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Abstract: The representation of data through a 

Gaussian model allows it to be more flexible, 

effectively handle distortions, and avoid over-

adaptation to the data. This approach helps improve 

the model's accuracy and understand how outliers 

impact the accuracy of the distribution parameters 

estimator . 

In this research, a comparison was made between 

some methods for estimating Gaussian distribution 

parameters in analyzing the Survival Function 

using Rank Regression on the dependent variable 

and then on the independent variable, in addition to 

the maximum likelihood estimator method in the 

presence (and absence) of outliers in the 

distribution data. The mean square error criterion 

for the estimated parameters and the chi-square 

goodness-of-fit test were relied upon to compare 

the three methods through a simulation study for 

several parameter values and different sample sizes 

repeated (1000) times, in addition to real data 

representing the survival time of early breast cancer 

patients through a program in the MATLAB 

program designed for this purpose, in addition to 

the Easy-Fit program. The results of the study 

showed that the method of maximum likelihood 

estimators was superior in the absence of outliers 

in the Gaussian distribution data, while the method 

of estimating the rank regression on the 

independent variable was superior in the presence 

of outliers. 
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تقدير معلمات توزيع كاوسيان باستخدام انحدار الرتبة ومقارنتها مع مقدرات 

 الامكان الأعظم 
 

 ر إسراء عوني حيد

 كلية الإدارة والاقتصاد/ جامعة صلاح الدين، أربيل

 مستخلص ال

فعال يسمح تمثيل البيانات من خلال نموذج كاوسيان بأن يكون أكثر مرونة، ويتعامل بشكل   

مع التشوهات، ويتجنب الإفراط في التكيف مع البيانات. يساعد هذا النهج على تحسين دقة النموذج  

تم في هذا البحث المقارنة بين بعض   وفهم كيفية تأثير القيم المتطرفة على دقة مقدرّ معلمات التوزيع.

طرائق تقدير معلمات توزيع كاوسيان في تحليل دالة البقاء باستخدام انحدار الرتبة على المتغير التابع  

ومن ثم على المتغير المستقل فضلاً عن طريقة مقدرات الامكان الأعظم وذلك بوجود )وعدم وجود( 

الاعت تم  التوزيع.  بيانات  الشاذة في  المقدرة  القيم  للمعلمات  التربيعي  الخطأ  ماد على معيار متوسط 

رائق الثلاث من خلال دراسة المحاكاة لعدة قيم  واختبار جودة المطابقة كاي تربيع للمقارنة بين الط

( مكرره  مختلفة  عينات  واحجام  البقاء 1000معلمات  وقت  تمثل  حقيقية  بيانات  عن  فضلاً  مرة   )

لمرضى سرطان الثدي المبكر من خلال برنامج بلغة ماتلاب صمم لهذا الغرض فضلاً عن برنامج  

(Easy-Fit توصلت نتائج الدراسة الى تفوق طريقة مقدرات الإمكان الأعظم في حالة عدم وجود .)

قيم شاذة في بيانات توزيع كاوسيان في حين تفوقت طريقة تقدير انحدار الرتبة على المتغير المستقل  

 في حالة وجود القيم الشاذة.

 توزيع كاوسيان، تقدير الامكان الأعظم، دالة البقاء، انحدار الرتبة والقيم الشاذة.  ت المفتاحية:الكلما

1. Introduction 

  The Gaussian distribution is one of the most important statistical 

distributions in mathematics and statistics. The Gaussian distribution is 

characterized by a bell-shaped curve, where the majority of values cluster 

around a central mean, gradually decreasing towards lower and higher 

values. The survival function, often denoted as S(t) or survival probability, 

is a concept commonly used in statistics, probability theory, and survival 

analysis. It is a fundamental concept in understanding the probability of an 

event or entity surviving beyond a certain time or age (Ahn & Reinsel, 1988, 

p.852). Survival analysis is a statistical approach that is particularly useful 

in fields like epidemiology, medicine, biology, and engineering, where the 

focus is on the time until an event of interest occurs, such as the failure of a 

system, the onset of a disease, or the death of individuals in a population. 

