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 الهجينة لحل مشاكل الامثلية متعددة الاهداف  ICA-GAخوارزمية "

"A Novel ICA-GA Algorithm for Solving Multiobjective 

Optimization problems" 

 المستخلص

ابة واجهة بمث تعتبروالتي  ال لموارد الإنتاج بخدمة العملاءالذي يربط الاستخدام الفعالنماذج المهمة و من  عد جدول الإنتاج الرئيسي ي  

تقليل رضا يتم من خلالها والتي  (MPSحاسمة بين التسويق والتصنيع. إحدى المشكلات الرئيسية المتعلقة بالعملية هي سوء إدارة )

( تجمع بين أفضل ميزات MPS( لحل مشاكل متعددة الأهداف )ICA-GAخوارزمية تطورية هجينة ) لبحث تطبيقهذا ا تم فيالعملاء. 
(. يتم تمثيل مستعمرات كل إمبراطورية من خلال عدد صغير من ICA( والخوارزمية التنافسية الإمبريالية )GAزمية الجينية )الخوار

-ICAالسكان في الخوارزمية المقدمة، وهم يتفاعلون مع بعضهم البعض من خلال العوامل الجينية. توضح النتائج العددية لخوارزمية 

GA مسة سيناريوهات إنتاج، فعالية وإمكانات الخوارزمية الهجينة في تحديد أفضل الحلول. عند مقارنتها بنتائج والتي تم اختبارها على خ
(GA( و )SA في جميع مواقف الإنتاج )تؤدي حلول  مماICA-GA  إلى انخفاض مستوى المخزون، والحفاظ على مستوى عالٍ من

 رضا العملاء، وتتطلب قدرًا أقل من العمل الإضافي.

 .الخوارزمية الهجينة، الخوارزمية الجينية، خوارزمية التنافسية الإمبريالية، جدولة الإنتاج الرئيسي: كلمات المفتاحيةال

Abstract. 

 The Master Production Schedule (MPS), which connects effective utilization of production resources to 

customer service, is a "crucial interface between marketing and manufacturing". One of the main issues 

with operation is mismanagement of the (MPS), which has the ability to lower customer satisfaction. This 
work presents a hybrid evolutionary algorithm (ICA-GA) for solving multiobjective (MPS) problems that 

combines best features of the genetic algorithm (GA) and the imperialist competitive algorithm (ICA). 

The colonies of each empire are represented by a small population in the algorithm that is being given, 
and they interact with one another through genetic operators. The numerical results of the (ICA-GA) 

algorithm, which was tested on five production scenarios, demonstrate the effectiveness and potential of 

the hybrid algorithm in locating the best solutions.When compared to the outcomes of (GA) and (SA) in 
all production situations, the (ICA-GA) solutions result in a lower inventory level, maintain a high level 

of customer satisfaction, and require less overtime. 

Keywords: hybrid algorithm, genetic algorithm, imperialist competitive algorithm, master 

production scheduling. 

1. Introduction: 
     Production at the tactical level, or (MPS), is a well-established and extensively used 

industry paradigm. Creating tactical production plans can be difficult because demand varies 

over time for a variety of unanticipated reasons; however, because the industry lacks sufficient 

resources, it is difficult to predict demand precisely, and the production planner struggles 

greatly with these items. While it is possible to suggest increasing capacity during high demand 

periods, doing so will cost money and take time away from the business. Additionally, during 

low demand periods, the company will have even more idle capacity.When creating an (MPS), 

competing goals are taken into account, including minimizing inventory levels, optimizing 

service levels, and making effective use of resources. Regretfully, when the production 

scenario rises, the complexity and work required to create a master plan increase significantly, 

particularly when resources are scarce, as they are in the majority of enterprises. Because of 

this complexity, industries typically rely on straightforward heuristics that are put into 

spreadsheets and offer a fast plan, but they can also be expensive and inefficient. Thankfully, 
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new concepts are frequently put forth by researchers to enhance production scheduling, such 

as the application of heuristics based on artificial intelligence [1]. 

       Using artificial intelligence or meta-heuristic methods like (GA), simulated annealing, 

tabu search, etc., could identify solutions that are close to, or even better than, optimal in a 

reasonable amount of time [2]. 

       The primary benefits of evolutionary algorithms are their ability to escape from local 

minima, their independence from the objective function's evaluation of gradients, and their 

ability to work with both differentiable and continuous objective functions [3]. 

