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Abstract 

Let R be a ring with identity and M be an R-module with unity. In this paper we introduce the 

notion of C-coretractable modules. Some basic properties of this class of modules are investigated 

and some relationships between these modules and other related concepts are introduced. Also, we 

give the notion of strongly C-coretractable and study it comparison with C-coretractable. 
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Introduction 

Throughout this paper all rings have 

identities and all modules are unital right R-

modules. A module M is called coretractable 

if for each a proper submodule N of M, there 

exists a nonzero R-homomorphism 

f:M/N→M [4], and an R-module M is called 

strongly coretractable module if for each 

proper submodule N of M, there exists a 

nonzero R-homomorphism f:M/N→M such 

that Imf+NM [10]. It is clear that every 

strongly coretractable module is coretractable 

but it is not conversely, in [11], [12], [13] and 

[14] have more information of these 

concepts.In this paper, we introduce the 

notion of C-coretractable module where an R-

module M is called C-coretractable module if 

for each proper closed submodule N of M, 

there exists a nonzero homomorphism 

f HomR(M/N,M).This work consists of two 

sections, in section one we study some basic 

properties of C-coretractable modules. A 

characterization of these modules are given 

where we prove that a direct sum of two C-

coretractable modules is also C-coretractable 

(Theorem1.10).  

Also we prove that the isomorphic image 

of C-coretractable is again C-coretractable, 

but a submodule of C-coretractable module 

may be not C-coretractable and the same 

thing with respect to direct summand and 

quotient, see Remark (1.2(11)), also we study 

this concept with other related modules as 

multiplication, self-generator and Noetherian 

comultiplication. In section two, we introduce 

and study strongly C-coretractable modules 

where an R-module M is called strongly C-

coretractable module if for each proper closed 

submodule N of M, there exists a nonzero 

homomorphism fHomR(M/N,M) such that 

Imf+NM and clear that every strongly C-

coretractable is C-coretractable. Many 

relationships between strongly C-

coretractable modules and other concepts are 

presented. Finally, in section three the 

concept of mono-c-coretractable where an R-

module M is called mono-C-coretractable if 

for each proper closed submodule of M, there 

exists fEndR(M), f0 and Nker f. 

 

1. C-Coretractable Modules 

In this section, we introduce a 

generalization of coretractable namely C-

coretractable and we investigate many 

properties of these concepts. 

 

Definition (1.1): 

An R-module M is called C-coretractable 

module if for each proper closed submodule 

N of M, there exists a nonzero 

homomorphism fHomR(M/N,M). A ring R 

is called C-coretractable if R is C- 

coretractable R-module. 
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Examples and Remarks (1.2): 

(1) An R-module M is C-coretractable if for 

each proper closed submodule N of M, there 

exists gEndR(M), g0 and g(N)0. 

Proof: It is clear by [11]. 

(2) It is clear that every coretractable R-

module is C-coretractable. But the converse is 

not true in general. For example, Q as Z-

module is C-coretractable, since it has only 

two closed submodules (0) and Q. But Q is 

not coretractable module. Also the Z-module 

Z is C-coretractable, but it is not 

coretractable. 

(3) Every extending R-module is C-

coretractable. Where an M is called extending 

if every submodule of M is essential in a 

direct summand. Equivalently, M is extending 

module if each closed submodule is direct 

summand [8]. 

Proof: Let N be a proper closed submodule of 

M. Since M is extending module, then 

N  M, hence MN K for some KM and 

so M/N K, thus there exists an isomorphism 

g:M/N K. Define fiog and f0 where i is 

the inclusion mapping. Therefore M is a C-

coretractable module. 

