

Kirkuk Journal of Medical Sciences

REVIEW ARTICLE

Noise Pollution; The Silent Threat for Materno-Fetal Health: A Narrative Review

Wassan Nori 🛯 , Amenah Fadhil 🖓 , Ehab T. Yaseen 🕬 ,

¹Department of Obstetrics and Gynecology, College of Medicine, Mustansiriyah University, Baghdad, Iraq ²Unit of Otolaryngology, Department of Surgery, College of Medicine, Mustansiriyah University, Baghdad, Iraq.

*Corresponding author email: dreh_ent@uomustansiriyah.edu.iq

Received: 12 August 2024 Accepted: 22 October 2024 First published online: 13 January 2025

DOI:10.32894/kjms.2024.152763.1122.

ABSTRACT

Noise exposure was linked to any adverse health issues. The impact of noise on pregnancy and fetal outcomes was also reported. However, the reported evidence was inconsistent, and many times they were contradictory. Four electronic databases were searched for this review following the keywords (noise, environmental, occupational, maternal adverse effects, fetal adverse effects, preeclampsia, low-birth weight, preterm labor, gestational diabetes, gestational hypertension, and stillbirth). Inclusion criteria were studies published in English for the last ten years. Analysis showed wide diverse heterogeneity in the result and the significance level, and no firm conclusion can be reached. Many factors could have led to this discrepancy: inconsistent gestational age, non-standardized noise threshold and exposure time, and many co-variants. The current review highlights an important and overlooked subject that is vitally essential to raise awareness about. The topic interests pregnant and health policy to make informed decisions for the environment and update local health regulations.

Key words: Noise; Maternal Health; Fetal Health.

INTRODUCTION

ollution is a worldwide problem for air, water, or noise. Noise is defined as any sound that disturbs the environment, whether unpleasant or excessive [1]. Noise exposure was linked to several public health problems, including stress, depression, heart and vascular disease, and cognitive and mental health illness [2, 3]. Noise adverse effects had expanded to include vulnerable pregnant and in-utero babies. Noise pollution can be caused by a variety of sources, as illustrated in Table 1. While often underestimated, it is a prevalent consequence of modern life [1]. Moreover, the threshold that defines noise is not unified across the literature, as shown in Table 2.

The global incidence of noise is rising; in America, many members of the general population are exposed to high noise levels. likewise, in Europe, the level of noise they are exposed to exceeds 55dB. The situation in Asia and Africa is similar, especially in urban areas. It is estimated that over 500 million people are exposed to noise, which urges real measures to halt the impact of noise on the general population and pregnant women in particular [9]. A great body of research has linked noise exposure to profound feto-maternal outcomes such as preeclampsia (PE), preterm labor (PL), low birth weight (LBW), gestational diabetes (GDM), and stillbirth [10]. The pathophysiological pathways that explain such association are complicated and may include the involvement of more than one, such as stress, endothelial dysfunction, and hormonal and autonomic dysregulation [11]. The available studies that address the impact of noise on pregnancy are limited, and some of them have presented inconsistent and sometimes contradicting evidence [7, 9, 12]. Not to mention the effect of confounders and co-variants, particularly air and chemical pollution. This underscores the need for more study in the field and the implementation of guidelines and recommendations for protecting feto-maternal welfare. A deeper insight into the multi-faceted nature of noise on fetal-maternal outcomes is vital to lay realistic and effective protective approaches [13]. This review seeks to explore different types of noise pollution, dive into the underlying mechanism by which it impacts the birth outcome, discuss and evaluate the available evidence, and highlight areas of further research to address this challenging and overlooked health problem.

METHODOLOGY

Research methods

Four electronic databases, Google Schooler, EMBASE, MED-LINE, and WOS, were reviewed using the keyword. We included studies published in the last decade in the English language that have the same aim (noise, environmental, occupational, maternal adverse effects, fetal adverse effects, PE, LBW, PL, GDM, GHT, and stillbirth). Exclusion was made to studies that were published outside the time limit and for those that were published in non-English. The SPIDER framework was followed: The sample of interest was pregnant, the phenomenon of interest was noise exposure, designs of the included studies, evaluating the feto-maternal outcome, and the type of the research [14].

