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Abstract -

The leading purposes of this chapter are how to use the concepts (A-open and
semi A-open sets) with certain types of functions via a-open sets, such as (A-
continuous, A*-continuous, A**-continuous, semi A-continuous, semi A*-
continuous, and semi A**-continuous) functions .We shall characterize the
relationships between the previous concepts types that we are going to relate of
functions, and the continuity. Moreover, we shall introduce some examples,
theorems, remarks, and properties, about these new concepts of functions.

Keywords :semi A-continuous, semi A*-continuous, and semi A**-
continuous functions .
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1. Introduction

When a problem occurs in the field of topological space, scientists and
researchers race to obtain elective, solid results and apply them. The topological
space has contributed to all sciences and penetrated mathematical research in a
wider field, taking the point with the set, whether it was open or closed, and
building its structure it with research through definition, proof, examples and its
application.

2. Concepts
Definitions 2.1.

If (X,7,)and (Y, t,) are two topological spaces. Let f: X — Y is be a function
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e Then f is called a-continuous function if and only if, for each A is open set
inY Thus f~1 (A4) is a-open set in (X, 7).

e Or Then f is called a-continuous function if and only if, every open set A in
Y, thus f~1(4) € Int Cl Int f~1(4)

Definitions 2.2.

If f: (X,7,) » (Y,7,) is a function.

e Thus, f is named semi-continuous function. When A is open setin Y, thus,
f~L(A) is semi-open set in (X, 7,), such that f~1(4) € Cl Int f~1(A4).

e Or Then, f is called semi-continuous for every open set U on Y, then,
f~Y(U) is semi-open in X.

Remark 2.3.

Every continuous function is a-continuous function, the reverse is not
necessarily true. The example shows that:

Example 2.4.
Let X = {0,2,4,6}, 7, ={0,{0}, X}, Y ={1,3,5}, 7, ={0,{1},Y},
The sets of A-open; 72 = 7, U {{0,2},{0,4},{0,6},{0,2,4},{0,2,6},{0,4,6}},
The sets of a-openony; 74 =7, U {{1,3},{1,5}},
Let f define f: X - Y,by f(0) =f(2)=1,f(4) =3,f(6) =5,
We see f is A-continuous, but is not continuous. Since, {1} open set on Y, and
f~1({1}) = {0,2}, on the other hand {0,2} is not open set on X.
In the text result, we show that, the relation of the f is semi a-continuous,
and every point x € X, as in [14]
Theorem 2.5.
A function f: X — Y. Then the following statement is equivalent .
a) f is semi A-continuous.
b) f is semi A-continuous at each pointx € X .
Proof :
(a) = (b)
25
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let f: X — Y isasemi a-continuous.

And x € X, N be open set of Y containing f(x).

Thenx € f~1(N). also f is semi a-continuous.

So M = f~1(N) is semi a-open set in X having ( x ), therefore f(M) c N.
(b)=(a)

if f: X — Y isasemi a-continuous for all point in X.

And N opensetinY. Let x € f~1 (N).

Then N is open set in Y containing f (x).

By (b), at hand is semi a-open set M of X having X.

Since f(x)€Ef (M) S N. Therefor M S f~1(N).

Hence fFT1(N)=uU{M:x€ f~1 (N) }

Then f~1 (N) is semi a-openin X.

Remark 2.6.

Each «a-continuous function is semi A-continuous function, The convers is not
necessarily true. The example shows that.

Example 2.7.
Let X = {1,5,9}, = = {0, {1},{5}.{1,5}.X}
The a-opensetson X, 14 =1,
The semi a-open sets on X, semi a 0 (X) = 74 U {{5,9},{1,9}},
Let f: X — X is function define the following shape,

by f(1) =1,f(5 =f(9) =5,
We see f is semi a-continuous function, but is not a-continuous function.
Since, {5} is open set, however, f~1({5}) = {5,9} ¢ t¢

We get on a series relation between the types of functions
Let f : (X,7,) — (Y, 7)) be afunction on a topological space, then,

continuous ——= -continuous A | ——> A-continuous semi
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Figure 1: the relation of ( continuous, A-continuous an semi A-continuous)
3. Concepts and Relationship via Function

We can prove the relation between the a-continuous function, and f is semi-
continuous by the following result,

Theorem 3.1.