The S(t) is defined as the probability that a random variable T (representing 

the time until the event of interest occurs) is greater than or equal to a specific 

time t.  

http://www.doi.org/10.25130/tjaes.21.69.1.18
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  The estimation process is considered one of the pillars of the 

statistical inference process, in addition to testing hypotheses. Through 

estimation, information and conclusions are collected about a parameter or 

parameters of the population based on the results extracted from the sample 

drawn from that population (Raza et al. 2018, p. 134). To obtain estimators 

with good characteristics, especially if there is more than one way to estimate 

a parameter, this leads to studying the comparison between these estimators 

to choose the best one, based on statistical criteria, the most important of 

which is the mean square error. 

  Outliers can have a significant impact on estimating the parameters 

of a Gaussian distribution (also known as a normal distribution). The 

presence of outliers can skew parameter estimates and lead to inaccurate 

results. Here's how outliers affect parameter estimation in a Gaussian 

distribution (Mustafa & Ali, 2013: 194), Maximum Likelihood Estimators 

(MLEs) are commonly used to estimate the parameters of a Gaussian 

distribution. The MLEs for the mean and variance are sensitive to outliers. 

When outliers are present, these estimators may be biased, and the parameter 

estimates may not accurately represent the underlying Gaussian distribution. 

Rank regression is a statistical technique that is used when you want to 

estimate a relationship between variables, but the assumptions of traditional 

linear regression may not be met. Instead of modelling the relationship 

between the variables in terms of their means (as in ordinary least squares 

regression), rank regression focuses on estimating the relationship based on 

the ranks of the observations. In the context of estimating a Gaussian 

(normal) distribution, rank regression can be useful when you have data that 

may not meet the assumptions of normality or when you suspect outliers in 

your data. Rank-based methods can be more robust in such cases. This 

introduces two methods for the parameter estimation of lifetime 

distributions. Rank Regression (RR) fits a straight line through transformed 

plotting positions and Maximum likelihood (ML) strives to maximize a 

function of the parameters given the sample data (Murali, 2016, p. 167). If 

the parameters are obtained, a cumulative distribution function (CDF) can be 

computed and added to a probability plot. 

2. Theoretical Aspect: The theoretical aspect included the basic concepts of 

the Gaussian distribution and some methods for estimating its parameters 

and criteria for the efficiency of the estimated models. 

http://www.doi.org/10.25130/tjaes.21.69.1.18
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2-1. Survival Function: The survival function is a function that gives 

the probability that a patient, device, or other object of interest 

will survive past a certain time. The survival function is also known as 

the survivor function or reliability function (Ali & Jwana, 2022, p.18).  

Let the lifetime T be a continuous random variable with cumulative hazard 

function F(t) and hazard function f(t) on the interval [0,∞). Its survival 

function or reliability function is: 

S(t) = P(T > t) = ∫ f(u)du = 1 − F(t)           (1)
∞

t

 

2-2. Gaussian Distribution: Gaussian distribution, is a probability 

distribution that is symmetric about the mean, showing that data near the 

mean are more frequent in occurrence than data far from the mean. In 

graphical form, the normal distribution appears as a "bell curve", (Ali et al. 

2022, p. 441). Normal distributions are important in statistics and are often 

used in the natural and social sciences to represent real-valued random 

variables whose distributions are not known. In the field of statistics, the 

normal distribution, also known as the Gaussian distribution, is a 

fundamental concept. It serves as a continuous probability distribution model 

for real-valued random variables (Hussein et al. 2023, p. 41). The probability 

density function that defines this distribution is expressed as follows: 

f(t) =
1

σ√2π
e

−1
2 (

t−μ
σ )

2

                              (2) 

Where:  

(μ): The average, or mean, of the normal distribution representing the time-

to-failure, is commonly denoted as (T̅). 

