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ABSTRACT

In this research, the two-dimensional parabolic integral-differential equation was solved using one of the numerical
methods, which is the finite element method (Galerkin) on triangular elements. This method was chosen to make
extensive use of finite elements because it has many high-quality numerical properties. The main benefit of finite
elements is their ability to solve a wide range of problems in different computational fields in different forms, especially
complex ones that cannot be solved by other numerical methods. Given the semi-discrete error estimates for the normal
space H1, the polynomial linear boundary element space defined in triangles was used to describe space and the inverse
Euler method was used to describe time. The discriminant rules used to differentiate the Volterra integral term are
also chosen to be compatible with time phase diagrams. In addition, the numerical solutions of the two-dimensional
differential integral equation of the equivalent type are compared with the exact solutions, and finally the final results
of the solutions are displayed graphically using MATLAB. Finite element Galerkin error analysis was taken into account
when using a mesh of triangular elements on the differential equation in two-dimensional space.

Keywords: Backward-Euler, Parabolic integro-differential, Quadrature procedures, Two-dimensional, Volterra integral
term

Introduction

The following linear PIDEs are discussed in this
article:

∂ p
∂t

(x, t )+Ap (x, t ) =
t∫

0

B (t, s) p (x, s) ds+ f (x, t ) ,

(x, t ) ∈ � × (0, T] , (1)

p (x, t ) = 0, (x, t ) ∈ ∂� × [0,T] (2)

p (x,0) = u0 (x) , x ∈ �. (3)

Here, � ∈ R2 be a smooth-bordered bounded
domain ∂�, as 0 < T <∞. Further, Ap(x, t ) =
−1p(x, t ), B(t, s)p(x, s) = −∇ · (B(t, s)∇p(x, s)),∇
indicates a spatial gradient and indicates the
Laplacian. Suppose that the coefficient matrix
B(t, s) = {bi j(x; t, s)} is 2× 2 in L∞(�)2×2. Taking
the initial function as a given p0(x) belongs to
H2(�) ∩ H1

0 (�), the source function f (x, t ) belongs
to L2(0;T ; L2(�)) and

max
�̄×{0≤s≤t≤T }

∣∣∣∣ ∂∂x bi j (x; t, s)
∣∣∣∣ <∞,

Ordinary differential equations (ODEs), partial dif-
ferential equations (PDEs), and integro-differential
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equations (IDEs) can all be solved using the extensive
family of numerical and approximation techniques
known as finite element methods (FEMs). The FEMs
are commonly used because they have many high-
quality numerical features. The primary benefit of
FEMs is their ability to solve a wide diversity of
problems in different computational domains with
various shapes. For instance, finite difference meth-
ods (FDMs) can solve problems on rectangular and
triangular meshes, whereas finite element methods
(FEMs) can manage any geometry. The origins of
FEMs can be found in 1940s research by Courant
and others that focused on applying variational ap-
proaches to solve engineering challenges.1 In the
1950s and 1960s, engineers used FEMs to solve and
approximate a wide variety of problems in engi-
neering applications. Beginning in the late 1970s,
the FEMs’ strong mathematical underpinning was
established. A massive number of research papers,
books, and monographs about FEMs and their appli-
cations have been published in the literature since
the 1980s.2

Heat conduction in memory materials,3 compres-
sion of poro-viscoelastic media,4 nuclear reactor
dynamics,5 biological epidemic phenomena,6 and
medication absorption and release7 are just a few
examples of the many physical situations in which
parabolic integro-differential equations (PIDEs) de-
velop. You may find pre-existing and novel solutions
to these types of issues in.8–11