If (X,7,)aswell (Y, 7, ) are atopological spaces, and if f: X — Y be
a-continuous function, then f is semi-continuous.

Proof :

Since, f is a-continuous function.

Thus, f~1(A) € Int Cl Intf~1

We have Int ClInt f~1(4) € ClInt f~1(4),

So, f~1(A) c ClInt f~1 (A). Therefore, f is semi-continuous.
Remark 3.2,

The convers of theorem is not necessary true in general. To get this,
We offer the previous counter example as mentioned above.

Example 3.3.

If x=Y={7,8,9}, ,={0,{7},{8},{7,8}, X}, 7, ={0,{7}, {89}, Y},
Therefore, f :X — X,since X =Y.

f: (X, 1) = (X,71,) be semi-continuous. But, f is not a-continuous.
Remark 3.4.

Every continuous function is a-continuous function, so it is semi A-
continuous, on the other hand the convers is not necessarily true as shown by
the following example.

Example 3.5.
If X ={0,1,3,5},and 7, = {@,{0}, X}, lety = {2,4,6},7, = {@,{2},Y}.
The «a-open sets define on space X are,

15 =1, U {{0,1},{0,3},{0,5},{0,1,3},{0,1,5},{0,3,5}},
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So, A-open sets defined on space Y are ; ryA =1, U{2,4}{2,6}

If f:X Y, definedare; f(0)=f(1)=2,f(3)=4,f(4) =6.

Since, fis A-continuous function, however it is not continuous function.
Because {2} is open in space Y, but f~1({2}) = {0,1},

When {0,1} is not open in space X.

To fined semi a-continuous, semi a0(X) = 7%, and semi a O(Y) = 15
Then, f is semi A-continuous function, but it is not continuous,

Since, {2} is open, however f~1({2}) = {0,1}, is not open in X.

Remark 3.6.

every a-continuous function is semi A-continuous, however convers is not
True in general. As, in the example.

Example 3.7.

Let X ={4,68}, t, =1{0,{4},{6},{4,6},X}.

Then, the a-open sets in space X, 72 = 1,.

As, the semi a-open sets in space X, semi a0 (X) = =& U {{6,8}, {4,8}}.
Thus, f: X = X,suchthat f(4) =4,f(6)=f(8) =6,

Therefore, the f is semi a-continuous, but it is not a-continuous.
Since, {6} is open set, but f~1({6}) ={6,8} & t~.

Remark 3.8

Letf:X —>Yand g:Y — Z are two functions, thus f as well g existA-
continuous, Thus fog: X — Z, we don't need to prove a-continuous as
example shows.

Example 3.9.

If X = {4,567}, 7, = {0,{6},{4,6},{4,5,6}, X},

12 =1, U{{56},{6,7},{56,7},{4,6,7}},
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AndY ={0,1,2}, 7, = {0,{2},Y}, 7% =1, u{{0,2},{1,2}},

By, f:X =V, f(x1)=f (x2) =0, f (x3) = f (x4) = 1.

Also, g:Y = Z, g(y1) =9 (v3) =6, 9 (v2) =4

Then f and g are a-continuous, but gof: X — X,

Where gof (x;) = gof(x;) =6, gof(x3) = gof(x,) = 4.

Then, gof is not A-continuous,

Since, {6} be open set of X, but (gof) {6} = {4,5}, be not A-open set of X.

In the next result, we show that , the relationof f : X > Yand g :Y — Z are
continuous Functions, then the composition gof is continuous functions, as in

[1]
Theorem 3.10.

let f:(X1,) - (Y,7,) and g:(Y,7,) > (Z1,) are equally continuous
Function, then the composition gof : (X, t,) = (Z, 7,) is continuous function.