(σ): Is the symbol representing the standard deviation for the times-to-

failure.  

It is a 2-parameter distribution with parameters (μ or T̅) and σ (i.e., the mean 

and the standard deviation, respectively). 

2-3. The Estimation: Estimation is the process by which the numerical value 

of unknown population values is inferred from incomplete data, such as a 

sample (Shahla et al. 2023, p. 140). Parameter estimation means using 

sample data (like times-to-failure or success data) to make educated guesses 

about distribution parameters. There are various methods available for 

http://www.doi.org/10.25130/tjaes.21.69.1.18
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parameter estimation (Esraa et al. 2023). There are several ways to estimate 

normal distribution parameters : 

-Maximum Likelihood Estimation – MLE  

- Method of Moments Estimation 

- Kernel Density Estimation 

- Graphical Methods 

- Rank Regression on Y 

- Rank Regression on X 

2-3-1. Maximum Likelihood Estimation: For many distributions, 

maximum likelihood estimation (MLE) is a common and powerful method 

to estimate parameters. MLE aims to find parameter values that maximize 

the likelihood of observing the given data (Omar et al. 2020, p. 58). The 

equations for the partial derivatives of the log-likelihood function are derived 

and given next: 

∂Λ

∂μ
=

1

σ2
∑(ti − μ)

N

i=1

= 0 

And: 

∂Λ

∂σ
= ∑ (

ti − μ

σ3
−

1

σ
)

N

i=1

 = 0 

2-3-2. Rank Regression on Y: Performing rank regression on Y requires 

that a straight line be fitted to a set of data points such that the sum of the 

squares of the vertical deviations from the points to the line is minimized 

(Kareem et al. 2020, p. 251). The following equations for regression on Y 

were derived: 

𝐚̂ = 𝐛̅ − 𝐛̂𝐱̅  

=
∑ 𝐲𝐢

𝐍
𝐢=𝟏

𝐍
− 𝐛̂

∑ 𝐱𝐢
𝐍
𝐢=𝟏

𝐍
 

And:  

𝐛̂ =
∑ 𝐱𝐢𝐲𝐢 −

∑ 𝐱𝐢
𝐍
𝐢=𝟏 ∑ 𝐲𝐢

𝐍
𝐢=𝟏

𝐍
𝐍
𝐢=𝟏

∑ 𝐱𝐢
𝟐𝐍

𝐢=𝟏 −
(∑ 𝐱𝐢

𝐍
𝐢=𝟏 )𝟐

𝐍

 

In the case of the normal distribution, the equation for yi and xi are (Chen et 

al., 2016: 3337): 

𝐲𝐢 = 𝛟−𝟏[𝐅(𝐭𝐢)]                      (𝟑) 

http://www.doi.org/10.25130/tjaes.21.69.1.18
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And: xi = ti, where the values [𝐅(𝐓𝐢)] are estimated from the median ranks, 

solve the above linear equation for the unknown value of y which 

corresponds to (George & Roger, 2020, p. 315): 

𝐱 = −
𝐚̂

𝐛̂
+  

𝟏

𝐛̂
𝐲                       (𝟒) 

Solving for the parameter, we get: 

𝛍̂ = −𝐚̂ 𝛔̂                           (𝟓) 

And: 

 𝛔 ̂ =  𝟏 𝐛̂⁄                           (𝟔) 

2-3-3. Rank Regression on X: Performing rank regression on X requires 

that a straight line be fitted to a set of data points such that the sum of the 

squares of the vertical deviations from the points to the line is minimized 

(Jasim et al. 2023. P. 99). The best–fitting straight line for the data, for 

regression on X, is the straight line: 

𝒙 = 𝒂̂ − 𝒃̂𝒚                     (𝟕) 

The corresponding equations (David & Smith, 1972, p. 115), for 

𝐚̂ and 𝐛̂ are: 