(4) C-coretractable module need not be 

extending, for example: consider the Z-

module MZ8 Z2 is not extending Z-module 

since N<( ̅, ̅)> is closed, but it is not a 

direct summand of M. Note that all proper 

closed submodules of M are: N1<( ̅, ̅)>, 

N2= <( ̅, ̅)>, N3<( ̅, ̅)>, N4= <( ̅, ̅)>, N5 

<( ̅, ̅)> and N6<( ̅, ̅)>. But each of N1, N2, 

N3, N4 and N5 are direct summand 

submodules of M, since N1 MN2 N3 

N4 N5M.Hence there exists fi: M/Ni → M, 

fi0 and i1,2,3,4,5.Now, take N=<( ̅, ̅)> 

{( ̅, ̅), ( ̅, ̅), ( ̅, ̅), ( ̅, ̅) }, M/N{( ̅, ̅)+N, 

( ̅, ̅)+N, ( ̅, ̅)+N, ( ̅, ̅)+N}. Define  

f:M/N→M by f(( ̅, ̅)+N)(  ̅, ̅) for all 

(( ̅, ̅)+N)M/N, then it is clear that f is a 

nonzero Z-homomorphism. Thus M is C-

coretractable. 

(5) It is known that every quasi-injective ( or 

π-injective) module is extending module see 

[6, Proposition(7.2), P.55]. Hence every 

quasi-injective (or -injective) module is C-

coretractable by part (3). Where "An R-

module M is called π-injective if f(M) M for 

each idempotent f of E(M)" [6]. 

(6) The quasi-injective hull of any R-module 

M is C-coretractable module.  

Proof: It follows directly by part (5). 

(7) Every semi simple module M is a 

coretractable and hence M is a C-

coretractable. 

(8) Every uniform module is a C-

coretractable. 

Proof: Since M is a uniform module, hence 

M is extending by [3, Proposition (1.12), 

P.10] and hence M is a C-coretractable. 

(9) It is obvious that every simple closed 

module is C-coretractable, but not conversely. 

Wherea module M is called simple closed if 

M has only two closed submodules which are 

(0) and M [2]. However the Z-module 

MZ8 Z2 is C-coretractable module by part 

(4) and it is not simple closed. 

(10) The isomorphic image of C-coretractable 

R-module is also C-coretractable. 

Proof: Let M M' and M is C-coretractable 

module,there exists an isomorphism 

f:M M'. Let W be a proper closed 

submodule of M'. Then Nf
1

(W) is proper 

closed submodule of M. Since M is C-

coretractable module. then there exists 

gEndR(M), g0 and g(N)0.Now, the 

mapping f◦g◦f
1 EndR(M'). Moreover, 

f◦g◦f
1
(M')=f◦g(f

1
(M'))f◦g(M)f(g(M)). But 

g(M)  0 and f is an isomorphism, so that 

f(g(M))0. Thus f◦g◦f
1

(M')0. Also 

f◦g◦f
1

(W)f◦g(f
1

(W))f◦g(N)f(g(N))f(0) 

0. Therefore M' is C-coretractable module. 

(11) C-coretractability is not preserved by 

taking submodules, factor modules and direct 

summands, since for any R-module M and a 

cogenerator R-module C, C M is a 

cogenerator by [4], and so C M is a 

coretractable module. Thus C M is C-

coretractable, but M need not be C-

coretractable. Where an R-module M is called 

cogenerator if for every nonzero 

homomorphism f:M1→ M2 where M1 and M2 

are R-modules,             g:M2→M such 

that g◦f0. 

 

Proposition (1.3): Let N be a direct summand 

submodule of a C-coretractable R-module M. 

If N is a fully invariant submodule of M. 

Then N is C-coretractable. 

Proof: Since N is a direct summand of M, so 

there exists a submodule W of M such that 
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N W=M. Let K be a proper closed 

submodule of N, then K W is a closed 

submodule in N WM. Since M is a C-

coretractable module, so there exists 

f EndR(M), f0 and f(K  W)0. Suppose 

that g is a restriction map from N into M, g≠0. 

Also N is fully invariant direct submodule. 

Then N is stable module [1, Lemma(2.1.6)]. 

So g(N) N. Therefore g EndR(N), g0. 

g(K)f|N(K)0. Thus N is a C-coretractable. 