Definition of study parameters

Preterm labor is the delivery of a fetus before completed thirtyseven weeks of gestation. It is a significant contributor to perinatal morbidity and mortality [15]. As for low-birth-weight LBW, it is defined as a fetal weight that is below two thousand and five hundred grams regardless of the fetal age [16]. LBW infants suffer from higher rates of adverse neonatal outcomes, reduced educational and academic performance, and higher rates of metabolic adult diseases [17, 18]. Hypertensive diseases of pregnancy (Gestational hypertension and more severe preeclampsia) were linked to increased adverse maternal morbidity and mortality [19]. As for the newborns, they are at major risk for iatrogenic prematurity, LBW, and SGA fetuses. Gestational diabetes is a form of glucose intolerance and IR that is diagnosed for the first time during pregnancy and is associated with many inverse feto-maternal outcomes such as macrosomia, PL, increased operative delivery and higher odds of neonatal complications [20]. Birth defects or congenital malformations are a group of abnormalities that affect the developing fetus, whether structural or functional and are diagnosed upon birth [21].

AUDITORY CHANGES FOR PREGNANTS AND GROWING EMBRYOS DURING PREGNANCY

i. Pregnant auditory changes

It is well known that the female body undergoes major changes due to pregnancy hormones, many pregnant women report an increased sensitivity to sounds and a change in their perception of sound, especially loud sounds and noise [22]. This can be attributed to hormonal effects, fluid retention and increased blood supply, which makes

Table 1. Types and sources of	noise, with defining characte	eristics and impact		
Type of Noise Exposure	Noise Source	Noise Character	Impact	I
Traffic Noise	Road traffic, railway, & Aircraft	Continuous & persistent, especially in urban areas.	Stress, sleep disturbance, & cardiovascular complications.	
Industrial Noise	Factories, manufacturing areas, & construction workplaces	High levels with diverse frequencies.	Chronic exposure causes hearing loss and other health problems.	
Occupational Noise	Workplaces where heavy machinery or equipment are used	Exposure relies on the industry type & job role. Working personnel needs hearing protection equipment & noise assessment protocol.	Chronic exposure is a major cause of noise-related hearing loss.	

Table 1. Types and sources of noise, with defining characteristics and impact

Table 2. Highlights the discre	pancy in the avai	lable noise thresho	old and the regulation	s surrounding them.

Region /or Organization	Noise Threshold Regulations	References
World Health Organization	It is recommended that the average noise levels not exceed 53 dB for RTN during the daytime and 45 dB during the night-time to reduce the health effects.	[7]
United States	Permissible exposure limits for workplace noise at 90 dB over an eight-hour workday. The community noise levels were set at < 70 dB over 24 hours.	[8]
European Union	Typical urban noise levels are 55 dB (day-time) and 50 dB (night-time).	[9]
Asia and Other Regions	Noise regulations are diverse, and many of them follow WHO guidelines. Rapid urban- ization has raised concerns about RTN & industrial noise.	[7]

the eardrum swollen and sensitive to sound.

ii. Fetus auditory changes

The fetus's auditory system during the second trimester is still not mature enough to respond to all sounds. By the 25-30th weeks, the auditory system is functionally mature enough to respond to all sounds, and this is the critical period in which a baby can be vulnerable to all acoustic stimuli and noise effects [23]. Some concerns were raised that prolonged exposure to noise during this time lag may trigger hearing loss in the neonate [24].

RESULTS OF LITERATURE REVIEW

Studies published in the last decade are summarized in **Table 3**. The strength of evidence behind those studies seems inconsistent and sometimes insignificant. For example, LBW risk was linked to noise [12, 25], while the evidence was very low in Nieuwenhuijsen et al. study [7]. Those results contradict Hohmann et al. [11], who declared that it had no effect. For PL risk, Nieuwenhuijsen [7] declared low-quality evidence, while no meaningful effect was found by Dzhambov [10] and Hohmann et al.[11].