Various techniques, such as spectral methods,
spline and collocation, the method of lines, and
finite-element techniques,12–15 have been devised to
numerically solve such equations. Also finite differ-
ence,16 Hybrid17 and Least-Squares18 methods. The
finite-element method (FEM) stands out as a promis-
ing option because it can be applied to non-regular,
higher-dimensional domains, and convergence analy-
sis for such problems already exists. In,19 the authors
used FEM to solve parabolic integral differential
equations and studied a posteriori error analysis
for space-time discretization of the equation in a
bounded convex polygonal or polyhedral domain.
The piecewise linear finite element spaces are used
for space discretization, while the Crank-Nicolson
method is used for time discretization. Utilizing
nested finite element spaces and the standard energy
technique, the proposed method yields an optimal
order error estimator for the norm. A standard energy
technique coupled with a duality argument is used
to derive an error estimate of order for the semi
discrete solution when the given initial function is
only in time, and20 proves an error estimate of or-
der uniformly in time. A posteriori error estimates
were determined by Reddy and Sinha21 in 2015 for

the linear parabolic integro-differential equations in
a bounded convex polygonal or polyhedral domain
using the semi discrete and implicitly completely dis-
crete backward Euler technique. An important use of
the Ritz-Volterra reconstruction operator is to provide
optimum order a posteriori error estimates in and -
norms, using the linear approximation of the Volterra
integral component. Additionally, the associated a
posteriori error estimates for the reconstruction error
of Ritz-Volterra are determined. Shaw and White-
man investigated a space-time Galerkin finite element
discretization of the linear quasistatic compressible
viscoelasticity problem described by an elliptic par-
tial differential equation with a Volterra (memory)
term in.22 Utilising Galerkin “orthogonality” and the
data stability of a related discrete backward problem,
they obtained an a priori maximum-energy Galerkin-
error estimation.

The article’s reminder is structured as follows: In
Section Weak formation, the weak formulations are
described. In Section Discretizations using Galerkin,
the discretization is designed. The numerical scheme
of the semi-discrete is discussed in Section Numer-
ical scheme of the semi-discrete. The semi-discrete
scheme error estimates are obtained in Section The
semi-discrete of error estimates. In Section Scheme
of Backward-Euler, the scheme of Backward-Euler is
described. In Section Illustration example, a numer-
ical example is given to demonstrate our theoretical
analysis. A simple summary of our work is mentioned
in the last section.

Everywhere in this article, c will stand for a
universally positive constant that is independent,
and h the same time, important integral inequality is
introduced.

t∫
0

τ∫
0

|φ|2dsdτ ≤ c
t∫

0

|φ|2 ds, (4)

where φ is an integrable function in [0, t], t ∈ [0,T].

Weak formation

Given a Lebesgue measurable set �, Lebesgue
spaces are denoted by Lp(�), 1 ≤ p ≤ ∞. The inner
product 〈·, ·〉· is equipped in the space L2(�) when
p = 2. Using the conventional notation for Sobolev
spacesWm,p(ω) with 1 ≤ p ≤ ∞· for an integerm > 0.
Sign toWm,2(�) by Hm(�) when p = 2. The function
space H1

0 (�) is composed of the elements H1(�) that
disappear at ∂�. The boundary values in this case
this should be interpreted as a trace, and the norm in
L2
= L2(�) is ‖ · ‖, while in Hm

= Hm(�) it is ‖ ·‖m.



BAGHDAD SCIENCE JOURNAL 2025;22(3):979–987 981

The differential equation is always rewritten as a
variational equation to begin the derivation of a finite
element method. This so-called variational formula-
tion is created by multiplying equation Eq. (1) by a
test function v ∈ H1

0 (�) and using Green’s formula.
The variational problem is what get here: Find p :
[0,T]→ H1

0 (�) where, for all t ∈ (0,T]

∫
�

∂ p
∂t
vdx+ a (p, v) =

t∫
0

b (t, s; p (s) , v) ds

+

∫
�

f vdx ∀v ∈ H1
0 (�) , p (·,0) = p0. (5)

Where

a (p, v) = (∇p,∇v) ∀p, v ∈ H1
0 (�)

and

b (t, s; p (s) , v) = (B (t, s)∇p (s) ,∇v)

∀p (s) , v ∈ H1
0 (�) .