 

Corollary (1.4): Let N be a direct summand 

submodule of duo R-module M. If M is a C-

coretractable. Then N is also C-coretractable. 

Proof: Since every submodule of duo R-

module is fully invariant. Therefore the result 

follows directly by Proposition (1.3). 

 

Proposition (1.5): Let N be a direct summand 

submodule of a C-coretractable module M. If 

N cogenerates M. Then N is a C-

coretractable. 

Proof: Suppose N cogenerates M, so there 

exists g HomR(M,N), g0. Let K be a closed 

submodule of N. Since N is direct summand 

of M, then N WM for some a submodule 

W of M. So K W is closed submodule in 

N WM. Then there exists f  EndR(M), 

f0, f(K W)0 (Since M is C-coretractable 

module M), hence g◦f0, Let h be a restriction 

of g◦f on N, so h EndR(N) and h(K)  g(f(K)) 

 0. Therefore, N is a C-coretractable. 

 

Proposition(1.6): Let M be an R-module. If 

M is quasi-Dedekind module. Then M is a C-

coretractable module if and only if M is a 

simple closed module. 

Proof: ( ) Let N be a proper closed 

submodule of M. Since M is C-coretractable 

module, then there exists f EndR(M), f0 and 

f(N)0 ; N kerf. As M is a quasi-Dedekind 

module, f is monomorphism, hence kerf0. 

Thus N0 and hence M is simple closed 

module. 

( ) It follows directly by Examples and 

Remarks (1.2(8)). 

Note that simple closed module need not 

be quasi-Dedekind, for example Z4 as Z-

module is simple closed, but not quasi-

Dedekind. Recall that an R-module M is 

called C-Rickart if kerf is closed submodule 

of M for all f EndR(M). 

 

Theorem (1.7): Let M be a C-Rickart module, 

then M is a coretractable module if and only if 

for all proper submodule K of M, there exists 

a proper closed submodule W of M such that 

K W and M is C-coretractable module. 

Proof: ( ) It is clear that M is C-

coretractable module.Now, let K be a proper 

submodule of M. Since M is coretractable 

module, then there exists a nonzero R-

homomorphism f:M M,f(K)0; that is 

K kerf. But M is a C-Rickart module, so kerf 

is a closed submodule of M. As f0, kerfM 

and hence kerf is a proper closed submodule 

such that kerf M. 

( ) Let K be a proper submodule of M. By 

hypothesis there exists a proper closed 

submodule W of M such that K W. Since M 

is C-coretractable module, there exists a 

nonzero hence f EndR(M) such that f(W)0. 

This implies that f(K)0, and so M is a 

coretractable module. 

Recall that an R-module M is called 

purely extending if every submodule is 

essential in pure submodule. Equivalently, M 

is purely extending if and only if every closed 

submodule is pure in M [3]. 

 

Proposition (1.8): Let M be a purely 

extending R-module. Then the following 

assertion hold: 

(1) If M is Noetherian projective, then M is a 

C-coretractable module. 

(2) If M finitely generated flat module over 

Noetherian ring, then M is a C- 

coretractable module. 

Proof: As M is a purely extending module, 

then every closed submodule is pure by 

[3,Theorem(2.2), P.39]. 

(1) As M is Noetherian projective module, 

hence every pure submodule is a direct 

summand of M by [7, Proposition (2.11), 

P.63], and hence M is extending. and so M 

is C-coretractable module.  

(2) Since M is finitely generated flat module 

over Noetherian ring, then every pure 

submodule is a direct summand of M by 

[7, Proposition (2.10), P.62], and hence M 

is extending. Thus M is C-coretractable. 
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Corollary (1.9): If R is Noetherian purely 

extending ring, then R is a C-coretractable. 

Proof: Since R is projective, then the result 

follows directly by Proposition (1.8). 

Recall that "An R-module M has the 

closed intersection property (briefly CIP) if 

the intersection of any two closed submodules 

is again closed" [2]. 