For gestational hypertension, Dzhambov et al. [10] showed significant risk which contradicts Wang Z et al. [26], which confirms no associations. The odds for PE were higher for those exposed to noise, according to Wang Z et al. [26], while Dzhambov et al. [10] deny any associations. Wang Z et al. [26] the study excluded any association with GDM risk. Congenial malformation risk was found to be significant in Dzhambov et al. [10] while both Vincent [27] and Nieuwenhuijsen [7],

found small evidence of increased risk.

Small for gestational age fetuses was significantly high among Dzhambov et al [10]. conversely, Dzhambov [12] found no significant risks. In summary, the evidence of association is quite diverse and mixed across different studies and outcomes.

THE MECHANISM THAT UNDERLIES NOISE AND ADVERSE FETO-MATERNAL OUTCOMES

The most proposed theories that explained the association between noise exposure and adverse feto-maternal outcomes were summarized in Figure 1. A detailed explanation of each includes:

i. Stress theory: maternal exposure to noise triggers stress hormones, which in the longterm increase pregnant odds of PE and PL [28].

ii. Endothelial dysfunction: chronic exposure to noise triggers vascular changes and endothelial dysfunction (key elements in PE, FGR, LBW), which will hinder placental function and cause fetal hypoxia added to compensatory maternal hypertension [29].

iii. Oxidative stress and inflammation theory: noise exposure triggers inflammation and creates oxidative stress where a vicious circle of distraction occur in the maternal body, a typical situation in GDM and PL [30].

iv. Disbalances between the sympathetic and parasympathetic systems and noise exposure will cause autonomic dysregulation, which may trigger PE and PL [31].

References

[5]

[<mark>6</mark>]

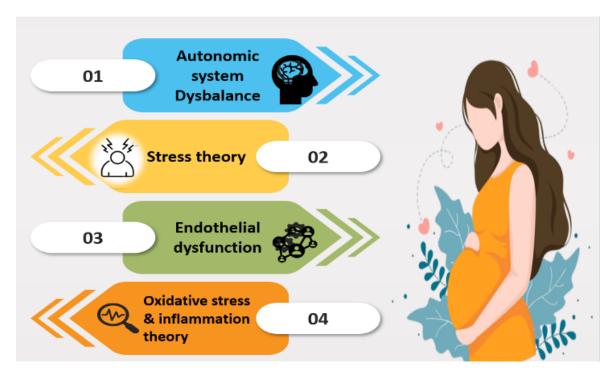


Figure 1. The theorize that explained adverse maternal and fetal outcomes to chronic noise exposure.

Authors, Year	Study Type and Numbers Included Parameters Tested	Main Study Results	References
Hohmann et al. 2013	Systemic review that included 12 studies. To examine the impact of chronic noise on PL, LBW, fetal death, and congenital malformation	There is no association. They postulated that the high level of variation and heterogeneity could be the reason for an insignificant result.	[11]
Ristovska, G 2014	Systemic review that included nine studies, mostly aircraft noise at 80 dB	Their results showed suggestive associations with noise, especially for LBW.	[25]
Dzhambov et al. 2014	Systemic review & meta-analysis of 28 studies	Meaningful risk for small for gestational age fetus, GHT, and higher congenital malformation. NO sta- tistically significant for PL, PE, abortion & death.	[10]
Nieuwenhuijsen MJ 2014	Systemic review & meta-analysis that included 14 studies that looked into different kinds of noise: aircraft noise, road traffic noise, & total ambient noise	Very low-quality associations between aircraft noise & PL, LBW, and congenital anomalies. Low-quality evidence for an association between road traffic noise & LOW, PL, & SGA.	[7]
Dzhambov 2019	Systemic review & meta-analysis that included nine studies. They tested road noise with LBW, SGA, and PL.	They discussed that there is an 8.27 g reduction in birth weight with a 10 dB noise level. No significant effects for SGA or PL.	[12]
Wang Z eta 2022	Meta-analysis: 11 studies included. The study examined occupational and residential noise effects on maternal address effects.	Exposure to occupational noise caused higher PE odds by 1.12. No association was proved with GHT or GDM.	[26]
Vincens N 2023	Scoping review of 16 studies discussed the effect of noise on congenital anomalies, congenital hearing loss, & perinatal mortality.	A small increase in congenital malformation with noise exposure, no consensus regarding perinatal mortality and stillbirth. A possible link between con- genital hearing loss and noise.	[27]