       The motivation for combining two or more different algorithms into a single hybrid 

algorithm came from the possibility that this new algorithm will perform better than each of its 

component algorithms individually. This leads to the addition of a new family of algorithms to 

the hybrid algorithm strategies. The hybrid algorithm creates a combined algorithm with 

several benefits, such as speedier and/or higher-quality solution generation, by fusing the best 

aspects of the individual algorithms. Moreover, it can effectively handle problems with large 

input sizes, especially those involving (NP) difficulties [3]. 

      This work presents the unique algorithm (ICA-GA) as a solution to multiobjective (MPS) 

production planning challenges. 

       The paper is organized as follows: Section 2 provides a condensed version of the 

production planning problem, and Section 3 presents the proposed algorithm for addressing it. 

In Section 4, the computational results of the proposed approach have been compared with 

those of other methods. Section 5 contains the study's conclusion.  

2.  Planning For Production :  

      Some of the basic ideas of production planning are explained in this section, with special 

emphasis on (MPS) and his mathematical model: 

A. MPS: Foundations: 

  One role in integrated production planning and control is (MPS), which converts business 

planning's strategic goals into an expected statement of production, which serves as the basis 

for all other lower-level schedules [4]. A component of the wider production plan, the (MPS) 

is also an operational plan. As a result, [6] thought that (MPS) was the most crucial planning 

and control schedule in a company.  

   An MPS, according to the American Production and Inventory Control Society (APICS) [7], 

is a declaration of what a business intends to create. There are a number of planning 

considerations that direct the material requirements planning (MRP). It displays the exact dates, 

amounts, and configuration of the products the company intends to produce. Despite not being 

a sales prediction, this is one of the most important system data points in the master plan. Open 

orders, the availability of materials, available capacity, managerial policies and objectives, and 

more are important considerations that need to be made. It also shows the capacity used, 

available to promise (ATP), and expected inventory balance. 

    Wu et al. [8] developed a mathematical model of (MPS) and a (GA) that integrated several 

techniques in order to satisfy the constraints of developing an optimal (MPS) for production 

lines that incorporate both assembly and processing. To solve the (MPS) challenge in 

production planning, Vieira & Ribas [9] employed simulated annealing. This study exposes 

several drawbacks of simulated annealing, including bypassing the local optimum.  

      Soares & Vieira [10] presented a novel (GA) structure to address the (MPS) problem. The 

fitness function is created in this study to reduce inventory level, maximum service level 

(minimize requirement not satisfied), minimize overtime, and minimize inventory level below 

safety stock. Lastly, [11] has compared (GAs) with simulated annealing for (MPS) problems.  

B. Mathematical Model of MPS: 

  A mixed integer program can be used to mathematically model the (MPS) problem as follows 

[10]:  
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𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜: 

𝐵𝐼𝑘𝑝 = {
𝑂𝐻𝑘                                     𝑖𝑓(𝑝 = 1)
𝐸𝐼𝑘(𝑝−1)                             𝑖𝑓(𝑝 > 1)     (5) 

 

𝐸𝐼𝑘𝑝 = 𝑚𝑎𝑥 [0, ((𝑀𝑃𝑆𝑇𝑘𝑝 + 𝐵𝐼𝑘𝑝) − 𝐺𝑅𝑘𝑝)]                   (6) 

 

𝑀𝑃𝑆𝑇𝑘𝑝 = ∑ 𝑀𝑃𝑆𝑘𝑝𝑟
𝑅
𝑟=1         (7) 

 

𝑀𝑃𝑆𝑘𝑝𝑟 = 𝐵𝑁𝑘𝑝𝑟 ∗ 𝐵𝑆𝑘𝑝𝑟         (8) 

 

𝑅𝑁𝑀𝑘𝑃 = 𝑚𝑎𝑥 [0, (𝐺𝑅𝑘𝑝 − (𝑀𝑃𝑆𝑇𝑘𝑝 + 𝐵𝐼𝑘𝑝))]               (9) 

 

𝐵𝑆𝑆𝑘𝑝 = max[0, (𝑆𝑆𝑘𝑝 − 𝐸𝐼𝑘𝑝)]                        (10) 

 

𝐶𝑈𝐻𝑟𝑝 = ∑
(𝑀𝑃𝑆𝑘𝑟𝑝)