 

Theorem (1.10): Let {Mα :  I} be a family 

of C-coretractable R-module. If for any ,   

I, Mα is Mβ-injective and M α   α such 

that M has CIP. Then M is C-coretractable 

module. In particular, if M is a quasi-injective 

and satisfy CIP, then  α   α (where MMα 

for all  I) is C-coretractable. 

Proof: Let K be a proper closed submodule of 

M, then there exists    I such that Mβ K. 

Since M satisfies CIP and Mβ is closed in M, 

so K Mβ is proper closed in M. But K Mβ is 

a proper submodule in Mβ and Mβ is C-

coretractable module. Thus there exists a 

nonzero homomorphism f:Mβ/ K  Mβ→Mβ. 

Now, the natural map g:Mβ/(K Mβ)→M/K 

(Which is defined by g(x+(K  Mβ))x+K for 

all x  Mβ M) is a monomorphism. As Mβ is 

Mα-injective for any  I by hypothesis, Mβ is 

M/K-injective by [5, Proposition (16.13)], so 

there exists h:M/K→Mβ such that h◦gf, 

hence 0i◦h HomR(M/K,M), where i: 

Mβ→M is the natural inclusion. Thus M is C-

coretractable. 

Now by applying Theorem (1.10) we 

give the following examples  

(1) Let M α   α (where Qα =Q for all α I). 

As Q is quasi-injective and satisfy CIP, 

then M is C-coretractable. 

(2) Let M α   α (where Mα    for all 

α I). As     is quasi-injective and satisfy 

CIP, then M is C-coretractable. 

Theorem (1.11): Let M α   α, where Mα 

is an R-modules for all  I such that every 

closed submodule of M is fully invariant 

submodule. If Mα is C-coretractable module 

for all  I, then M is a C-coretractable 

module. 

Proof: Let N be a proper closed submodule of 

M. Since N is fully invariant submodule of M, 

N α   α  Mα. Set N MαNα for all α I. 

Then N α   α. Now Nα  N, so Nα is 

closed in N, but N is closed in M. Also, as N 

is proper submodule of M, there exists at least 

one αi,Nαis proper submodule of Mα. But Mα 

is C-coretractable, so there exists 

 α :Mα/Nα→Mα and fα0. As M/N 

 α    α/Nα). Define h:M/N→ α 
 by 

h(m+N) α ( α 
+ α ) for any 

m α   α  M. Then h0 and 

gi◦h:M/N→M, g0. 

 

Theorem (1.12): Let M1 and M2 be R-

modules, MM1 M2, such that 

ann(M1)+ann(M2)R. If M1 and M2 are C-

coretractable module, then M is a C-

coretractable module. 

Proof: Let N be a proper closed submodule of 

M. Since ann(M1)+ann(M2)R, then 

NN1 N2 for some submodules N1 and N2 of 

M1 and M2 respectively. Hence by a similar 

argument of [10, Theorem (2.8)], M is C-

coretractable module. 

Recall that an R-module M is called quasi-

Dedekind if every proper nonzero submodule 

N of M is quasi-invertible where a submodule 

N of M is called quasi-invertible if 

HomR(M/N,M)0 [15]. Also every 

nonsingular coretractable R-module is semi 

simple see [4]. However this result cannot be 

generalized for C-coretractable module. For 

example, Z as Z-module is nonsingular C-

coretractable R-module, but it is not 

semisimple. However we have the following: 

 

Remark (1.13): If M is nonsingular and 

quasi-Dedekind module, then M is simple 

closed and hence M is a C-coretractable 

module. 

Proof: Suppose that there exists a nonzero 

proper closed submodule N of M. Hence N is 

quasi-invertible submodule since M is quasi-

Dedekind, then by [15, Proposition (3.13), 

P.19], then N is an essential submodule of M 

which is a contradiction. Thus M is a simple 

closed module. 

We need recall that an R-module M is 

called multiplication if for each submodule N 

of M, there exists a right ideal in R such that 

MIN [6]. 