Discretizations using Galerkin

First, some definitions of projection and its charac-
teristics are given. Let Xh indicates a uniform division
of � into overlapping triangles K of diameter Kh,
so that �̄ = ∪K∈Th K̄ every pair of triangles intersects
either at a vertex, along an entire edge, or not at all;
also, no triangle’s vertex is located inside the side
of another triangle’s interior. Let Vh represent the
H1

0 (�) finite dimensional subspaces described by

Vh =
{
vh ∈ H1

0 (�) ; vh|K ∈ P1 (K) ∀ K ∈ Xh
}

Where P1 is the space of polynomials of degree at
most 1, and Vh satisfy the following inverse property

inf
vh∈Vh

{
‖v− vh‖ + h‖v− vh‖1

}
≤ Ch2

‖v‖2,

∀ v ∈ H2
∩ H1

0 , (6)

Numerical scheme of the semi-discrete

First, consider the problem of finding semi-discrete
ph : [0,∞)→ Vh such that(
ph,t , vh

)
+ a (ph, vh)

=

t∫
0

(b (t, s; ph (s) , vh) ds

+
(
f, vh

)
, ∀ vh ∈ Vh (7)

In,23 the existence results are covered in detail.
Please see24 for outcomes, regularity results, and sta-
bility results in25 such problems. Now a numerical
chart is displayed. Let Vh = span {ϕi}Ni=1. Then, any
ph ∈ Vh have the following expression:

ph =
N∑
i=1

pi ϕi,

Choosing vh = ψ j, j = 1,2, . . . ,N in (6), then
Eq. (6) can be expressed in the matrix form as shown
below:

APt + BP =
t∫

0

QP (s) ds+ F. (8)

Where

A =
(
ϕi (x) , ψ j (x)

)
N×N,

B =
(
∇ϕi (x) ,∇ψ j (x)

)
N×N,

Q =
(
B (t, s)∇ϕi (x) ,∇ψ j (x)

)
N×N,

F =
(
f, ψ j

)
N× 1,

P = (p1, p2, p3, . . . , pN )T .

The semi-discrete of error estimates

In this paragraph, Galerkin finite element method
error estimates used in this article are presented. The
following projection operator is required to acquire
the error estimates: Let 5h : H1

0 (�)→ Vh is the stan-
dard Ritz projection defined by

a ((p−5hp) , vh) = 0, ∀vh ∈ Vh. (9)

The following outcomes are well known to hold21

‖p−5hp‖ + h‖p−5hp‖1 ≤ Ch2
‖p‖2. (10)

Errors were analyzed as follows to obtain prior er-
ror estimates:

p− ph = (p−5hp)+ (5hp− ph) = ρ + θ.

Applying Eqs. (4) and (6) and supporting projection
Eq. (8), the error equation is obtained in θ as

(θt , vh)+ a (θ, vh)

= − (ρt , vh)+
t∫

0

(b (t, s; θ (s) , vh) ds, ∀vh ∈ Vh. (11)
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Now, it is shown how p− ph error estimates are
made.

Theorem: Suppose that p(t ) with ph(t ) ∈ Vh are the
solutions of Eq. (6) and Eq. (10). respectively, then for
each T > 0 there is a constant CT , therefore

‖p− ph ‖1 ≤ ≤ Ch

‖p‖2 + h T∫
0

‖pt‖2dt


Proof: Estimate ρ of can be obtained from Eq. (9),

to estimate θ . We set vh = θ in Eq. (10) and obtain

(θt , θ )+ a (θ, θ ) = − (ρt , θ )+
t∫

0

(b (t, s; θ (s) , θ ) ds

(12)

Using the Schwarz inequality, then Eq. (12) it
becomes

1
2
d
dt
‖θ‖2 + a (θ, θ ) = − (ρt , θ )+

t∫
0

(b (t, s; θ (s) , θ ) ds.