𝑈𝑅𝑘𝑟

𝐾
𝑘=1                  (11) 

 

 

      𝐶𝑈𝐻𝑟𝑝 ≤ 𝐴𝐶𝑟𝑝                          (12) 

 

     𝑂𝐶𝑟𝑝 = 𝑚𝑎𝑥[0, (𝐶𝑈𝐻𝑟𝑝 − 𝐴𝐶𝑟𝑝)]                           (13) 

When (𝐾): Denotes the total amount of various products. (𝑅): The total amount of various 

producing resources. (𝑃): The total amount of planning intervals. (𝑇𝐻): The entire planned 

horizon. (𝐸𝐼𝑘𝑝): Product k's ending inventory level at period p. ( 𝑅𝑁𝑀𝑘𝑝): Product k's 

requirements were not fulfilled during period p. (𝐵𝑆𝑆𝑘𝑝): Product k's quantity below the safety 

inventory level at period p. (𝑂𝐶𝑟𝑝): Excess capacity required during period p at resource r. 

( 𝐵𝐼𝑘𝑝): Product k's initial inventory level at time p. (𝑂𝐻𝑘): Starting inventory that is available 

at the start of the schedule period. (𝐺𝑅𝑘𝑝): Product k's gross need at time p. (𝐵𝑆𝑘𝑝): Product 

k's standard lot size during period p. (𝑁𝑅𝑘𝑝): Net product requirement for product k at time p, 

taking infinite capacity into account.( 𝑆𝑆𝑘𝑝): Product k's safety inventory level at time 

p. (𝑈𝑅𝑘𝑟) : Product k production rate (in units per hour) at resource r. (𝐴𝐶𝑟𝑝): Hourly capacity 

available at resource r during period p. (𝐵𝑁𝑘𝑝𝑟): The number of standard lot sizes required at 

period p (resource r) for the manufacturing of product k (number of lots). (𝑀𝑃𝑆𝑘𝑝𝑟): The total 

amount of the product k that must be produced at resource r during period p. (𝑀𝑃𝑆𝑇𝑘𝑝): The 

total amount of the product k that must be produced during period p, taking into account all 

available resources. (𝐶𝑈𝐻𝑟𝑝): Capacity utilized during period p from resource r. (𝐶𝑈𝑃𝑟𝑝): The 
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percentage derived from the relationship between the quantity of hours used in period p to 

utilize resource r and the quantity of hours available for the same resource and period. 

3. Procedure For Paper Submission : 

The detailed presentation of the solution technique has been made in this section. This means 

that the conventional (ICA) and (GA) should be explained first. After this, the hybrid algorithm 

will be explained: 

A. ICA:  

   ICA is a revolutionary evolutionary algorithm in the field of evolutionary computation, based 

on the socio-political evolution of humans. The process starts by generating a set of feasible 

random solutions inside the search space of the optimization problem. The world's countries, 

or the beginning population, are referred to as the randomly produced points. Both colonial and 

imperialist states fall within these two groups. The more powerful imperialists own more 

colonies. The cost function of the optimization problem determines a country's power. In order 

to create the first empires, some of the strongest founding nations those with the lowest cost 

function value become imperialists and start annexing other countries referred to as colonies 

[12]. 

The three main operators in this algorithm are Assimilation, Revolution, and Competition. This 

algorithm applies the assimilation policy. Based on this philosophy, the imperialists try to 

improve the political, cultural, and economic circumstances of their colonies. This policy 

allows the colony to be excited for the imperialists. Assimilation moves the colonies of each 

empire closer to the imperialist state in terms of socio-political characteristics (optimization 

search space). Due to revolution, the positions of some of the countries in the search space shift 

suddenly and arbitrarily. Through assimilation and revolution, a colony may rise to a higher 

position and have the chance to topple the imperialist regime now in place within the empire 

[13]. 

  The colonies start to converge on their imperialists as the imperialists attempt to obtain more 

colonies in the competitive operator. Every empire wants to annex and take over the colonies 

of other empires. The power of an empire is derived from the power of its colonists and 

imperialists. At each stage of the algorithm, each empire has an equal chance, depending on 

their might, of taking control of one or more of the colonies of the weaker empire. 

Consequently, the contest will upend the weak imperialists and empower the stronger ones. 