Table 3. The main studies included in the analysis with major points of interest highlighted

DISCUSSION

Although studies examining the effect of noise have exponentially increased, many issues are raised upon reviewing them. Not all of them standardized the exposure; some examined occupational noise, others examined environmental noise, and others examined both [32].

A retrospective study was the main study type included, with the potential limitation of misreporting. Small sample studies were another issue that hindered earlier publication. Not all the studies used the same cut-off value for noise (75-80dB). The level of noise set for most of these studies is fixed for normal people and not customized for pregnant [31]. Another important point is exposure time, which shows a wide discrepancy between environmental and occupational [33]. One of the major issues of noise effect is the presence of cofactors, combined occupational and environmental, which may have synergistic effects on the mother. Not to mention the presence of other sources of pollution, such as air and chemical pollution [34]. Accessing restorative places such as parks and blue areas tends to soothe stress, a major contributor to the noise effect on the mother and her growing child [35]. In light of increased public awareness of noise's impact on health, many preventive interventions have emerged to reduce noise adverse effects among the population added as personal protection devices to protect against noise-related hearing deficiency, which effectively reduced hearing loss; however, other health-related problems such as cardiovascular and psychological effects were not reduced [36]. In pregnancy, while personal protective hearing devices protect the mother, they are unable to safeguard the fetus since these sound waves can easily penetrate the abdomen [37]. Many co-varients were suggested for the impact of noise pollution on both feto-maternal health, such as dose and the time of exposure, added to the types of noise they are exposed to [38]. Some proposed that growing fetuses are especially suspectable to low-frequency sound waves rather than high frequency, especially when the fetus is in the third trimester [37, 38]. Another interesting area of research is the role of exogenous antioxidants in mitigating noise-associated adverse effects [39]. Animal studies showed optimistic results with administrating antioxidant minerals and vitamins; this topic deserves further research to optimize prophylactic and therapeutic interventions [40, 41]. A handful of Iraqi studies addressed noise's impact on the population (but not among pregnant), discussing noise's association with hearing loss, its effects on quality of life, and its role as an occupational hazard, and some suggested protective solutions to reduce

5

noise impact on the public health [42-45].

The strength of this review lies in its systematic discussion and analysis of evidence behind noise impact on reproductive health using recently published meta-analyses. These are important for pregnant individuals as they show potential risks often overlooked and underappreciated. This enables them to make informed decisions regarding the environment they live in. Our results may guide pregnant individuals to take precautions to minimize acoustic risk. They may guide political -health agencies to increase public awareness to promote and optimize feto-maternal outcomes.

Regarding the study limitation, Many confounders and heterogeneity in the included studies prevented the implementation of firm recommendations. Indeed, the controversy warrants further long prospective studies with standardized parameters to reach firm conclusions and recommendations.

CONCLUSIONS

Although the evidence of noise exposure and maternal and feto-maternal outcomes conflicted, the topic is vital to address. Raising public awareness, updating local regulations for noise, and conducting longitudinal studies to confirm the impact on Iraqi pregnancy are all recommended areas of research.

ETHICAL DECLARATIONS

Acknowledgements

None.

- Ethics Approval and Consent to Participate Not required.
- Consent for Publication

Not applicable.

Availability of Data and Material

No patient data are presented in the study.

Competing Interests

The authors declare that there is no conflict of interest.

• Funding

Self funded.

Authors' Contributions

All stated authors contributed significantly, directly, and intellectually to the work and consented it to be published.