 

Proposition (1.14): Let M be a multiplication 

R-module. Then M is a C-coretractable 

module. 
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Proof: Let N be a proper closed submodule of 

M. Then if N0, then there exists f:M/N →M 

and f0. If N0, then N is not essential since 

N is closed submodule of M and so N is not a 

rational submodule of M; that is M is not 

rational extension of N. Hence N is not quasi-

invertible submodule of M by [15, 

Proposition (3.9), P.18], so that 

Hom(M/N,M)0. Therefore M is a C-

coretractable module. 

The converse of Proposition (1.14) is not 

true in general, since for example Q as Z-

module is C-coretractable module, but it is 

not multiplication module. 

It is known that every cyclic module over 

commutative ring R is a multiplication 

module. Hence we have the following 

directly: 

 

Corollary (1.15): Let M be a cyclic module 

over commutative ring R, then M is a C-

coretractable module. 

 

Corollary (1.16): If R is a commutative ring 

with unity, then R is a C-coretractable. 

Recall that an R-module M is called self-

generator if for every submodule N of M, 

N∑      , where f Hom(M,N) [5,P.241]. 

 

Proposition (1.17): Let M be a self-generator 

duo R-module. Then M is a C-coretractable 

module. 

Proof: Let N be a nonzero proper closed 

submodule of M. Hence N is not essential 

submodule of and hence N is not rational 

submodule of M. Thus M is not rational 

extension of N. Then by [15, Proposition 

(3.14), P.20], N is not quasi-invertible ; that is 

Hom(M/N,M)0. Thus M is a C-coretractable 

module. 

 

Proposition (1.18): Let M be a Noetherian 

comultiplication R-module. Then M is an 

extending and hence it is C-coretractable 

module. 

Proof: Since M is a Noetherian 

comultiplication R-module, then M is an 

Artinian quasi-injective, but M is quasi-

injective implies that M is extending module. 

Thus M is a C-coretractable module. 

 

 

2. Strongly C-Coretractable Modules 

In this section, we introduce and study 

the concept of strongly C-coretractable 

module. Many important properties are given. 

Definition (2.1): An R-module M is called 

strongly C-coretractable module if for each 

proper closed submodule N of M, there exists 

a nonzero homomorphism f HomR(M/N,M) 

and Imf +NM.Equivalently, M is a strongly 

C-coretractable R-module if for each proper 

closed submodule N of M, there exists 

g EndR(M), g0, g(N)0 and Imf+NM. A 

ring R is called strongly C-coretractable if R 

is strongly C-coretractable R- module. 

 

Examples and Remarks (2.2):  

(1) Every strongly coretractable module is a 

strongly C-coretractable module. But the 

converse is not true in general. For example 

Consider Z12 as Z-module the only proper 

closed submodules of Z12 are ( ̅), ( ̅) and ( ̅) 

(Which are direct summand of Z12), hence Z12 

is strongly C-coretractable but Z12 is not 

strongly coretractable. 

(2) Every strongly C-coretractable module is 

a C-coretractable. However we claim the 

converse is not true in general. But we have 

no example. 

(3) Every semisimple module is a strongly 

C-coretractable since every semisimple is a 

strongly coretractable module and hence 

strongly C-coretractable by part (1). 

(4) Every simple closed module is a strongly 

C-coretractable. 

(5) Every extending R-module is a strongly 

C-coretractable module. In particular, MZ
(n)

 

as Z-module; MZ  Z  Z …  Z (n-time). 

(6) The quasi-injective hull of any R-module 

M is a strongly C-coretractable. 

Proof: It is clear by part (5). 

(7) Every Noetherian comultiplication R-

module M is a strongly C-coretractable. 

Proof: By Proposition (1.18), M is extending 

module. Thus M is strongly C-coretractable 

module by part (5). 

(8) If M be a faithful multiplication module 

over extending ring, then M is a strongly C-

coretractable module. 