Eventually, all of the smaller empires will fall and only one powerful empire will survive. The 

weaker empires will lose all of its colonies and their imperialists will become colonists of the 

other empires. The imperialists randomly assign each colony to a different group. Imperialists 

with more power take more colonies [14]. The algorithm continues to run until a predetermined 

stop condition for example, the eradication of every imperialist is satisfied. Imperialism and its 

colonies will then be on an equal footing [12], [13]. 

B.GA:  

 The GAs are a collection of computational models developed by Holland [15] based on 

the concepts of natural biological evolution. GA codes a single chromosome as a potential 

fix for a specific problem. The initial population of chromosomes, or the set of initial search 

locations in the problem's solution space, is where the approach begins. Next, genetic 

operators such as crossover, selection, and mutation are employed to produce a new 

generation of chromosomes. It is expected that chromosomal quality will rise with each 

generation due to the operators' guiding principle of "survival of the fittest, extinction of 

the unfitness". This process is repeated until the termination condition is satisfied, at which 

point the best chromosome from the most recent generation is proclaimed as the final 

solution [1]. 
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C. An ICA Hybrid: 

        This section presents a novel hybrid algorithm that combines two algorithms. The 

pseudo-code for the (ICA-GA) is shown as follows: 

Protocols of the (ICA-GA) :  

Step 1: Setting up the (ICA-GA) algorithm's settings. 

Step 2: 

2.1: Identify the (MPS) problem's parameters. 

2.2: Create a few arbitrary nations and then determine the EImax, RNMmax, and BSSmax. 

2.3: Establish empires out of the most strong nations. 

2.4: Assign remaining nations at random to various empires based on equality. 

Step 3: "Nd=Nd+1" decade loop. 

Step 4: Perform for i=1,2,...,N_imp; %Procedures for Genetic Algorithms %  

4.1: "Selection". 

4.2: "Crossover". 

4.3: "Mutation". 

Step 5: %% Imperialist Competitive Algorithm Procedures%% 

5.1: Integrate colonies with their imperialist system. 

5.2: Revolutions in countries. 

5.3: "If need", swap an imperialist for the finest colony. 

5.4: Determine the entire cost of an empire. 

5.5: Competitive imperialism. 

5.6: Destroy the weak empires. 

Step 6: Terminating Criterion Control; Continue from Steps (3 − 6) until a final 

requirement is met. 

1. Input Data. The software used for the master scheduling optimization considers as 

many factors as it can that are present in real-world industrial settings, including: 

 Product count and description. 

 Product count and description (production lines, workstations, machines, 

production cells). 

 Product count and description. 

 Time period count and duration (various length periods are acceptable). 

 starting (on-hand) inventories: product amounts at the start of the planning period. 

  gross requirements, which are calculated from forecasts and customer orders and 

represent the required quantity per product per period. 

 Production rate refers to the quantity of a product that a resource can produce in a 

given amount of time. 

  Batch sizes are the production standard lot sizes per product per period. 

  Safety inventory levels are the amount of inventory per product per period. 

 Setup times are the amount of time required for each product, regardless of the 

order of operations. 

 The monthly capacity that each resource can possess. 

 

2. The objective Function.  

        The following is a definition of the MPS objective function and its limitations:  

𝑀𝑖𝑛 𝑍 = 𝑐1 ∗ 𝐸𝐼 + 𝑐2 ∗ 𝑅𝑁𝑀 + 𝑐3 ∗ 𝐵𝑆𝑆 + 𝑐4 ∗ 𝑂𝐶         (14) 

      where each (MPS) performance measure's relevance is indicated by the coefficients 

(𝑐1, 𝑐2, 𝑐3  and 𝑐4). The goal of the objective function is to reduce the average of the 

following: over capacity (𝑂𝐶), below safety stock (𝐵𝑆𝑆), requirement not met (𝑅𝑁𝑀), 

and ending inventory level (𝐸𝐼). Because the objectives and goals on (14) have values that 
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fall into entirely separate ranges, min-max normalization is used to place them on the 

interval (0, 1). Consequently, the goal function mentioned above becomes: 

 

𝑀𝑖𝑛 𝑍 = 𝑐1 ∗
𝐸𝐼

𝐸𝐼𝑚𝑎𝑥
+ 𝑐2 ∗

𝑅𝑁𝑀

𝑅𝑁𝑀𝑚𝑎𝑥
+ 𝑐3 ∗

𝐵𝑆𝑆

𝐵𝑆𝑆𝑚𝑎𝑥
+ 𝑐4 ∗ 𝑂𝐶          (15) 

       where the maximum values of the relevant goals, which are calculated from the pre-

processing stage (warm-up period) in the proposed algorithm runs, are denoted by the variables 

EImax , RNMmax and BSSmax . 