REFERENCES

- Pretzsch A, Seidler A, Hegewald J. Health effects of occupational noise. Current pollution reports 2021;7:344– 358. https://doi.org/10.1007/s40726-021-00194-4.
- Basner M, Babisch W, Davis A, Brink M, Clark C, Janssen S, et al. Auditory and non-auditory effects of noise on health. The lancet 2014;383(9925):1325–1332. https://doi.org/10.1016/S0140-6736(13)61613-X.
- [3] Babisch W. Cardiovascular effects of noise. Noise and health 2011;13(52):201-204. https://doi.org/10.4103/ 1463-1741.80148.
- [4] Seidler AL, Hegewald J, Schubert M, Weihofen VM, Wagner M, Dröge P, et al. The Effect of Aircraft, Road, and Railway Traffic Noise on Stroke- Results of a Case-Control Study Based on Secondary Data. Noise and Health 2018;20(95):152–161. https://doi.org/10. 4103/nah.NAH_7_18.
- [5] Chen KH, Su SB, Chen KT. An overview of occupational noise-induced hearing loss among workers: epidemiology, pathogenesis, and preventive measures. Environmental health and preventive medicine 2020;25(1):65. https://doi.org/10.1186/s12199-020-00906-0.
- [6] Lie A, Skogstad M, Johannessen HA, Tynes T, Mehlum IS, Nordby KC, et al. Occupational noise exposure and hearing: a systematic review. International archives of occupational and environmental health 2016;89:351– 372. https://doi.org/10.1007/s00420-015-1083-5.
- [7] Nieuwenhuijsen MJ, Ristovska G, Dadvand P. WHO environmental noise guidelines for the European region:
 a systematic review on environmental noise and adverse birth outcomes. International Journal of Environmental Research and Public Health 2017;14(10):1252.
 https://doi.org/10.3390/ijerph14101252.
- [8] United States Office of Noise Abatement. Information on Levels of Environmental Noise Requisite to Protect Public Health and Welfare with an Adequate Margin of Safety. US Government Printing Office; 1974.
- [9] Jarosińska D, Héroux MÈ, Wilkhu P, Creswick J, Verbeek J, Wothge J, et al. Development of the WHO en-

vironmental noise guidelines for the European region: an introduction. International journal of environmental research and public health 2018;15(4):813. https: //doi.org/10.3390/ijerph15040813.

- [10] Dzhambov AM, Dimitrova DD, Dimitrakova ED. Noise exposure during pregnancy, birth outcomes and fetal development: meta-analyses using quality effects model. Folia medica 2014;56(3):204. https://doi.org/ 10.2478/folmed-2014-0030.
- [11] Hohmann C, Grabenhenrich L, de Kluizenaar Y, Tischer C, Heinrich J, Chen CM, et al. Health effects of chronic noise exposure in pregnancy and childhood: a systematic review initiated by ENRIECO. International journal of hygiene and environmental health 2013;216(3):217– 229. https://doi.org/10.1016/j.ijheh.2012.06.001.
- [12] Dzhambov AM, Lercher P. Road traffic noise exposure and birth outcomes: an updated systematic review and meta-analysis. International journal of environmental research and public health 2019;16(14):2522. https:// doi.org/10.3390/ijerph16142522.
- [13] Prerna R, Archana D. Effects of Pollution on Pregnancy and Infants. Cureus 2023;15(1). https://doi.org/10. 7759/cureus.33906.
- [14] Amir-Behghadami M. SPIDER as a framework to formulate eligibility criteria in qualitative systematic reviews.
 BMJ Supportive & Palliative Care 2024;14(e1):e312-e313.
 https://doi.org/10.1136/bmjspcare-2021-003161.
- [15] Akram NN, Abed MY. Indications and outcome of albumin infusion in a neonatal population: A crosssectional study. Journal of Medicinal and Chemical Sciences 2022;5(1):129–136. https://doi.org/10.26655/ JMCHEMSCI.2022.1.14.
- [16] Nori W, Hadi A, Ismael WA. The efficiency of 17a hydroxyprogesterone in the prevention of preterm labour irrespective of administration route: Systematic review metanalysis. JPMA The Journal of the Pakistan Medical Association 2021;71(12):S65–S69.
- [17] Islam MM. The effects of low birth weight on school performance and behavioral outcomes of elementary school children in Oman. Oman medical journal 2015;30(4):241. https://doi.org/10.5001/omj.2015.50.
- [18] Akram NN, Abdullah WH, Ibrahim BA. Factors contribute to elevated blood pressure values in children with type 1 diabetes mellitus: A review. Medical Journal of Babylon 2022;19(2):126–128. https://doi.org/ 10.4103/MJBL.MJBL_58_22.
- [19] Shah S. Hypertensive disorders in pregnancy. Obstetric and Gynecologic Nephrology: Women's Health Issues in