Proof: By [3, Proposition (3.5), P.26], M is 

an extending R-module. Hence M is strongly 

C-coretractable. 
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Proposition (2.3): Let M M' where M is a 

strongly C-coretractable R-module. Then M' 

is a strongly C-coretractable R-module. 

Proof: Since M M', so there exists f:M M' 

be an R-isomorphism. Let W be a proper 

closed submodule of M'. Then Nf
1

(W) is 

proper closed submodule of M. Since M is 

strongly C-coretractable module. So there 

exists a nonzero R-homomorphism h:M/N   

M such that h(M/N)+NM, and hence by the 

same argument proof of [9, Proposition 

(2.1.4)], we get M' is a strongly C-

coretractable. 

 

Proposition (2.4): Let M be a strongly C-

coretractable R-module and N be a proper 

closed submodule of M, then M/N is strongly 

C-coretractable too. 

Proof: Let W/N be a proper closed 

submodule of M/N. Since N is closed 

submodule of M, so W is closed submodule 

of M. But M is strongly C-coretractable 

module, hence there exists a nonzero R-

homomorphism g:M/W M and g(M/W)+W 

M. And hence by the same argument of proof 

of [10, Theorem (2.1.5)] we can get M/N is 

also strongly C-coretractable. 

 

Corollary (2.5): Let N be a direct summand 

submodule of strongly C-coretractable R-

module M, then N is a strongly C-

coretractable module. 

Proof: Since N is a direct summand 

submodule of M, so there exists submodule 

W of M such that N WM. Thus M/W is 

strongly C-coretractable by Proposition (2.4). 

But M/W N so that N is also strongly C-

coretractable module by Proposition (2.3). 

Recall that "If R is a principal ideal 

domain, then any finitely generated torsion 

free module over R is extending module" [16, 

Proposition (1.2.4), P.11], hence we can 

obtain the following proposition directly. 

 

Proposition (2.6): Let M be a finitely 

generated torsion free module over principal 

ideal domain. Then M is a strongly C-

coretractable module. 

 

Example (2.7): Each of the Z-module Z Z 

and M2×2(Z), where M2×2(Z) is the set of all 

22 matrices whose entries in Z are strongly 

C-coretractable module. 

 

Proposition (2.8): Let R be a strongly C-

coretractable ring and M be a faithful cyclic 

R-module, then M is strongly C-coretractable 

module. 

Proof: Let R be a strongly C-coretractable 

ring, MmR for some m  R. Then R mR 

since M is faithful cyclic module. But R is 

strongly C-coretractable. So M is strongly C-

coretractable by Proposition (2.3). 

 

3. Mono-C-Coretractable Modules 

As a generalization of C-coretractable, 

we present a class of modules in the class of 

C-coretractable modules. We study and 

investigate some properties of this concept. 

 

Definition (3.1): An R-module M is called 

mono-C-coretractable if for each proper 

closed submodule of M, there exists 

f EndR(M), f0 and Nkerf. 

 

Examples and Remarks (3.2): 

(1) A module M is mono-C-coretractable if 

and only if for each proper closed submodule 

N of M, there exists a monomorphism f from 

M/N into M. 

Proof: ( ) Let N be a proper closed 

submodule of M. Since M is mono-C-

coretractable module, so there exists 

f EndR(M), f0 and Nkerf. Define 

g:M/N→M by g(m+N)f(m) for all m M. It 

is clear that g is well-defined homomorphism 

and g0 since f0.Kerg{m+N M/N : 

g(m+N)0}{m+N M/N:f(m)0}{m+N M

/N:m  kerf}{m+N M/N:m  N}N. Thus g 

is monomorphism. 

( ) Let K be a proper closed submodule of 

M. By hypothesis there exists f:M/N→M, f is 

monomorphism. Take f◦π End(M) and 

f◦π(M)f(π(M))f(M/N)0. Now, ker(f◦π)  

{m  M : f◦π(m)=0 }{m  M: f(m+N)0}  

{m  M : m   N }N. Then ker(f◦π)N. 