(13)

Taking this equation’s integral from 0 to t and el-
lipticity of a

‖θ (T ) ‖21 +
T∫

0

‖θ‖21dτ ≤ C

‖θ (0) ‖21 +
T∫

0

‖ρt‖1

· ‖θ‖1dt +
T∫

0

t∫
0

‖θ (s) ‖1‖θ (t ) ‖1dsdt

 (14)

2‖θ (T ) ‖21 ≤ C

‖θ (0) ‖21 +
T∫

0

‖ρt‖1 · ‖θ‖1dt

+

T∫
0

t∫
0

‖θ (s) ‖1‖θ (t ) ‖1dsdt

 (15)

‖θ (T ) ‖21 ≤ C

‖θ (0) ‖21 +
T∫

0

‖ρt‖1 · ‖θ‖1dt

+

T∫
0

t∫
0

‖θ (s) ‖1‖θ (t ) ‖1dsdt

 (16)

Noting that θ (0) = 0, these yields

‖θ (T ) ‖21 ≤ C

 T∫
0

‖ρt‖1 · ‖θ‖1dt

+

T∫
0

t∫
0

‖θ (s) ‖1‖θ (t ) ‖1dsdt

 (17)

Using Eq. (4) with a suitable choice of c for the
double integral, getting

‖θ (T ) ‖21 ≤ C

 T∫
0

‖ρt‖1 · ‖θ‖1dt +
t∫

0

‖θ (s) ‖21dt


(18)

‖θ (T ) ‖1 ≤ C

 T∫
0

‖ρt‖1dt +
t∫

0

‖θ (s) ‖1dt

 (19)

In order to solve the above equation using Gronwall
inequalities,26 one must

‖θ (T ) ‖1 ≤ C

 T∫
0

‖ρt‖1dt

 (20)

From Eq. (10) obtaining

‖θ (T ) ‖1 ≤ C

(
T∫
0
‖ρt‖1dt

)
≤ Ch2

(
T∫
0
‖pt‖2dt

)
(21)

Then, by the triangle inequality

‖p− ph ‖1 = ‖p−5hp+5hp− ph‖1
≤ ‖p−5hp‖1 + ‖5hp− ph‖1
≤ ‖ρ‖1 + ‖θ‖1

≤ Ch‖p‖2 +Ch2

 T∫
0

‖pt‖2dt



≤ Ch

‖p‖2 + h T∫
0

‖pt‖2dt

 (22)

Here, the proof is complete.

Scheme of Backward-Euler

The partition of [0,T] be 0 = t0 < t1 <
· · · < tn < · · · < tN = T with 1t = tn − tn−1,
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n = 1,2, . . . ,N indicate a time grid. There-
fore, the fully discrete backward-Euler scheme
can be written as follows: find pn ∈ H1

0 (�) ∩
{V = {v ∈ C(�̄) : v|K ∈ P1 ∀K ∈ Xh}}, n ∈ [1 : N],
where(
pn − pn−1

1t
, v
)
+ a

(
pn, v

)
= δn

(
b
(
tn; p, v

))
+
(
f n, v

)
, ∀v ∈ V (23)

if the left rectangular rule is used to discretize the
integral term, or

δn
(
b
(
tn; p, v

))
=

〈n−1∑
j=0

τ j+1B
(
tn, t j

)
∇p

(
t j
)
,∇v

〉
, (24)

and, if one applies the right rectangle rule, to have

δn
(
b
(
tn; p, v

))
=

〈 n∑
j=1

τ jB
(
tn, t j

)
∇p

(
t j
)
,∇v

〉
, (25)

and

a
(
pn, v

)
=
(
∇pn,∇v

)
. (26)

As a result, the discrete problem Eq. (6) is: pnh ∈ Vh(
pnh − p

n−1
h

1t
, vh

)
+ a

(
pnh, vh

)
= δn

(
b
(
tn; ph, vh

))
+
(
f n, vh

)
, ∈ Vh (27)

find pnh =
∑M

j=1 pn(w j, tn)φ j(x) ∈ Rm and vh = ∅ j
where after simplify, getting

(M +1tA) pn = Mpn−1
++1tbn + (1t )2

A
(
B (tn, t0) p0

+ B (tn, tn−1) pn−1) (28)

where M is a mass matrix, A is a stiffness matrix and
bn is a load vector.