3. Country National Structure Developed. The content and shape of the nation 

(chromosome) in (MPS) issues fluctuate in the manner of representation, in contrast to most 

representations found in the literature, which consider a single chromosome represented by a 

single bit vector structure. 

 (Fig. 1) [16] depicts the basic model of the structure that is implemented for a scenario with 

three goods, four resources, and three periods. An alphabetic set of integer positive numbers 

serves as the structural representation of a nation. Every sphere in the structure represents a 

gene. A gene set creates a branch that shows how amounts of a specific product to be produced 

at various resources will vary over time.  

      A group of branches that together form a branch group represents the entire distribution of 

quantities to be made of all the products at every resource, in a given time period. A group of 

branch groups constitutes an (MPS) individual in its entirety. The number of time periods in 

the master plan horizon establishes the length of the set. The population of (MPS) countries 

will vary in accordance with the (ICA-GA) configuration as it searches for the ideal country 

(master schedule or solution). 

  

 

 

 

 

 

 

 

 

 

 
Fig. 1 Structure of the (MPS) Country. 

4.Initial Population Creation Function. 

 The population's number of countries and the initial population's generation technique have a 

significant influence on the algorithm's performance and the quality of the results. To improve 

the search space, as many different countries as feasible should be included. The following is 

the pseudo code for the population formation function with multiple resources, multiple 

products, and numerous periods: 

 

"for k=1:K 

    for r=1:R 

        if UR(k,r)≠ 0 

for p=1:FP 

     IP=randi([0,round(GR(k,p)/BS(k,p))],nPop,1)*BS(k,p); 

     Pop=[Pop  IP]; 

     IP=[]; 

end 

        else 
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  for p=1:P 

     IP=zeros(nPop,1); 

     Pop=[Pop IP]; 

     IP=[]; 

  end 

        end  

    end 

end" 

 where the (m*n ) matrix with integer values taken from the discrete uniform distribution on 

the interval ("imin","imax") is returned by "randi([imin,imax],m,n)" [10]. This heuristic 

method fills in as much diversity as feasible while ensuring that values consistently adhere to 

the normal lot size constraint. Assume the following hypothetical scenario: the first country in 

the population in the first period would have the genes "{0;500;1,000;1500}," the second 

country would have the genes "{2,000; 3,000; 2,500; 500}," and so on, sequentially for every 

individual in the population. The gross requirement for a given product at a given time period 

(time bucket) would be (3,000) units, the standard lot size would be (500) units, and there 

would be four possible productive resources available to make the product. 

 The best countries (those with the lowest costs) in the original population, N_imp, were chosen 

to be the imperialists, and the remaining countries, N_col, were equally distributed as colonists 

among the various empires at random. 

5. GA was applied to every empire's territories. Genetic operators of selection, crossover, 

and mutation are applied to colonies, drawing inspiration from (GA), with the goal of 

diversifying the imperialist population. 

a) Operator for selecting the highest rank:  

Colonies can be modified to inherit certain advantageous qualities from the 

most fit colony by employing this procedure, which selects the first colony with 

the highest fitness (lowest cost) and chooses the other at random. 

b) Single-point crossover operator: One crossing site (k) is uniformly chosen at random 

within the interval [1, 2, . . . , Nvar − 1] in single-point crossover. The variables are then 

swapped between the colonies around this point, resulting in the production of two new 

colonies. A nation's superior genetic plan is passed down from one generation to the next 

at the preset crossover probability (pc). through the crossover process. A kid nation has 

the opportunity to jump from the local optimum when crossover operation occurs 

between two parent colonies that are situated at local optima. When two colonies cross 

over and produce suboptimal results, this algorithm returns to the original colonies before 

the crossover.   

c) Mutation operator: Population diversity may be lost during the (ICA-GA) 's 

evolutionary process, and premature convergence is a constant. When population variety 

needs to be restored, mutation comes in rather handy. Include changing a particular 

colony variable by adding or removing one production batch size. At the predefined 

mutation probability (pm). the colonies are chosen. When a mutation creates a terrible 

colony, this algorithm returns to the colony that existed prior to the mutation. 