Proof :

If M € ;. Then,g"*(M) € t,,, (by g is continuous).
Since, g"'(M) cY

Therefore, f~1 ( g~1(M)) € 1,. (by f be continuous)
And (f~'o g™ )(M) € 1y,

Thus, (gof)™* (M) €1y, (by (gof)™ =f"rog™).
Then, gof is continuous.

Remarks 3.11.

e The composition of finite number of continuous function is continuous.
To explain this. The composition of four or seven or fifty continuous functions

Is continuous (if f, g, h, k are continuous, so kohogof is continuous).
If f:X =Y, g:Y = Z, are a-continuous, and the arrangement function,
gof 1s not necessary a-continuous.

e Let f:X = Yandg:Y — Z be two functions, then:
If f and g are a-continuous,
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Then, fog: X — Z need not to be a-continuous

as the following example shows:

Example 3.12.

Let X ={0,3,5,7}, 1, ={®,{5},{0,5},{0,3,5}, X}.

And letY = {2,4,6}, 7, ={0,{6},Y}.

If A-open sets in space X, T2 = 1, U {{3,5},{5,7},{5,3,7},{0,5,7} }.

And the A-open sets inspace Y, 75 = 1, U {{2,6},{4,6}}.

define f: X ->Y;f(0)=f(3)=2,f(5)=f(7) = 4.

And g:Y - X;9@2)=g(4)=5,g(6)=0.Thus, f,g are A-continuous.
But, gof : X > X, gof(0) = gof(3) =5, gof(5) = gof(7) =0.
Then, gof, is not a- continuous since {5} is open set of space X,
(gof)~1(5) = {0,3}, but {0,3} be not a-open set of space X.

Definition 3.13. [2]

If f:X — Y.Then, f iscalled a*-continuous, every N is A-open set of Y,
thus =1 (N) be a-open set of X.

Definition 3.14.

Let (X, 7,) and (Y, 7, ) be two topological spaces, and if f: X — Y is called
semi a”-continuous. If and only if each N semi A -opensetofY. Thus,
f~1(N) be asemi A-open set of X.

Proposition 3.15.

A function f : (X,7,) — (Y, 7)) be afunction on topological space,

1. anopen, continuous and bijective. Then, f is A*-continuous function.

2. Then, A*-continuous if and only if, f: (X,7£) = (Y ,t5) are
continuous functions.

Proof :

Let E € 72, toprove f~YE) € 2. Then, f~1(E) € Int Cl Int f~*(E)
If x€ f71(E) = f (x) € (E).And f(x)€ IntClInt E (since, E € 15).
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And so, there follows N open set of Y. Since, f(x) e N € ClIntE.

And x € f~Y(N) € f~(ClInt E). Then, f~1(ClInt E) < CI(f*(IntE)).
(then f~1is continuous, which is same to f is open and bijective)

Thus, x € f~1(N) € CI(f~(Int E)).

Since, x € f~Y(N) € CI(f~*(IntE)) € Cl(Int(f~1(E))), (f is continuous)
Therefore, x € f~1(N) € Cl(Intf~1(N)). But, f~1(N) is open set in X,
Thus, x € Int CL (Int. (f~1(N)). Asaresult, f~2(N) € Int Cl Int(f~1(N)),
Then, f~1(N) € t£. therefore, f is A*-continuous function.

In the same way, we prove (2).

Remark 3.16.

The concepts of continuity and A*-continuity functions are independent. as
shows example below.

Example 3.17.

If X ={0246}, v, ={® {0}, {2,4}{0.24 }X}. Then, w2 =1,.
And Y ={5,67}1, ={0,{5},Y}. Thus, 73} = 7, U {{5,6},{5,7}}.
Define f: X->Y by f(0)=5,f(2)=6,f(4)=f(6)=7.
Then, f is continuous, however it is not A*-continuous.

Since, {56} € 7§y butf1{563}={0,2} & 72
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