Illustration example

The purpose of this section is to provide an
illustration to demonstrate the theoretical side dis-
covered in the previous section. Suppose that � =
[−1, 1]2

\[−1, 0]× [0, 1] is the L-shaped domain
and T = 0.1. The exact solution u(x, y, t ) and fours

Fig. 1. The levels of grid at h = 1
5 ,

1
10 ,

1
20 ,

1
40 .
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Fig. 2. The exact and numerical solution at h = 1
5 .

Fig. 3. The exact and numerical solution at h = 1
10 .

Fig. 4. The exact and numerical solution at h = 1
20 .

function f (x, t ) for (1) are selected as

u
(
x, y, t

)
= e−π2t sin (πx) sin

(
πy
)
,

f
(
x, y, t

)
= (1− 2t )π2u

(
x, y, t

)
and

B (t, s) = e(−π
2(t−s))

This is a kernel that appears in various contexts in
several of the older references. The exact numerical
solutions and H1 error of the GFEM Eq. (27) is shown
in Table 1 at 1t = .00125, the convergence rates of
the GFEM Eq. (27) are shown in Table 2. Fig. 1 depicts
the grid levels at h = 1

5 ,
1
10 ,

1
20 ,

1
40 and T = 0,1. In

Figs. 2 to 4, the exact and numerical solution are
shown at h = 1

5 ,
1
10 ,

1
20 , respecting, In Fig. 5, the error

of the GFEM Eq. (27)
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Fig. 5. Error of the GFEM Eq. (27).

Results and discussion

Table 1. The exact, numerical solutions and H1 error of the
GFEM Eq. (27).

h N The exact The numerical The error

1/5 258 2.6304e-01 3.7013e-01 1.0709e-01
1/10 978 3.7269e-01 2.7139e-01 1.0235e-01
1/20 4086 3.7270e-01 −3.7261e-01 1.0061e-01
1/40 16,406 3.7271e-01 2.7212e-01 1.0059e-01
1/80 66,142 3.7271e-01 2.7226e-01 1.0045e-01

Table 2. Convergence rates of the GFEM Eq. (27).

h N Rate

1/5 258 6.5313e-02
1/10 978 2.4737e-02
1/20 4086 2.8682e-04
1/40 16,406 2.0093e-03

Conclusion

In this article, GFEM error analysis was considered
when using a mesh of triangular elements on the
PIDE in 2D. Utilizing piecewise linear finite element
space on triangles and the backward-Euler method
for space and time discretization, respectively. The
optimal order error constraints are obtained in the
H1
−norm. The associated convergence rates are

shown in Table 2. Observations indicate that the
convergence rate is roughly equal to 2. As predicted
by the theorem, these results demonstrate that the
GFEM has optimal order convergence rates for the
unknown function. In our next work, how to apply
this approach to the analysis of nonlinear integral
differential equations will be discussed. This will be
done in anticipation of future work.

Acknowledgment

The cooperation of Al-Ayen University in Thi-Qar
is appreciated.

Authors’ declaration

• Conflicts of Interest: None.
• We hereby confirm that all the Figures and Ta-

bles in the manuscript are ours. Furthermore, any
Figures and images, that are not ours, have been
included with the necessary permission for re-
publication, which is attached to the manuscript.

• No animal studies are present in the manuscript.
• No human studies are present in the manuscript.
• Ethical Clearance: The project was approved

by the local ethical committee at University of
Thi Qar.

Authors’ contribution statement

A. K. A came up with the idea for the article and
he also directed the overall endeavour, developed
the source code, and produced the paper. S. K. A
reviewed the work step by step and made suggestions
to improve the scientific and linguistic worth.

References

1. Courant R. Variational methods for the solution of problems
equilibrium and vibrations. Bull Amer Math Soc. 1943;49:1–
23. http://dx.doi.org/10.1090/S0002-9904-1943-07818-4.