6. Moving the colonies of an empire toward the imperialist (assimilating). Imperialists 

countries started to improve their colonies. This fact has been modeled by moving all the 

colonies toward the imperialist. Through this movement, some parts of a colony’s structure 

will be similar to the empire’s structure. The assimilation operator can be modeled as: 

{𝑥}𝑛𝑒𝑤 = {𝑥}𝑜𝑙𝑑 + 𝑟𝑜𝑢𝑛𝑑 (
𝛽∗𝑑∗{𝑟𝑎𝑛𝑑}⨂{𝑉1}+𝑈(−1,1)∗𝑡𝑎𝑛(𝜃)∗𝑑∗{𝑉2}

𝐵𝑆
) ∗ 𝐵𝑆          (16) 
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Where {x}new is a new position of colony, {x}old is a previous position of colony, β is 

assimilation parameter, and d is the distance between colony and imperialist, θ is a random 

amount of deviation added to the direction of movement, {rand} is a random vector, {V1} is 

the base vector starting the previous location of colony and directing to the imperialistic. 
The length of this vector is set unity, {V2}  is orthogonal vector on colony-imperialist 

({V1}. {V2} = 0). Colonies are moved to a new site in the (ICA-GA) process using different 

random values, as shown in (Fig. 2). 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 2. Colonies moving to new place within (ICA-GA). 

7. Revolution. Every time we iterate, we randomly swap out some of the weakest colonies' 

genes for new ones. One possible model for the revolution operator is: 

 

𝐶𝑜𝑙(𝑗). 𝑃𝑜𝑠(𝑘) = 𝑟𝑜𝑢𝑛𝑑 (
𝑢𝑛𝑖𝑓𝑟𝑛𝑑(𝑉𝑎𝑟𝑀𝑖𝑛(𝑘), 𝑉𝑎𝑟𝑀𝑎𝑥(𝑘))

𝐵𝑆
) ∗ 𝐵𝑆        (17) 

where 𝐶𝑜𝑙(𝑗),  𝑉𝑎𝑟𝑀𝑖𝑛(𝑘) and 𝑉𝑎𝑟𝑀𝑎𝑥(𝑘) indicate the lowest and higher bounds for gene 

(𝑘), respectively, and 𝑃𝑜𝑠(𝑘) represents gene (𝑘) in colony (𝑗). 𝑢𝑛𝑖𝑓𝑟𝑛𝑑 (𝐴, 𝐵) yields a 

random integer that is produced from continuous uniform distributions with the upper and 

lower ends designated by (A and B), respectively [10]. The revolution rate, abbreviated as (pr), 

is the replacement rate.  

 

8. swapping places between a colony and an imperialist. As these colonies get closer to 

becoming imperialists and in certain cases have revolutions, it's likely that some of them 

will become more powerful than their respective imperialists. In this case, the colony and 

its relevant imperialists take the opposite viewpoint. Moving forward, this new country will 

be employed as the imperialist in the algorithms. 

 

9. Total power of an empire. The power of the imperialist nation mostly determines an 

empire's overall power, whereas the power of an empire's colonies also has a small but 

significant impact. As a result, the total cost equation is: 

 

𝑇. 𝐶𝑛 = 𝑐𝑜𝑠𝑡(𝑖𝑚𝑝𝑒𝑟𝑖𝑎𝑙𝑖𝑠𝑡) + 𝜀 ∗ 𝑚𝑒𝑎𝑛{ 𝑐𝑜𝑠𝑡𝑠(𝑐𝑜𝑙𝑜𝑛𝑖𝑒𝑠 𝑜𝑓 𝑒𝑚𝑝𝑖𝑟𝑒)}    (18) 

Where (T. Cn) represents the total cost of the 𝑛𝑡ℎ empire and ε is a positive number which 

is considered to be less than 1. 

 

10. Imperialistic competition. The most important (ICA) process is imperialist rivalry, in 

which all empires aim to subjugate each other's colonies. Eventually, stronger empires 

wrest colonies from weaker ones. This procedure is repeated by choosing the weakest 
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colony of the weakest empire and moving it to the appropriate empire, which is chosen by 

competition among all empires. A schematic of this process is shown in (Fig. 3). 