𝒂̂ =  𝒙̅ − 𝒃̂𝒚̅ =
∑ 𝒙𝒊

𝑵
𝒊=𝟏

𝑵
− 𝒃̂

∑ 𝒚𝒊
𝑵
𝒊=𝟏

𝑵
 

And: 

𝒃̂ =
∑ 𝒙𝒊𝒚𝒊 −

∑ 𝒙𝒊
𝑵
𝒊=𝟏 ∑ 𝒚𝒊

𝑵
𝒊=𝟏

𝑵
𝑵
𝒊=𝟏

∑ 𝒚𝒊
𝟐𝑵

𝒊=𝟏 −
(∑ 𝒚𝒊

𝑵
𝒊=𝟏 )𝟐

𝑵

 

Where: 

𝐲𝐢 = 𝛟−𝟏[𝐅(𝐭𝐢)] 

And:                            xi = ti 

  Where the values [𝐅(𝐓𝐢)] are estimated from the median ranks, solve 

the above linear equation for the unknown value of y which corresponds to 

(Douglas, 2012: 86): 

𝐲 = −
𝐚̂

𝐛̂
+  

𝟏

𝐛̂
𝐱                          (𝟖) 

Solving for the parameter, we get: 

𝐚 = −
𝐚̂

𝐛̂
= −

𝛍

𝛔
⟹ 𝛍̂ = 𝐚̂              (𝟗) 
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And: 

b = 
𝟏 

𝐛̂
=

𝟏

𝛔
⇒ 𝛔̂ = 𝐛̂                    (𝟏𝟎) 

2-4. Outliers in the data: In statistics, an outlier is a data point that differs 

significantly from other observations. An outlier may be due to a variability 

in the measurement, an indication of novel data, or it may be the result of 

experimental error, the latter are sometimes excluded from the data set 

(Represent Scores that are unusually large or small relative to other scores). 

Outliers can seriously affect the integrity of data and result in biased or 

distorted sample statistics and faulty conclusions (Liu et al. 2012, 176). 

Several criteria have been suggested for identifying obvious and not-so-

obvious outliers. According to one criterion, an outlier is any score that falls 

outside of the interval given by: 

Mdn ± 2(Q3 − Q1)                   (11) 

Another criterion identifies an outlier as any score that falls outside of the 

interval (Chen et al. 2014, p. 313): 

X̅ ± 2.5 S                            (12) 

2-5. Mean Squared Error and Goodness of Fit: Tests of the three null 

hypotheses just described all use the chi-square sampling distribution. The 

chi-square distribution, like the t and F distributions, is a family of 

distributions whose shape depends on its degrees of freedom, n. The chi-

square distribution like the F distribution is positively skewed, but as n 

increases (Ali et al. 2022, P. 394), the distribution approaches a normal 

distribution with mean and variance, respectively:  

E(χv
2) = ν   and   Var (χv

2) = 2ν 

  Because χv
2 is a squared quantity, it can range over only non-negative 

numbers, zero to positive infinity, whereas t and z can range over all real 

numbers. The goodness-of-fit test was developed to test the hypothesis that 

a population distribution estimated by a random sample is identical to a 

hypothesized or expected distribution. Let O1, O2,..., Ok represent observed 

sample frequencies and E1, E2,..., Ek represent expected frequencies. The 

null hypothesis is rejected if Pearson’s statistic, exceeds or equals the critical 

value of chi square, χα,ν, at a level of significance for υ = k − 1 degrees of 

freedom (Anderson, 2011, P. 53).  

 

http://www.doi.org/10.25130/tjaes.21.69.1.18
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χ2 = ∑
(Oj − Ej)

2

Ej

k

j=1

                   (13) 

The mean squared error of an estimator of the parameter Θ̂ is defined as: 

MSE(Θ̂) = E(Θ − θ)2                (14) 

3. Application Aspect: To compare the methods of estimating rank regression 

on the dependent variable (RRY) and then on the independent variable 

(RRX) with the maximum likelihood estimation method (MLE) when there 

are outliers in the Gaussian distribution data and in their absence, simulation 

was used in addition to the real data. 

