Rivlin material model isas:

W =cpll2+12+12-3)

® 1 1 0
Feuf Tt 32
|1 3 a
..(37)

For the case of uniaxial tension
or uniaxia compression the change
in strain energy can be expressed in
terms of the work done by externa
forces:

wW=fd, .. (38)

where f; is the force acting on the
specimen.

Equation (38) can be written in
variational form as:
5
dW =¢——=dl, ....(39)
g
Differentiating equation (37) with

respect to dl | gives:

1
W 2c,l ;- 2C— ----(40)

T” 1 l 1

For the case of incompressibility, the
principd Cauchy (true) stresses, o

are given by equation (17), therefore
using equation (40), the true stresses
can be written as:

é 1u
S, =28l - c01|—zg+ P ....(41)

e iu
Thus for smple uniaxial tension and

complete incompressibility |, =1

—1-1/2

and |,=15= For this

special case S,=S5;=0,
therefore, from equation (41) an

expression for the hydrostatic
pressure can be obtained as:

- .
p:-zgﬁml—- Col E - (42)

Substituting equation (42) into
equation (41) gives:

16é u
=oF2. =%+l (43
ST E T ™

In order to best fit the
experimental data to the constitutive
model coefficient, the least sguares
goproach has been used, writing
equation (43) as[2]:

S =ACc,+tBcCcy ....(44)

Applying the least squares
goproach to the error between the
empirical test data and the analytica
expression given by equation (44),
hence:

N
Error=q[AGo+B G-, ..(45
i=1
)
Therefore:
SError

N
=a4Ac,+Bg,-s|A=0
Tbm gELQLo ch |]|

...(46)
and,
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N
TBIrOL 8 4A G, +B 65 B =07)
Ttt)l i=1
Equation (46) and equation
....(47)

can be written in amatrix form

€AX AABUSH QAs U
248 &8 & @esg
Solving for ¢;p and ¢y leadsto:

_ass 8- aBs AR
axAE-(anef
....(49)

0

And,
_aAAaBs - 34 BAB
8 A (&aef

From the experimental data of
Treloar [3], Figure 1, the Mooney-
Rivlin coefficient ¢, and ¢;o can be
found using the above mentioned
procedure. Fitting these data to that
of Treloar simple extension, the
coefficients of Mooney-Rivlin mode
are 0.03168 and 0.03470,
respectively. Figure2 shows the plot
of both data of Treloar [3] and fitted
curve of Mooney-Rivlin model. The
maximum error deviation is 8%.
When stretch ratio is less than 2, i.e.
the extension is less than 100%, the
maximum error deviations is less
than 0.5 %. Therefore this model is
more suitable for small to moderate
deformations.

9.2 Fitting Ogden Material Modé
to Experimental Data

.(50)

1

A very sophisticated development for
simulating incompressible rubber-
like materials in the
phenomenological contest is due to

Ogden. The postulated strain energy
is a function of the principal stretches
i, i=1, 2, 3 is computationaly
simple, and plays a crucia role in the
theory of finite elasticity and has the
form:

¥
W=g a1y
nzlan
For the case of simple tension,
let | ;=1 be the stretch ratio in the
direction of elongation and s;=s
be the corresponding Cauchy
stress. Here, s,=55=0. From

incompressihility constraint,
| =1 5=1 Y2, Hence,
S =S, =| iM+ p
1,
3 a
=aml®+p
n=1
....(5Y
For s,or s3
N
Ozé n,.hl -an/2+ p
n=1
Eliminating p,

s :g m(l an | 'a”’z) ..(52)
n=1

For the case of pure shear,
one of the principa extenson
ratios is fixed, say | i=1. Setting,
| =1 3=I %, therefore,

& a
s;=aml™+p,

n=1

N
S,=am+p,

n=1

N

0= ml *+p,ad

n=1
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For the case of equibiaxial
tension, two principal stresses are
equal, s,=s3;=s while the third is
zero. Correspondingly, | =1 s=I,
and 1.,=12 . As before
elimination of p yields

s =amfe-12)

n=1
.. (54)

Best fitting of the experimenta
data to Ogden constitutive model are
not draight forward, because the
coefficients are nonlinear, therefore
the nonlinear least squares approach
has to be used. In this work
MATLAB ver. 7 with trusted region
TD has been used to find these
coefficients. Hence the resulted
fitting is plotted against Treloar
experimental  work, as shown in
Figure 3.

10. Conclusions

Hyperelastic constitutive model
predict the mechanical response of
rubbery materia in the equilibrium
state. There are many constitutive
models available in literatures, the
more suitable constitutive model is
that the one which represents the red
behaviour of matter under different
loading conditions. In this work two
condtitutive  model  are  used:
Mooney-Rivlin and Ogden materid
congtitutive models. From which the
following conclusions have been
deduced:

1 Using Mooney-Rivlin, the
material parameters are linear;
therefore, the linear least squares
method has been used. While

nonlinear least squares approach
has been used for Ogden model
because the materia coefficients
are nonlinear.

2. The present mathematical
formulations are proved to be
correct and valid for modeling
rubbery materiadls behaviour via
comparing the results with that of
Treloar [3] experimenta data on
natural rubber. The comparison
shows good agreement and the
validity of the present
formulations have been confirmed.

3. The andysis shows that Mooney-
Rivlin model is simple and more
suitable when the deformation is
not to exceed 100%. Whereas, for
more extreme conditions, when
deformation exceed 100%, the
Ogden model is more suitable.

As a fina point, the number of
required materia  coefficients
(terms) is increased as the degree
of non-linearity in  materia
behaviour increases.
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Figure 1: Experimental data for simple extension, equibiaxial

extension, and pure shear [3].
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Figure 2: Treloar [3] simple extension and M ooney-Rivlin model.
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Figure 3: Treloar [3] simple extension and Ogden model.
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