 

 

 

 

 

 

 

 

 

 

 
Fig. 3. Imperialistic competition. 

  An empire's likelihood of owning the weakest colony of the weakest empire increases with 

itspower.  

 Empire 1 is seen as the weakest empire in this picture, with one of its colonies undergoing a 

competitive process. The empires ranging from (2 to n) are vying for control of it. First, the 

possession probability was determined by taking into account the empire's entire might in order 

to start the competition. A roulette-wheel-like process is employed to assign the chosen colony 

to one of the empires based on a proportionate likelihood, given the possession probability of 

each empire.  

11. Eliminating the powerless empires. In the imperialistic struggle, weak empires will 

fall and their colonies will be divided among the stronger powers. Different parameters can 

be identified for considering an empire helpless in the simulation of collapse mechanisms. 

We will assume in this work that the loss of all colonies results in the collapse of an empire. 

 

12. Stopping criteria. In theory, the competition can go on until there is just one individual 

left in the search area. Nevertheless, certain criteria can be chosen as end points, such as 

completing a certain number of iterations or seeing a very small improvement in the 

objective function. 

4. Numerical Rsults: 
        Several production situations were tried using software built in (Matlab 8.1) 

programming languages and run on the Intel Core 2 Duo in order to confirm the viability of 

the suggested technique to solve the multiobjective (MPS) issues. (2.20)  megahertz. The 

outcomes of the (MPS) issue solution are contrasted with those of alternative algorithms. 

      Five production scenarios are used to test the proposed (ICA-GA). In contrast, these (5) 

scenarios are likewise subjected to the execution of (GA) and SA [2], [9]. The production 

scenarios' details are displayed in Table 1. The (ICA-GA) algorithm's parameter settings are 

explained as follows: (𝑁𝑖𝑚𝑝) is a multiple of (0.1) of the population size, crossover rate is 

(0.9), mutation rate is (0.7), assimilation coefficients are set to (2.0), 𝜃 are set to (45°), and 

revolutionary rates are set to (0.1) . and (500)  generations is the maximum number of 

iterations that may be made without any improvement. Twenty runs of the algorithm are 

performed for every production scenario. 
Table 1. Production scenarios (S1-S5) 

Production Scenario (K,R,P) Nvar
* (c1,c2,c3,c4) Source 

S1 (2,9,6) 108 (1,1,1,1) Sultan [16] 

S2 (4,4,7) 112 (1,1,1,1) Ribas [2] 
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S3 (4,4,10) 160 (1,1,1,1) Supriyanto [17] 

S4 (4,4,20) 320 (1,1,1,1) Supriyanto  [17] 

S5 (20,4,13) 1040 (1,1,1,1) Ribas  [2] 

    

* Nvar=K*R*P 

Ultimately, Table 2 presents a comparison of performance metrics between the (GA), (SA), 

and (ICA-GA) solutions for the specified production situations. Similar to Viera et al. [11], the 

final (GA) solution outperforms the (SA) solution in all production scenarios; however, the 

computational cost of (GA) is significantly higher. The hybrid method outperforms the other 

two algorithms in terms of both computing time and final solution. 

Table 2 .presents a comparison of the computing time and final solution of three 

algorithms. 
CPU 

(sec) 
Z OC 

𝑩𝑺𝑺 

 
RNM EI 𝑨𝒍𝒈. S. 

1197 1.142 0.13 448.9 0 35588 GA 
 

S1 
1173 1.241 0.31 517.7 0 35424 SA 

1068 0.918 0 1731.7 0 34073 ICA-GA 

1202.7 1.740 4.33 585 986 5226 GA 

S2 1179.2 1.719 23.51 13.81 0 5464.3 SA 

1104.3 1.431 0.33 528.5 942.8 4428.5 ICA-GA 

1687.2 1.727 6.43 954 685 1221 GA 
 

S3 
1654.3 1.799 8.66 469 718.4 1354 SA 

1440.1 0.406 0 169.4 421.5 999.1 ICA-GA 

3306 0.865 4.13 172 160 1201 GA 
 

S4 
3241.6 0.983 4.9 75.6 354 1165 SA 

3060.5 0.239 0 69.5 0 1074 ICA-GA 

5082 1.039 0 2913 3981.5 5959.1 GA 
 

S5 
4876 1.844 101.83 66.41 1048.9 5562.6 SA 

4720 0.681 0 2736 121.5 5549 ICA-GA 

 