3-1. Simulation Study: Data having a Gaussian distribution with the 

Location (µ) and scale (σ) parameters (for several different values) and for 

different sample sizes (50, 100, 200, 500, and 1000) were generated using a 

program designed for this purpose in the MATLAB program.  

 
Figure (1): Box plot for the first ten simulation experiments 

  The simulation experiments for the first ten without outliers (n = 100) 

are shown in Figure 1, using the Box plot. The simulation experiments were 

repeated (1000) times, the parameters of the Gaussian distribution were 

estimated, and the MSE average (for MSE(Mu) and MSE(Sigma)). The 

results were summarized in Tables 1-3: 

Table (1): Average of MSE when Mu = 50 & Sigma = 0.5 

Sample Size Criterion MLE RRY RRX 

50 
MSE(Mu) 0.0543 0.0543 0.0543 

MSE(Sigma) 0.0407 0.0438 0.0412 

http://www.doi.org/10.25130/tjaes.21.69.1.18
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Sample Size Criterion MLE RRY RRX 

100 
MSE(Mu) 0.0381 0.0381 0.0381 

MSE(Sigma) 0.0292 0.0304 0.0294 

200 
MSE(Mu) 0.0275 0.0275 0.0275 

MSE(Sigma) 0.0209 0.0215 0.0211 

500 
MSE(Mu) 0.0178 0.0178 0.0178 

MSE(Sigma) 0.0136 0.0138 0.0136 

1000 
MSE(Mu) 0.0126 0.0126 0.0126 

MSE(Sigma) 0.0091 0.0091 0.0091 

Table (2): Average of MSE when Mu = 10 & Sigma = 1 

Sample Size Criterion MLE RRY RRX 

50 
MSE(Mu) 0.1085 0.1085 0.1085 

MSE(Sigma) 0.0814 0.0876 0.0823 

100 
MSE(Mu) 0.0762 0.0762 0.0762 

MSE(Sigma) 0.0583 0.0609 0.0588 

200 
MSE(Mu) 0.0550 0.0550 0.0550 

MSE(Sigma) 0.0419 0.0431 0.0423 

500 
MSE(Mu) 0.0355 0.0355 0.0355 

MSE(Sigma) 0.0271 0.0275 0.0273 

1000 
MSE(Mu) 0.0253 0.0253 0.0253 

MSE(Sigma) 0.0183 0.0183 0.0182 

Table (3): Average of MSE when Mu = 100 & Sigma = 10 

Sample Size Criterion MLE RRY RRX 

50 
MSE(Mu) 1.0850 1.0850 1.0850 

MSE(Sigma) 0.8135 0.8760 0.8234 

100 
MSE(Mu) 0.7621 0.7621 0.7621 

MSE(Sigma) 0.5832 0.6087 0.5879 

200 
MSE(Mu) 0.5501 0.5501 0.5501 

MSE(Sigma) 0.4188 0.4306 0.4226 

500 
MSE(Mu) 0.3553 0.3553 0.3553 

MSE(Sigma) 0.2710 0.2752 0.2726 

1000 
MSE(Mu) 0.2526 0.2526 0.2526 

MSE(Sigma) 0.1826 0.1829 0.1823 

  The three Tables (1-3) show that the three methods that estimated the 

Location parameter have the same estimated values and certainly had the 

http://www.doi.org/10.25130/tjaes.21.69.1.18
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same criterion average (MSE), while the MLE outperformed the regression 

rank methods in all simulation cases except the case when the sample size 

was large (1000), the preference was for the rank regression method on the 

independent variable (RRX) and with note that the results of the three 

methods converge greatly when the sample size is large (1000). The accuracy 

of estimating Gaussian distribution parameters increases when the sample 

size increases. The accuracy of estimating the Gaussian distribution 

parameters decreases as its assumed value increases for all simulation cases. 