(2) Every mono-coretractable module is 

mono-C-coretractable. But the converse is not 

true in general. For example, the Z-module Z 

is mono-C-coretractable since the only proper 

closed is (0) and the only nonzero 

endomorphism is the identity f:Z→Z, kerf0 
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and hence Nkerf, but it is not mono-

coretractable since it is not coretractable. 

(3) Every simple closed module is mono-C-

coretractable. But the converse is not true in 

general. For example, the Z-module Z6 is 

mono-C-coretractable by part (2), but it is not 

simple closed. 

(4) Every mono-C-coretractable module is a 

C-coretractable, but the converse is not true in 

general. 

(5) Every semisimple module is mono-

coretractable and hence it is mono-C-

coretractable by part (3). But the converse is 

not true in general. For example, the Z-

module Z4 is mono-C-coretractable, but it is 

not semisimple. 

(6) Let M be an R-module. If M is a quasi-

Dedekind mono-C-coretractable, then M is a 

simple closed. 

Proof: Since every mono-C-coretractable is 

C-coretractable, then the result is obtained by 

Proposition (1.6). 

 

Proposition (3.3): Let M be a Rickart R-

module. Then M is a mono-C-coretractable if 

and only if an extending. 

Proof: ( ) Let N be a proper closed 

submodule of M. Since M is mono-C- 

coretractable, then there exists f EndR(M), 

f≠0 and Kkerf, but M is a Rickart, hence 

kerf is a direct summand of M for each 

f EndR(M) and hence M is extending 

module. 

( ) It is clear. 

 

Proposition (3.4): Let M be a strongly 

Rickart R-module. Then M is a mono-C-

coretractable if and only if an extending fully 

stable. 

Proof: ( ) Let N be a proper closed 

submodule of M. Since M is mono-C- 

coretractable, then there exists f EndR(M), 

f0 and Nkerf, but M is a strongly Rickart, 

hence kerf is a stable direct summand of M 

for each f EndR(M) and hence N is a stable 

direct summand of M. Thus M is extending 

fully stable module. 

( ) It is clear. 

 

Proposition (3.5): Let M be a mono-C-

coretractable fully stable R-module. Then 

every nonzero closed submodule of M is also 

mono-C-coretractable module. 

Proof: Suppose that N is a nonzero closed 

submodule of M. Let K a proper closed 

submodule of N, so K is closed submodule of 

M. But M is a mono-C-coretractable module, 

then there exists f EndR(M), f0, f(K)=0 and 

Kkerf, so if f(N)0, then N kerfK so NK 

which is a contradiction. Thus f(N)0. Let g 

be the restriction map of f on N. Since M is 

fully stable, so g(N)  N. Hence g EndR(N) 

and g0 since g(N)f(N)0. Moreover 

g(K)f(K)0, so K kerg kerfK. Thus 

Kkerg. 

 

Proposition(3.6): Let M be a quasi-Dedekind 

R-module, then M is a strongly C-

coretractable if and only if M is a mono-C-

coretractable. 

Proof: ( ) Since M is a strongly C-

coretractable, then M is C-coretractable and 

hence it is simple closed, by Proposition(1.6). 

Thus M is mono-C-coretractable. 

( ) Let M be a mono-C-coretractable. As M 

is a quasi-Dedekind, so M is a simple closed 

and hence M is strongly C-coretractable. 

 

Proposition (3.7): Let M be a quasi-Dedekind 

R-module, then the following statements are 

equivalent: 

(1) M is strongly C-coretractable; 

(2) M is C-coretractable; 

(3) M is simple closed; 

(4) M is mono-C-coretractable. 

Proof: (1) (2) It follows by Examples and 

Remarks (3.2(2)), (2) (3) It follows by 

Proposition (1.6) since M is a quasi-Dedekind 

module, (3) (4) It follows by Examples and 

Remarks (3.2 (3)) and (4)   (1) It follows by 

Proposition (3.6). 
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