2. Zienkiewicz O, Taylor RL, Zhu JZ. The Finite Element Method:
Its Basis and Fundamentals. 7th edition. UK: Butterworth-
Heinemann. 2013;704 p. https://doi.org/10.1016/c2009-0-
24909-9.

3. Wang P, Huo J, Wang X-M, Wang B-H. Diffusion and mem-
ory effect in a stochastic process and the correspondence
to an information propagation in a social system. Physica A
Stat Mech Appl. 2022;607:128206. https://doi.org/10.1016/j.
physa.2022.128206.

4. Hosseini-Farid M, Ramzanpour M, McLean J, Ziejewski M,
Karami G. A poro-hyper-viscoelastic rate-dependent constitu-
tive modeling for the analysis of brain tissues. J Mech Behav
Biomed Mater. 2020;102:103475. https://doi.org/10.1016/j.
jmbbm.2019.103475.

5. Han H, Zhang C. Asymptotical stability of neutral reaction-
diffusion equations with PCAS and their finite element
methods. Acta Math Sci. 2023;43:1865–1880. https://doi.
org/10.1007/s10473-023-0424-9.

6. Barbeiro S, Ferreira JA. Integro-differential models for percu-
taneous drug absorption. Int J Comput Math. 2007;84(4):451–
467. https://doi.org/10.1080/00207160701210091.

7. Hussain KH, Hamoud AA, Mohammed NM. Some new
uniqueness results for fractional integro-differential equa-
tions. Nonlinear Funct. Anal Appl. 2019;24(4):827–836.

8. Mohammad M, Trounev A. Fractional nonlinear Volterra–
Fredholm integral equations involving Atangana–Baleanu
fractional derivative: Framelet applications. Adv Differ
Equ. 2020;2020:1–15. https://doi.org/10.1186/s13662-020-
03042-9.

9. Ahmed A. Existence and stability results for fractional
volterra-fredholm integro-dierential equation with mixed con-
ditions. Adv Dyn Syst Appl. 2021;16(1):217–236. https://doi.
org/10.37622/adsa/16.1.2021.217-236.

http://dx.doi.org/10.1090/S0002-9904-1943-07818-4
https://doi.org/10.1016/c2009-0-24909-9
https://doi.org/10.1016/c2009-0-24909-9
https://doi.org/10.1016/j.physa.2022.128206
https://doi.org/10.1016/j.physa.2022.128206
https://doi.org/10.1016/j.jmbbm.2019.103475
https://doi.org/10.1016/j.jmbbm.2019.103475
https://doi.org/10.1007/s10473-023-0424-9
https://doi.org/10.1007/s10473-023-0424-9
https://doi.org/10.1080/00207160701210091
https://doi.org/10.1186/s13662-020-03042-9
https://doi.org/10.1186/s13662-020-03042-9
https://doi.org/10.37622/adsa/16.1.2021.217-236
https://doi.org/10.37622/adsa/16.1.2021.217-236


986 BAGHDAD SCIENCE JOURNAL 2025;22(3):979–987

10. Sivasankar S, Udhayakumar R. Hilfer fractional neutral
stochastic volterra integro-differential inclusions via almost
sectorial operators. Mathematics. 2022;10(12):1–19. https://
doi.org/10.3390/math10122074.

11. Gebril E, El-Azab MS, Sameeh M. Chebyshev collocation
method for fractional Newell-Whitehead-Segel equation. Alex
Eng J. 2024;87:39–46. https://doi.org/10.1016/j.aej.2023.
12.025.

12. Behera S. Ray SS. An efficient numerical method based
on Euler wavelets for solving fractional order panto-
graph Volterra delay-integro-differential equations. J Com-
put Appl Math. 2022;406:113825. https://doi.org/10.1016/
j.cam.2021.113825.

13. Xu D. Numerical solution of partial integro-differential equa-
tion with a weakly singular kernel based on Sinc methods.
Math Comput Simul. 2021;190:140–158. https://doi.org/10.
1016/j.matcom.2021.05.014.