The estimators of the (RRY) method were inefficient in estimating the scale 

parameter compared to the (RRX) method for all simulation cases except for 

the case of large sample size (1000). 

  Also, outliers have been added to the generated data, using the 

(randperm (4,1)) function plus Mu to the data generated. The simulation 

experiments for the first ten with outliers (n = 100) are shown in Figure 2, 

using the Box plot. 

 
Figure (2): Box plot for the first ten simulation experiments with outliers 

  The simulation experiments were repeated (1000) times, the 

parameters of the Gaussian distribution were estimated, and the MSE 

average (for MSE(Mu) and MSE(Sigma)). The results were summarized in 

Tables 4-6: 
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Table (4): Average of MSE when Mu = 50 & Sigma = 0.5, (The presence 

of outliers) 

Sample Size Criterion MLE RRY RRX 

50 
MSE(Mu) 0.0697 0.0697 0.0697 

MSE(Sigma) 0.1241 0.1966 0.0968 

100 
MSE(Mu) 0.0441 0.0441 0.0441 

MSE(Sigma) 0.0717 0.1077 0.0560 

200 
MSE(Mu) 0.0299 0.0299 0.0229 

MSE(Sigma) 0.0383 0.0542 0.0316 

500 
MSE(Mu) 0.0182 0.0182 0.0182 

MSE(Sigma) 0.0188 0.0245 0.0164 

1000 
MSE(Mu) 0.0125 0.0125 0.0125 

MSE(Sigma) 0.0114 0.0138 0.0106 

Table (5): Average of MSE when Mu = 10 & Sigma = 1, (The presence of 

outliers) 

Sample Size Criterion MLE RRY RRX 

50 
MSE(Mu) 0.1358 0.1358 0.1358 

MSE(Sigma) 0.2094 0.3251 0.1708 

100 
MSE(Mu) 0.0865 0.0865 0.0865 

MSE(Sigma) 0.1216 0.1785 0.0996 

200 
MSE(Mu) 0.0592 0.0592 0.0592 

MSE(Sigma) 0.0702 0.0978 0.0598 

500 
MSE(Mu) 0.0364 0.0364 0.0364 

MSE(Sigma) 0.0357 0.0452 0.0321 

1000 
MSE(Mu) 0.0253 0.0253 0.0253 

MSE(Sigma) 0.0218 0.0257 0.0206 

Table (6): Average of MSE when Mu = 100 & Sigma = 10, (The presence 

of outliers) 

Sample Size Criterion MLE RRY RRX 

50 
MSE(Mu) 1.6373 1.6373 1.6373 

MSE(Sigma) 3.9644 6.6530 2.5848 

100 
MSE(Mu) 0.9730 0.9730 0.9730 

MSE(Sigma) 2.2913 3.7191 1.4435 

200 
MSE(Mu) 0.6327 0.6327 0.6327 

MSE(Sigma) 1.2992 2.0317 0.8248 
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Sample Size Criterion MLE RRY RRX 

500 
MSE(Mu) 0.3764 0.3764 0.3764 

MSE(Sigma) 0.6065 0.8984 0.4061 

1000 
MSE(Mu) 0.2567 0.2567 0.2567 

MSE(Sigma) 0.3324 0.4680 0.2430 

  The three Tables (4-6) show that the three methods that estimated the 

Location parameter have the same estimated values and certainly had the 

same criterion average (MSE), while the RRX outperformed the (RRY) and 

(MLE) methods in all simulation cases. The accuracy of estimating Gaussian 

distribution parameters increases when the sample size increases. The 

accuracy of estimating the Gaussian distribution parameters decreases as its 

assumed value increases for all simulation cases. The estimators of the 

(RRY) method were inefficient in estimating the scale parameter compared 

to the (MLE) method for all simulation cases when there are outliers. 