Fig.4 averagely, illustrates the graph of convergence of  S2 and S4 production scenarios. It 

can be seen from this fig. that the convergence of the (ICA-GA) is faster than the (SA) and 

(GA). 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 4. The average of convergence of (a) S4 production scenario (b) S2 production scenario 

a 

b 
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      Tukey's approach has been applied to test the outcomes of three algorithms. This approach 

has made use of the normalized data. The following is how these normalized data were 

calculated:  

𝑁𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑑 (𝑆𝑖) = ((𝑆𝑖) − min(𝑆1: 𝑆3))/(min(𝑆1: 𝑆3))                   (18)    
   

    

where (𝑆𝑖) is the  (𝑖𝑡ℎ ) algorithm's final solution or computing time. Tukey's technique 

should be used to test these adjusted results. For the final answer and the calculation time, an 

interval plot is taken into consideration. It has been assumed that these interval graphs have an 

error ratio of (0.05). These algorithms' interval charts are shown in (Fig. 5a) and (Fig. 5b), 

respectively, for the computational time and the outcome. We discovered that there are 

substantial discrepancies between the means of the normalized computational outputs of the 

three methods in (Fig. 5a), and there are also several significant differences between the final 

solutions of (GA), (SA), and  

(ICA-GA) in (Fig. 5b). 

 
Figure 5: Confidence intervals of three algorithms for the final answer and computation time. 

  

      Three algorithms' outcomes are then proven based on the findings of Tukey's approach. 

After carrying out these three algorithms, it is evident to us how much more successful the 

suggested hybrid method is than the others. 

5. Discussion: 
       For a variety of optimization problems, a large proportion of hybridizing population-based 

meta-heuristics have been presented. This study introduced (ICA-GA), a novel hybrid 

technique that combines (ICA) and (GA). In comparison to (GA) and (SA), the viability and 

effectiveness of (ICA-GA) for resolving (MPS) issues in various production settings are 

examined. The suggested algorithm can find globally optimal solutions in a comparatively 

short number of iterations, according to the results. 

  

        The biggest inventory level and overtime are often produced by the (GA) and (SA) 

solutions. As we can see in (Fig. 6a), It appears that these approaches would not be able to 

assign overtime appropriately (the "where and when" question is not handled accurately). The 

graph illustrates how the available resources are not equally allocated to meet the whole need 

capacity of the (S3) production scenario utilizing the (GA) solution. A portion of the resources 

are underutilized, a portion are completely employed, and some are overloaded. In theory, 

inventory levels should be able to be lowered provided overtime is assigned to the appropriate 
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resources at the appropriate times. On the other hand, (ICA-GA) solutions generate less 

inventory over time than (GA) and (SA) systems. As we can see in (Fig. 6b), it appears that 

(ICA-GA) can successfully handle when the additional capacity must be substituted, how much 

it is needed, and at which resource should be added.  

         Exploration and exploitation are two major issues in the evolutionary search process that 

can be appropriately handled using (ICA-GA). Mutation is frequently seen as an exploratory 

operator in (GA) since it provides fresh information in an objective manner [18]. This is the 

purpose of revolution policy in (ICA). This purpose is fulfilled by assimilation policy in (ICA), 

and crossover, which recombines the older content of the parents into new configurations, can 

be seen as an experimental operator in a similar manner [18].  

 

 

Fig. 6. The total requirement capacities of (S3) production scenario using (a) (GA) (b) (ICA-GA). 

6. Conclusion: 

         In order to solve multiobjective (MPS) issues, this research presents a novel hybrid 

approach that combines (ICA) and (GA). Its effectiveness is assessed using a range of 

production scenarios. The results of the simulations show that the suggested algorithm 

performs exceptionally well in terms of convergence speed and accuracy of the global 

optimization solution; that is, it can intelligently decide "how much, when, and where" 

additional overtimes are needed in order to reduce inventory without compromising customer 

service standards within a reasonable time frame. The outcomes demonstrate the new hybrid 

algorithm's effectiveness and capacity to discover the optimal solution. Its performance is 

remarkably superior to those of other algorithms like (GA) and (SA). All manufacturing 

scenarios can benefit from the highly satisfactory and promising performance attained. 
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