the Patient With Kidney Disease 2020;p. 11–23. https: //doi.org/10.1007/978-3-030-25324-0_2.

- [20] Ali AI, Nori W. Gestational diabetes mellitus: a narrative review. Medical Journal of Babylon 2021;18(3):163–168. https://doi.org/10.4103/MJBL.MJBL_1_21.
- [21] Feldkamp ML, Carey JC, Byrne JL, Krikov S, Botto LD. Etiology and clinical presentation of birth defects: population based study. bmj 2017;357. https://doi.org/10. 1136/bmj.j2249.
- [22] Swain SK, Pati BK, Mohanty JN. Otological manifestations in pregnant women-A study at a tertiary care hospital of eastern India. Journal of Otology 2020;15(3):103– 106. https://doi.org/10.1016/j.joto.2019.11.003.
- [23] Litovsky R. Development of the auditory system. Handbook of clinical neurology 2015;129:55-72. https://doi. org/10.1016/B978-0-444-62630-1.00003-2.
- [24] Güven SG, Taş M, Bulut E, Tokuç B, Uzun C, Karasalihoğlu AR. Does noise exposure during pregnancy affect neonatal hearing screening results? Noise and Health 2019;21(99):69–76. https://doi.org/10.4103/ nah.NAH_18_19.
- [25] Ristovska G, Laszlo HE, Hansell AL. Reproductive outcomes associated with noise exposure—a systematic review of the literature. International journal of environmental research and public health 2014;11(8):7931– 7952. https://doi.org/10.3390/ijerph110807931.
- [26] Wang Z, Qian R, Xiang W, Sun L, Xu M, Zhang B, et al. Association between noise exposure during pregnancy and pregnancy complications: A meta-analysis. Frontiers in Psychology 2022;13:1026996. https://doi.org/ 10.3389/fpsyg.2022.1026996.
- [27] Vincens N, Persson Waye K. Occupational and environmental noise exposure during pregnancy and rare health outcomes of offspring: a scoping review focusing on congenital anomalies and perinatal mortality. Reviews on Environmental Health 2023;38(3):423-438. https://doi.org/10.1515/reveh-2021-0166.
- [28] Hahad O, Prochaska JH, Daiber A, Muenzel T. Environmental noise-induced effects on stress hormones, oxidative stress, and vascular dysfunction: Key factors in the relationship between cerebrocardiovascular and psychological disorders. Oxidative medicine and cellular longevity 2019;2019(1):4623109. https://doi.org/10. 1155/2019/4623109.
- [29] Münzel T, Daiber A, Steven S, Tran LP, Ullmann E, Kossmann S, et al. Effects of noise on vascular function, oxidative stress, and inflammation: mechanistic insight from studies in mice. European heart jour-

nal 2017;38(37):2838-2849. https://doi.org/10.1093/ eurheartj/ehx081.