3-2. The Real Data: In a breast cancer study, observed times in months for 

time to breast retraction of early breast cancer patients (a subset of the total 

data set). The real data is taken from (Iqbal et al. 2022, P. 148) shown in 

Table 7 to (22) patients. 

Table (7): Breast cancer time data 

5 7 4 4 8 12 7 5 7 6 7 

7 7 14 12 8 7 9 8 16 7 7 

The box plot of real data for the breast cancer study shows the presence of 

(5) outliers as shown in Figure 3. 

 
Figure (3): Box plot for the real data 

  After estimating the location and scale parameters of the Gaussian 

distribution for the three methods, they are used to estimate survival times 

(expected values) and then the goodness-of-fit test (Chi-Square) is used to 
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test the efficiency of the estimated models. This test assesses the model’s 

overall fit by comparing the observed data with the model’s predicted values. 

The associated p-value obtained from this test measures the statistical 

significance of the differences between the observed and predicted values. 

Thus, by testing statistics, we can comprehensively evaluate the validity of 

the proposed model. The model that exhibits the best fit, as indicated by the 

minimum values of the Chi-Square and non-significant p-values from the 

test statistic, can be considered the most suitable for the given data set. Table 

8 summarizes the estimation and testing results for the three methods, and 

shows that method (RRX) was better than methods (MLE, and RRY) 

because the value of the test statistic was equal to (7.8128), which is less than 

the critical value (9.2103) under significance level (0.01), and the degrees of 

freedom (2), (also, it less than test statistics (7.8893) and (8.7601) for MLE, 

and RRY, respectively), and this is confirmed by the p-value (0.020), which 

was not significant, indicating the efficiency of the RRX model. Figure A-C 

in the appendix shows the probability and cumulative density function with 

the Survival function of the Gaussian distribution for breast cancer using the 

three methods. 

Table (8): Results of analysis for the real data 

Method 
Mean 

parameter 

Sigma 

parameter 

Chi-Square 

Statistic 
p-value 

Critical 

Value 

MLE 7.9091 2.9834 7.8893 0.019 9.2103 

RRY 7.9091 3.5044 8.7601 0.013 9.2103 

RRX 7.9091 2.9287 7.8128 0.020 9.2103 

4. Conclusion & Recommendations: Through the simulation study and real 

data, the following main conclusions and recommendations were 

summarized: 

4-1. Conclusions: 

1. The three methods (MLE, RRY, and RRX) that estimate the Location 

parameter have the same estimated values in the presence and absence of 

outliers for all simulation cases and real data. 

2. The MLE outperformed the regression rank methods in the absence of 

outliers for all simulation cases except the case when the sample size was 

large (1000), the preference was for the RRX method. 

3. The RRX outperformed the MLE and RRY methods in the presence of 

outliers for all simulation cases and real data. 
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4. The accuracy of estimating Gaussian distribution parameters increases when 

the sample size increases for the three methods. 

5. The accuracy of estimating the Gaussian distribution parameters decreases 

as its assumed value increases for the three methods. 

6. The estimators of the (RRY) method were inefficient in estimating the scale 

parameter compared to the (RRX) method for all simulation cases except for 

the case of large sample size (1000). 

4-2. Recommendations 

1. Using the RRX method to estimate two-parameter Gaussian distribution 

when there are outliers. 

2. Using the MLE method to estimate two-parameter Gaussian distribution 

when there are no outliers. 

3. Conducting a prospective study on the use of the robust rank regression 

method to estimate two-parameter Gaussian distribution. 

4. Conducting a prospective study on the use of the rank regression method to 

estimate two-parameter Exponential and Weibull distribution. 
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Appendix 

 

 

 
Figure (A): Pdf, Cdf, and Survival function for MLE 
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Figure. (B): Pdf, Cdf, and Survival function for RRY 
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Figure. (C): Pdf, Cdf, and Survival function for RRX 
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