14. Ali I, Yaseen M, Khan S. Addressing volterra partial integro-
differential equations through an innovative extended cubic
B-Spline collocation technique. Symmetry. 2023;15(10):1851.
https://doi.org/10.3390/sym15101851.

15. Reddy GMM, Sinha RK, Cuminato JA. A posteriori error anal-
ysis of the Crank-Nicolson finite element method for parabolic
integro-differential equations. J Sci Comput. 2019;79:414–
441. https://doi.org/10.1007/s10915-018-0860-1.

16. Rasheed MA, Kadhim SN. Numerical solutions of two-
dimensional vorticity transport equation using crank-nicolson
method. Baghdad Sci J. 2022;19(2):321–328. https://doi.org/
10.21123/bsj.2022.19.2.0321.

17. Al-Rozbayani AM, Al-Botani ZM. Solving whitham-broer-
kaup-like equations numerically by using hybrid differential
transform method and finite differences method. Baghdad Sci
J. 2022;19(1):64–70. https://doi.org/10.21123/bsj.2022.19.
1.0064.

18. Noon NJ. Numerical analysis of least-squares group finite
element method for coupled Burgers’ problem. Baghdad Sci
J. 2021;18(4(Suppl.)):1521–1535. https://doi.org/10.21123/
bsj.2021.18.4(Suppl.).1521.

19. Abd SK, Jari RH. Super convergence of finite element ap-
proximations for elliptic problem with Neumann boundary
condition. Proceedings of the 1st International Conference on
Advanced Research in Pure and Applied Science (ICARPAS
2021): Third Annual Conference of Al-Muthanna Univer-
sity/College of Science, 24–25 March 2021, Al-Samawah,
Iraq. AIP Conf. Proc. 2022. 2398(1):060076. https://doi.org/
10.1063/5.0093736.

20. Pani AK, Sinha RK. Error estimates for semidiscrete
Galerkin approximation to a time dependent parabolic
integro-differential equation with nonsmooth data. Calcolo.
2000;37:181–205. https://doi.org/10.1007/s100920070001.

21. Reddy GMM, Sinha RK. Ritz–Volterra reconstructions and
a posteriori error analysis of finite element method for
parabolic integro-differential equations. Equations. IMA J.
Numer. Anal. 2015;35(1):341–371. https://doi.org/10.1093/
imanum/drt059.

22. Shaw S, Whiteman JR. Numerical solution of linear
quasistatic hereditary viscoelasticity problems. SIAM J.
Numer. Anal. 2000;38(1):80–97. https://doi.org/10.1137/
S0036142998337855.

23. Al-Humedi HA, Al-Abadi AK. Analysis of error estimate for ex-
panded H1 - Galerkin MFEM of PIDEs with nonlinear memory.
International Conference on Emergency Applications in Mate-
rial Science and Technology (ICEAMST 2020), 30–31 January
2020, Namakkal, India. AIP Conf Proc. 2020;2235(1):20010.
http://dx.doi.org/10.1063/5.0007637.

24. Yanik EG, Fairweather G. Finite element methods for
parabolic and hyperbolic partial integro-differential equa-
tions. Nonlinear Anal Theory Methods Appl. 1988;12(8):785–
809. https://doi.org/10.1016/0362-546X(88)90039-9.

25. Kumar L, Sista SG, Sreenadh K. Finite element analysis of
parabolic integro-differential equations of Kirchhoff type.
Math Methods Appl Sci. 2020;43:9129–9150. https://doi.org/
10.1002/mma.6607.