- [30] Daiber A, Kröller-Schön S, Oelze M, Hahad O, Li H, Schulz R, et al. Oxidative stress and inflammation contribute to traffic noise-induced vascular and cerebral dysfunction via uncoupling of nitric oxide synthases. Redox biology 2020;34:101506. https://doi.org/10.1016/ j.redox.2020.101506.
- [31] Jordan J, Elmenhorst EM. Noise, air pollution, and the autonomic nervous system. In: Primer on the Autonomic Nervous System Elsevier; 2023.p. 333–337. https: //doi.org/10.1016/B978-0-323-85492-4.00083-1.
- [32] Smith RB, Beevers SD, Gulliver J, Dajnak D, Fecht D, Blangiardo M, et al. Impacts of air pollution and noise on risk of preterm birth and stillbirth in London. Environment International 2020;134:105290. https://doi. org/10.1016/j.envint.2019.105290.
- [33] Pedersen M, Garne E, Hansen-Nord N, Hjortebjerg D, Ketzel M, Raaschou-Nielsen O, et al. Exposure to air pollution and noise from road traffic and risk of congenital anomalies in the Danish National Birth Cohort. Environmental research 2017;159:39–45. https://doi. org/10.1016/j.envres.2017.07.031.
- [34] Sjöström M, Lewné M, Alderling M, Willix P, Berg P, Gustavsson P, et al. A job-exposure matrix for occupational noise: development and validation. Annals of occupational hygiene 2013;57(6):774–783. https: //doi.org/10.1093/annhyg/met001.
- [35] Jang E, Choi HB, Kim M. The Restorative Effects of Urban Parks on Stress Control Ability and Community Attachment. Sustainability 2024;16(5):2113. https: //doi.org/10.3390/su16052113.
- [36] Alnuman N, Ghnimat T. Awareness of noise-induced hearing loss and use of hearing protection among young adults in Jordan. International journal of environmental research and public health 2019;16(16):2961. https:// doi.org/10.3390/ijerph16162961.
- [37] Hu J, Liu B, Cui H, Liu Y, Wan N, Li L, et al. Dose-response associations of maternal prenatal noise exposure duration with antepartum depression status. BMC Pregnancy and Childbirth 2024;24(1):7. https://doi.org/ 10.1186/s12884-023-06200-5.
- [38] Bieńkowska M, Mitas AW. Linear sound attenuation model for assessing external stimuli in prenatal period. Computers in Biology and Medicine 2018;100:289–295. https://doi.org/10.1016/j.compbiomed.2017.10.013.
- [39] Panjali Z, Jafari-Tehrani B, Münzel T, Hahad O, Tansaz M, Hamidi M, et al. Effect of tea consumption on oxida-

tive stress and expression of DNA repair genes among metal press workers exposed to occupational noise. Toxicology research 2021;10(1):134–140. https://doi.org/ 10.1093/toxres/tfaa101.

- [40] Kwaśniewska M, Pikala M, Grygorczuk O, Waśkiewicz A, Stepaniak U, Pająk A, et al. Dietary antioxidants, quality of nutrition and cardiovascular characteristics among omnivores, flexitarians and vegetarians in Poland—the results of multicenter national representative survey WOBASZ. Antioxidants 2023;12(2):222. https://doi. org/10.3390/antiox12020222.
- [41] Alvarado JC, Fuentes-Santamaría V, Melgar-Rojas P, Gabaldón-Ull MC, Cabanes-Sanchis JJ, Juiz JM. Oral antioxidant vitamins and magnesium limit noise-induced hearing loss by promoting sensory hair cell survival: role of antioxidant enzymes and apoptosis genes. An-

tioxidants 2020;9(12):1177. https://doi.org/10.3390/
antiox9121177.

- [42] Abd Muhsin S. Impact of different sources of noise exposure on hearing impairment: A cross-sectional study.
 Al-Kindy College Medical Journal 2021;17(3):163–167.
 https://doi.org/10.47723/kcmj.v17i3.428.
- [43] Aziz SQ. Environmental noise pollution in Erbil City, Iraq: Monitoring and solutions. Caspian Journal of Applied Sciences Research 2012;1(2):14–22.
- [44] Ibrahim BS. Noise Induce Hearing Loss among Peshmerga in Erbil City Participated in Daesh War 2021;https://doi.org/10.26505/DJM.21015912002.
- [45] Alsada SA, Ibrahim NA. Hearing Loss in Iraq Deteriorates Social and Environmental Quality of Life. Academia Open 2024;9(2):10-21070. https://doi.org/ 10.21070/acopen.9.2024.9125.