26. Barich F. Some gronwall–bellman inequalities on time
scales and their continuous forms: A survey. Symmetry.
2021;13(2):198. https://doi.org/10.3390/sym13020198.

https://doi.org/10.3390/math10122074
https://doi.org/10.3390/math10122074
https://doi.org/10.1016/j.aej.2023.12.025
https://doi.org/10.1016/j.aej.2023.12.025
https://doi.org/10.1016/j.cam.2021.113825
https://doi.org/10.1016/j.cam.2021.113825
https://doi.org/10.1016/j.matcom.2021.05.014
https://doi.org/10.1016/j.matcom.2021.05.014
https://doi.org/10.3390/sym15101851
https://doi.org/10.1007/s10915-018-0860-1
https://doi.org/10.21123/bsj.2022.19.2.0321
https://doi.org/10.21123/bsj.2022.19.2.0321
https://doi.org/10.21123/bsj.2022.19.1.0064
https://doi.org/10.21123/bsj.2022.19.1.0064
https://doi.org/10.21123/bsj.2021.18.4(Suppl.).1521
https://doi.org/10.21123/bsj.2021.18.4(Suppl.).1521
https://doi.org/10.1063/5.0093736
https://doi.org/10.1063/5.0093736
https://doi.org/10.1007/s100920070001
https://doi.org/10.1093/imanum/drt059
https://doi.org/10.1093/imanum/drt059
https://doi.org/10.1137/S0036142998337855
https://doi.org/10.1137/S0036142998337855
http://dx.doi.org/10.1063/5.0007637
https://doi.org/10.1016/0362-546X(88)90039-9
https://doi.org/10.1002/mma.6607
https://doi.org/10.1002/mma.6607
https://doi.org/10.3390/sym13020198


BAGHDAD SCIENCE JOURNAL 2025;22(3):979–987 987

 

التفاضلية  المحدودة لـلمعادلاتتحليل تقديرات الخطأ بطريقة كالركن للعناصر 

 مثلث خطي التكاملية ذات النمط المكافئ على عنصر

 

علي كامل العبادي
1،2 

 شروق كامل عبد، 
3 

1
.العراق ،ذي قار  ،  وزارة التربية، مديرية تربية ذي قار   

جامعة العين، ذي قار، العراقوزارة التعليم العالي والبحث العلمي،   
2
 
 3

 ، العراق.جامعة ذي قار ،كلية علوم الحاسبات والرياضيات 

 

  ،التكاملي، ثنائي الأبعاد فولتيرحد   ،المكافئ من النوعالمعادلة التكاملية التفاضلية أويلر الخلفي، إجراءات التربيع،  ة:الكلمات المفتاحي

 

 ةالخلاص

احدى الطرق العددية وهي طريقة العناصر  الثنائية باستخدامفي هذا البحث تم حل المعادلة التكاملية التفاضلية المكافئة ذات الابعاد  

تم اختيار هذه الطريقه للا ستفادة على نطاق واسع من العناصر المحدودة لأنها تحتوي على  .المحدودة )جالركين( على العناصر المثلثة

عة واسعة من المشاكل في العديد من الخصائص العددية عالية الجودة. الفائدة الأساسية للعناصر المحدودة هي قدرتها على حل مجمو

المجالات الحسابية المختلفة بأشكال مختلفة وخصوصا المعقده منها والتي لايمكن حلها بالطرق العددية الاخرى. نظرًا لتقديرات الخطأ 

المساحة وتم ، تم استخدام مساحة عنصر الحدود الخطية متعددة الحدود المحددة في المثلثات لوصف 𝐻1شبه المنفصلة للمساحة الطبيعية 

 استخدام طريقة أويلر العكسية لوصف الوقت. يتم أيضًا اختيار القواعد التمييزية المستخدمة للتمييز بين مصطلح فولتيرا المتكامل لتكون

بعاد من النوع الأ التفاضلية ثنائيةمتوافقة مع مخططات المرحلة الزمنية. بالإضافة إلى ذلك، تتم مقارنة الحلول العددية للمعادلة التكاملية 

. وتم أخذ تحليل خطأ جالركين MATLABالمكافئ مع الحلول الدقيقة، وأخيراً يتم عرض النتائج النهائية للحلول بيانياً باستخدام برنامج 

 للعنصر المحدود بعين الاعتبار عند استخدام شبكة من العناصر المثلثة على المعادلة التفاضلية في الفضاء ثنائي الأبعاد.
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